CN109626513A - 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法 - Google Patents

光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法 Download PDF

Info

Publication number
CN109626513A
CN109626513A CN201811424563.8A CN201811424563A CN109626513A CN 109626513 A CN109626513 A CN 109626513A CN 201811424563 A CN201811424563 A CN 201811424563A CN 109626513 A CN109626513 A CN 109626513A
Authority
CN
China
Prior art keywords
fuel cell
persulfate
degradation
photocatalytic fuel
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811424563.8A
Other languages
English (en)
Other versions
CN109626513B (zh
Inventor
柳丽芬
周静
侯琤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811424563.8A priority Critical patent/CN109626513B/zh
Publication of CN109626513A publication Critical patent/CN109626513A/zh
Application granted granted Critical
Publication of CN109626513B publication Critical patent/CN109626513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法,属于废水处理与节能、资源化技术领域。由溶剂热法制备了BiOI/BiOCl,由共沉淀法制备了铜钴氧化物,并使用硅溶胶固定涂覆在不锈钢网上的方法制备了催化电极,在待降解溶液中加入过硫酸盐,连接电路构建了光催化燃料电池与过硫酸盐耦合的体系,实现了在PFC/PS复合体系中快速降解四环素与焦化废水,并提高产电;测定了反应的最适pH。光催化燃料电池与过渡金属活化过硫酸盐的协同作用大幅度提升了光催化燃料电池的降解性能与产电能力。

Description

光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的 方法
技术领域
本发明属于废水处理与节能资源化技术领域,涉及BiOCl/BiOI、Cu-Co-O催化电极的制备,由BiOCl/BiOI阳极和Cu-Co-O阴极构建光催化燃料电池,在过硫酸盐与催化电极的协同作用下,提升光催化燃料电池的降解性能与产电能力,使水处理更加节能环保。
背景技术
污染物中的抗生素、难降解及毒害性物质是主要而突出的水污染问题。抗生素在人体治疗,农业和动物保健方面有广泛的应用,但在水环境中大量释放抗生素会对生态风险和人类健康造成损害。作为环境中广泛存在的污染物,抗生素危害不容忽视。焦化废水主要在炼焦、制气以及化工产品回收过程中产生,其组成非常复杂,有硫化物、氰化物、高浓度的氨氮及大量难以生物降解的杂环多环芳香烃化合物等有毒有害物质。如果处理不好,会严重污染环境,危害人体生命健康。上述两种代表性污染物释放到环境中均会带来巨大危害,所以寻求一种有效且高效的处理方法十分必要。
光催化燃料电池(PFC,photocatalytic fuel cell)是利用电极上半导体的光催化能力对污染物进行矿化分解与电极间电势引发的电子流动而自产电的一种经济、节能的水处理技术,适用于处理苯酚、抗生素、染料废水等多种有机废水。PFC阳极材料需要具备良好的光催化与电化学性能,近年来,TiO2、BiVO4、ZnO/Zn等多种光催化剂被用来作为阳极并展开研究。然而,宽带隙和光诱导电子-空穴对的快速重组限制了它们的实际应用。最近,卤氧化铋(BiOX,X=Cl,Br,I)因其独特的层状结构受到特别的关注,其由双卤素夹层的[Bi2O2]2+特殊结构可形成内部静电场,从而有助于电子-空穴分离。此外,BiOI具有最小的带隙(Eg=1.8-1.9eV)并且可以响应可见光照射。在多种卤氧化铋系列复合催化剂中,BiOI/BiOCl表现出很高的催化活性。据我们所知,到目前为止,没有发现关于BiOI/BiOCl在PFC系统中作为功能光电阳极应用的报道。
硫酸根自由基高级氧化工艺(SR-AOPs)是破坏水中难降解有机污染物的有效解决方案,SO4 ·-是具有高氧化电位的活性粒子(2.5–3.1V),对污染物具有强的破坏力,可提高废水可生化性、降低毒理性。在SR-AOPs中,通常需通过某种方法对过氧单硫酸盐(PMS)或过硫酸盐(PS)进行活化,才能产生高活性的强氧化物质,而采用过渡金属进行活化则是最常用的方法之一。在很多研究中,钴离子和铜离子活化PS(Co2+、Cu2+/PS)的效率高于其他离子,而且可在较宽的pH范围使用。为了避免释放到环境中的金属离子对人类健康造成危害,铜-钴氧化物可以增强活化过程中催化剂的稳定性,且方便重复利用,同时也表现出了很高的催化活性。
将PFC系统与PS活化氧化过程结合在一起,实现两种不同体系之间的协同作用是一项新工艺。本申请中以BiOI/BiOCl光催化剂作为光阳极,将过渡金属催化剂铜-钴氧化物进行负载作为PFC阴极,在待降解溶液中添加过硫酸钾,在PFC与PS的协同作用下,增强PFC的降解性能与产电性能,对抗生素与焦化废水进行有效地处理。
发明内容
本发明设计了由BiOI/BiOCl阳极和铜钴氧化物阴极构建的光催化燃料电池(PFC)与过硫酸盐协同作用的催化降解体系,在能源消耗低的条件下使PFC的降解效率与产电能力得到了大幅度的提升。该体系理论上可处理四环素与焦化废水等有机废水,拓展了光催化燃料电池的应用,为光电催化及水处理提供了新的思路。
本发明的技术方案:
光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法,步骤如下:
(1)制备BiOI/BiOCl复合物:将Bi(NO3)·5H2O加入到乙二醇中并通过超声处理溶解形成溶液A;然后,将KCl和KI同样溶解于乙二醇中通过超声波处理形成溶液B;将溶液A在室温下逐滴加入溶液B中,连续磁力搅拌1小时,控制Bi、Cl、I三者的物质的量满足n(Bi)=n(Cl)+n(I),n(Cl)/n(I)=1/3-1/1。最后,将混合物转移到聚四氟乙烯衬里的高压釜中,并在140-180℃下保持10-18小时;冷却至室温后,将沉淀物用去离子水和乙醇洗涤三次,然后将其在60°下干燥;
(2)制备铜-钴氧化物复合物:将Co(NO3)2·6H2O和Cu(NO3)2·3H2O分散在超纯水中,控制Cu与Co摩尔比1/2-1/4,搅拌一个小时使其彻底溶解,然后加入NaOH溶液将pH调至12-14;用超纯水洗涤后,将沉淀物在60℃下干燥过夜,研磨后在400-600℃下煅烧4-8小时,最后得到催化剂;
(3)光电催化电极的制备:首先将不锈钢网切成合适的尺寸,用去离子水洗涤与无水乙醇超声洗涤后在鼓风炉中干燥后使用;将催化剂与硅溶胶以1:1的比例(g/mL)完全混合,然后将混合物均匀地刷在不锈钢网上;
(4)光催化燃料电池耦合过硫酸盐催化处理系统构建:以BiOI/BiOCl电极作为阳极,铜-钴氧化物电极作为阴极,用导线连接形成电路,置于长管状单室反应器中。在待降解溶液中加入适量的过硫酸钾;光源垂直照射BiOI/BiOCl光电电极。
将光催化燃料电池与过渡金属活化过硫酸盐耦合,所述的污染物为四环素与焦化废水。
本发明的有益效果:本发明集成了光催化燃料电池与过硫酸盐活化氧化过程,并在PFC与PS之间产生协同作用,有利于更加彻底快速的降解有机污染物,同时增强产电能力和水平。该系统的催化电极稳定性好,能够持续降解污染物与产电。
附图说明
图1是PS催化(PS)、光催化(PC)、光电催化(PFC)、铜钴氧化物+PS(CuxCoyOz/PS)以及光催化燃料电池耦合PS(PFC/PS)五种体系处理降解四环素去除效果对比图。图中,横坐标为时间(min),纵坐标为当前浓度与初始浓度的比值。
图2是在pH为3、4.6、8、11条件下,PFC/PS体系处理降解四环素去除效果对比图。图中,横坐标为时间(min),纵坐标为当前浓度与初始浓度的比值。
图3是PFC/PS体系在pH为6的情况下处理降解焦化废水的去除效果图。图中,横坐标为时间(min),纵坐标为当前浓度与初始浓度的比值。
图4是在pH为5、6、7、8条件下,PFC/PS体系处理降解焦化废水去除效果对比图。图中,横坐标为时间(min),纵坐标为当前浓度与初始浓度的比值。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
实施例一:光催化微生物燃料电池耦合过硫酸盐处理四环素
将催化电极置于长管状石英反应器中,用鳄鱼夹连接催化电极上方,用导线连接构成电路,并连接5欧姆电阻。反应器底部提供曝气。可见光源为50W卤钨灯。反应开始前,在浓度为100mg/L的四环素溶液中添加1mM过硫酸钾并使其溶解,调节溶液的pH。反应开始后,每隔10min进行取样,并用高效液相色谱测定浓度。反应共进行1h,计算四环素的去除率。
图1中,测定PS催化(PS)、光催化(PC)、光电催化(PFC)、铜钴氧化物+PS(CuxCoyOz/PS)以及光催化燃料电池耦合过硫酸盐(PFC/PS)五种体系的不同降解效果与产电性能进行了对比。仅PS催化降解率为零,CuxCoyOZ/PS体系中,30min时降解率即达到了97%,,光催化时1h降解率是64%,PFC光电催化降解率提高到了74%。PFC耦合PS之后,降解效率大幅度提升,95%的抗生素在10分钟时即被降解。记录了图1反应中的电压与电流,PFC/PS体系的产电能力相比PFC体系有所增强,开路电压从0.15V增至0.36V,电流密度由1.7×10-3mA/cm2增至1.3×10-2mA/cm2
图2中,测定了PFC/PS对不同初始pH条件下四环素的去除情况。pH在4.6、7、9时,降解曲线几乎重合,10min降解率为95%,而当pH为3和11时,10分钟时的降解率相比对pH不做调整(pH=4.6)时有所下降,由95%下降到75%和81%,但是在20分钟以后,降解趋势趋于相同,最终能够将四环素彻底降解。说明该PFC/PS体系对四环素的降解可适用于较广泛的pH。
实施例二:光催化微生物燃料电池耦合过硫酸盐处理焦化废水
反应在长管状石英反应器中进行,将两个电极置于溶液中,并用鳄鱼夹及导线连接。外电阻为5欧姆,光源为50W卤钨灯,反应器底部设有曝气头,为反应提供溶解氧。反应开始前,在焦化废水中添加2mM过硫酸钾并使其溶解,调节溶液的pH。反应开始后,每隔30min进行取样,并用TN/TOC测定仪测定TOC浓度。反应共进行3h,计算焦化废水TOC的去除率。
图3中,在初始pH为6时,PFC/PS耦合系统对焦化废水进行了降解,3h的降解率达到了87%。记录了图3中反应的电压与电流,开路电压为0.39V,电流密度为1.4×10-2mA/cm2
图4中,测定了PFC/PS对不同初始pH条件下焦化废水TOC的去除情况。pH从5到8,从酸性到碱性,3h的TOC降解率呈下降趋势,分别为95%、87%、75%、42%。焦化废水在偏酸性条件下更容易被降解。

Claims (2)

1.一种光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法,其特征在于,步骤如下:
(1)制备BiOI/BiOCl复合物:将Bi(NO3)·5H2O加入到乙二醇中并通过超声处理溶解形成溶液A;然后,将KCl和KI同样溶解于乙二醇中通过超声波处理形成溶液B;将溶液A在室温下逐滴加入溶液B中,连续磁力搅拌1小时,控制Bi、Cl、I三者的物质的量满足n(Bi)=n(Cl)+n(I),n(Cl)/n(I)=1/3-1/1;最后,将混合物转移到聚四氟乙烯衬里的高压釜中,并在140-180℃下保持10-18小时;冷却至室温后,将沉淀物用去离子水和乙醇洗涤三次,然后将其在60°下干燥;
(2)制备铜-钴氧化物复合物:将Co(NO3)2·6H2O和Cu(NO3)2·3H2O分散在超纯水中,控制Cu与Co摩尔比1/2-1/4,搅拌一个小时使其彻底溶解,然后加入NaOH溶液将pH调至12-14;用超纯水洗涤后,将沉淀物在60℃下干燥过夜,研磨后在400-600℃下煅烧4-8小时,最后得到催化剂;
(3)光电催化电极的制备:首先将不锈钢网切成合适的尺寸,用去离子水洗涤与无水乙醇超声洗涤后在鼓风炉中干燥后使用;将催化剂按照g计量,每硅溶胶按照ml计量,二者以1:1比例混合,然后将混合物均匀地刷在不锈钢网上;
(4)光催化燃料电池耦合过硫酸盐催化处理系统构建:以BiOI/BiOCl电极作为阳极,铜-钴氧化物电极作为阴极,用导线连接形成电路,置于长管状单室反应器中;在待降解溶液中加入适量的过硫酸钾;光源垂直照射BiOI/BiOCl光电电极。
2.根据权利要求1所述的光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法,其特征在于,将光催化燃料电池与过渡金属活化过硫酸盐耦合,所述的污染物为四环素与焦化废水。
CN201811424563.8A 2018-11-27 2018-11-27 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法 Active CN109626513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811424563.8A CN109626513B (zh) 2018-11-27 2018-11-27 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811424563.8A CN109626513B (zh) 2018-11-27 2018-11-27 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法

Publications (2)

Publication Number Publication Date
CN109626513A true CN109626513A (zh) 2019-04-16
CN109626513B CN109626513B (zh) 2021-10-15

Family

ID=66069294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811424563.8A Active CN109626513B (zh) 2018-11-27 2018-11-27 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法

Country Status (1)

Country Link
CN (1) CN109626513B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240221A (zh) * 2019-04-25 2019-09-17 中国科学院生态环境研究中心 一种光电催化体系及降解有机污染物同时回收贵金属银的方法
CN111509336A (zh) * 2020-03-18 2020-08-07 清华大学 选择性催化氧化同步产电的光电燃料电池系统及其应用
CN113600173A (zh) * 2021-08-09 2021-11-05 中山大学 铋催化剂在活化过硫酸盐杀菌消毒中的应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042937A1 (en) * 2004-08-31 2006-03-02 Kazuhiro Kaneda Electrode for electrolysis and method of manufacturing electrode for electrolysis
US20090011235A1 (en) * 2004-09-03 2009-01-08 The University Of Connecticut Manganese oxide nanowires, films, and membranes and methods of making
JP2009279566A (ja) * 2008-05-26 2009-12-03 Asahi Kasei Chemicals Corp 光触媒含有組成物
CN102208657A (zh) * 2011-03-31 2011-10-05 同济大学 一种Ag/AgBr@TiO2/CA电极的制备方法及其应用
CN103342405A (zh) * 2013-07-23 2013-10-09 哈尔滨工业大学 一种电化学阴极活化过硫酸盐降解水中有机污染物的方法
CN103367759A (zh) * 2013-07-15 2013-10-23 上海交通大学 可见光响应型光催化废水燃料电池及其制备方法和应用
CN105428663A (zh) * 2015-12-14 2016-03-23 南京工业大学 一种具光催化协同效应微生物燃料电池电极及其制备方法和应用
CN105819560A (zh) * 2016-03-30 2016-08-03 中国科学院生态环境研究中心 一种过硫酸盐强化光电催化氧化重金属络合物及回收重金属的方法
CN105858859A (zh) * 2016-04-15 2016-08-17 广东工业大学 一种垃圾渗滤液的催化氧化处理方法
CN106299418A (zh) * 2016-08-16 2017-01-04 上海交通大学 强化自由基反应的光催化废水燃料电池及制备方法和应用
CN107081333A (zh) * 2017-05-18 2017-08-22 大连理工大学 一种新型光催化燃料电池的水体沙土修复系统与方法
CN108147507A (zh) * 2016-12-06 2018-06-12 中国科学院生态环境研究中心 一种负载四氧化三钴的阴极碳材料活化过硫酸盐强化光电催化降解有机物的方法
CN108249513A (zh) * 2018-02-08 2018-07-06 燕山大学 光催化燃料电池与过硫酸盐活化耦合处理染料废水的方法
CN108328692A (zh) * 2018-01-23 2018-07-27 中国科学院生态环境研究中心 光催化燃料电池体系及光电催化回收贵金属银同时降解有机物的方法
CN108706573A (zh) * 2018-08-20 2018-10-26 南京大学 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法
US20180354819A1 (en) * 2015-12-02 2018-12-13 Imperial Innovations Limited Fuel Cell For Wastewater Treatment
CN109847752A (zh) * 2019-01-22 2019-06-07 大连理工大学 通过过渡双金属氧化复合催化材料光电活化过硫酸盐处理氨气并产电的pec体系

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042937A1 (en) * 2004-08-31 2006-03-02 Kazuhiro Kaneda Electrode for electrolysis and method of manufacturing electrode for electrolysis
US20090011235A1 (en) * 2004-09-03 2009-01-08 The University Of Connecticut Manganese oxide nanowires, films, and membranes and methods of making
JP2009279566A (ja) * 2008-05-26 2009-12-03 Asahi Kasei Chemicals Corp 光触媒含有組成物
CN102208657A (zh) * 2011-03-31 2011-10-05 同济大学 一种Ag/AgBr@TiO2/CA电极的制备方法及其应用
CN103367759A (zh) * 2013-07-15 2013-10-23 上海交通大学 可见光响应型光催化废水燃料电池及其制备方法和应用
CN103342405A (zh) * 2013-07-23 2013-10-09 哈尔滨工业大学 一种电化学阴极活化过硫酸盐降解水中有机污染物的方法
US20180354819A1 (en) * 2015-12-02 2018-12-13 Imperial Innovations Limited Fuel Cell For Wastewater Treatment
CN105428663A (zh) * 2015-12-14 2016-03-23 南京工业大学 一种具光催化协同效应微生物燃料电池电极及其制备方法和应用
CN105819560A (zh) * 2016-03-30 2016-08-03 中国科学院生态环境研究中心 一种过硫酸盐强化光电催化氧化重金属络合物及回收重金属的方法
CN105858859A (zh) * 2016-04-15 2016-08-17 广东工业大学 一种垃圾渗滤液的催化氧化处理方法
CN106299418A (zh) * 2016-08-16 2017-01-04 上海交通大学 强化自由基反应的光催化废水燃料电池及制备方法和应用
CN108147507A (zh) * 2016-12-06 2018-06-12 中国科学院生态环境研究中心 一种负载四氧化三钴的阴极碳材料活化过硫酸盐强化光电催化降解有机物的方法
CN107081333A (zh) * 2017-05-18 2017-08-22 大连理工大学 一种新型光催化燃料电池的水体沙土修复系统与方法
CN108328692A (zh) * 2018-01-23 2018-07-27 中国科学院生态环境研究中心 光催化燃料电池体系及光电催化回收贵金属银同时降解有机物的方法
CN108249513A (zh) * 2018-02-08 2018-07-06 燕山大学 光催化燃料电池与过硫酸盐活化耦合处理染料废水的方法
CN108706573A (zh) * 2018-08-20 2018-10-26 南京大学 一种可高效活化过硫酸盐的石墨烯基中空硫化钴纳米晶及其制备方法
CN109847752A (zh) * 2019-01-22 2019-06-07 大连理工大学 通过过渡双金属氧化复合催化材料光电活化过硫酸盐处理氨气并产电的pec体系

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHENGYU YANG ET AL: "Preparation and first-principles study for electronic structures of BiOI/BiOCl composites with highly improved photocatalytic andadsorption performances", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *
JIAYI YAO ET AL: "Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution:Kinetic study and products identification", 《CHEMICAL ENGINEERING JOURNAL》 *
JING ZHOU ET AL: "Persulfate enhanced pollutants oxidation efficiency and power generation in photocatalytic fuel cell with anodic BiOCl/BiOI and cathodic copper cobalt oxide", 《JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS》 *
XIANGDE SU ET AL: "In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B", 《APPLIED SURFACE SCIENCE》 *
周静: "BiOCl/BiOI光催化燃料电池降解水体污染物的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240221A (zh) * 2019-04-25 2019-09-17 中国科学院生态环境研究中心 一种光电催化体系及降解有机污染物同时回收贵金属银的方法
CN111509336A (zh) * 2020-03-18 2020-08-07 清华大学 选择性催化氧化同步产电的光电燃料电池系统及其应用
CN113600173A (zh) * 2021-08-09 2021-11-05 中山大学 铋催化剂在活化过硫酸盐杀菌消毒中的应用

Also Published As

Publication number Publication date
CN109626513B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN103739043B (zh) 一种光催化三维电极/电芬顿体系的粒子电极及制备方法
Hou et al. Solar promoted azo dye degradation and energy production in the bio-photoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode
CN108423776B (zh) 一种电容去离子耦合电催化协同去除重金属和有机物的方法
CN109626513A (zh) 光催化燃料电池与过硫酸盐耦合降解污染物并提高产电的方法
CN103435134B (zh) 一种基于CNTs/Fe3O4三维电-Fenton提高兰炭废水可生化性的方法
CN102211830B (zh) 电催化氧化处理切削液废水的方法
CN101486499B (zh) 一种太阳能光电催化氧化水中有机物的装置
CN105776441A (zh) 一种三维多孔钛基体二氧化铅电极及其制备方法和应用
CN106277180A (zh) 一种超声波强化光电催化处理含重金属及难降解有机污染物废水的装置
CN108017120A (zh) 一种采用新型阳极电催化氧化处理苯酚有机废水的方法
CN110436583A (zh) 一种深度去除水中硝酸盐的电化学装置及其使用方法
CN105110426A (zh) 处理有机废水用的新型填充粒子电极材料的制备方法
CN107899592A (zh) 一种磁性可回收片状NiFe2O4/BiOI复合纳米材料的制备方法及应用
Zhang et al. Photocatalytic removal organic matter and bacteria simultaneously from real WWTP effluent with power generation concomitantly: Using an ErAlZnO photo-anode
KR100699556B1 (ko) 광촉매와 바이오 촉매를 이용한 촉매 분리형 수소 제조장치
CN104016449A (zh) 一种Sb-Ni-Nd共掺杂SnO2高催化活性阳极的制备及应用
CN113200584A (zh) 一种电化学处理循环冷却水的电极材料与装置
CN113023840B (zh) 一种降解有机废水的方法和反应装置
CN106395998A (zh) 一种含盐废水资源化处理方法
CN110526343B (zh) 一种电催化耦合高级氧化体系及其应用
CN106745541B (zh) 去除水中氨氮和有机物的复合电极及其制备方法
CN109110882B (zh) 一种电化学去除对二甲苯的方法
CN108479749A (zh) 一种金属离子掺杂钒酸盐纳米催化剂的合成方法
CN109516527A (zh) 一种连续流电化学过滤系统及其在降解氨氮废水中的应用
Zou et al. The promotion of Ag3PO4 photocatalysis on methylene blue removal and electricity generation in microbial fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant