CN108479749A - 一种金属离子掺杂钒酸盐纳米催化剂的合成方法 - Google Patents

一种金属离子掺杂钒酸盐纳米催化剂的合成方法 Download PDF

Info

Publication number
CN108479749A
CN108479749A CN201810091914.1A CN201810091914A CN108479749A CN 108479749 A CN108479749 A CN 108479749A CN 201810091914 A CN201810091914 A CN 201810091914A CN 108479749 A CN108479749 A CN 108479749A
Authority
CN
China
Prior art keywords
salt
substrate
metal ion
vanadate
ion mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810091914.1A
Other languages
English (en)
Inventor
方东
鲍瑞
易健宏
李秀娟
李才巨
游昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810091914.1A priority Critical patent/CN108479749A/zh
Publication of CN108479749A publication Critical patent/CN108479749A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种金属离子掺杂钒酸盐纳米催化剂的合成方法,属于光催化剂制备技术领域。将过渡金属盐、偏钒酸铵、二水合草酸、六次亚甲基四铵按一定比例溶于蒸馏水中,超声溶解得到前驱体,将前驱体移入含有基底的高压反应釜中进行水热反应,反应结束后将负载有过渡金属钒酸盐纳米线的基底洗净,干燥,之后将负载有过渡金属钒酸盐纳米线的基底在10‑100℃下浸泡在可溶性金属盐溶液中,取出、清洗、干燥,最后通过煅烧处理得到所述的一种金属离子掺杂钒酸盐纳米光催化剂,本发明制备工艺简单,反应条件温和且因纳米线比表面积大、反应时间短,全过程无二次污染物产生,制备的光催化剂具有优良的光催化性能,能够在太阳光下降解有机污染物或光解水产氢或去除气相中有机物。

Description

一种金属离子掺杂钒酸盐纳米催化剂的合成方法
技术领域
本发明涉及一种金属离子掺杂钒酸盐纳米催化剂的合成方法,属于纳米光催化剂材料制备技术领域。
技术背景
随着现代工业的不断发展,环境问题和能源危机是人类社会面临和急需解决的重大课题。太阳能是一种永不枯竭的自然能源,在资源日益减少的今天,太阳能的开发是替代传统能源的方法之一,而当前半导体太阳能催化技术则是很好的结合了能源和环境两大问题的一个关键点,因为通过将太阳能光子照射,光催化剂激发载流子迁移,使水转化为洁净的可以进行实际应用的氢能源,将非常有效的解决化石能源枯竭、气体温室、环境效应等带来的危机,而光催化降解利用空穴载流子的氧化作用可以很好的消除有毒有机污染物利用光催化降解环境污染物,提高能源的循环利用,具有在室温条件,将进一步成为解决环境污染问题的一条廉价可行的途径。
钒酸盐是一类优良的功能材料,被广泛应用于荧光及激光材料领域。最新的研究表明,单斜晶相钒酸盐因其较窄的窄带宽度(2.3~2.4eV),在可见光区较高的光催化活性,而表现出良好的光催化领域的发展潜力。已报道的有钒酸铋、钒酸银、钒酸铟、钒酸铁、钒酸锌、钒酸锡、钒酸钨等均是高活性光催化剂。然而,由于钒酸盐光催化剂的光量子效率较低和光生电子-空穴对的复合几率较高,导致其光催化剂效率受限。因此,为了提高钒酸盐的光催化活性,需要将钒酸盐与金属离子掺杂。
金属离子可以提供电子转移轨道,能增强光生载流子在界面的俘获;稀土离子半径较大,掺杂晶格后,易引起晶格畸变,使晶格内化学键发生扭曲,产生氧空位,作为光生空穴的俘获中心,增加了光生电子空穴的分离时间,促进其发生分离,从而提高催化性能。
Chen等人(Microwave assisted synthesis of sheet-like Cu/BiVO4 and itsactivities of various photocatalytic conditions.J Solid State Chem.2015;229:141-9.)利用微波辅助水热合成片状Cu掺杂BiVO4光催化材料,制得的复合催化剂光响应范围拓宽了,材料的比表面积增加,光催化性能提高。Gao等人(Effects of pH on thehierarchical structures and photocatalytic performance of Cu-doped BiVO4prepared via the hydrothermal method.Mat Sci Semicon Proc.2015;35:197-206.)通过水热法制备不同pH条件下多级结构的Cu掺杂BiVO4光催化剂。Chala等人(Enhancedvisible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst.Journal of Alloys and Compounds,2014,597:129-135)采用水热法制备了Fe-BiVO4样品,在可见光照射条件下,以亚甲基蓝为目标降解物的光催化实验中,Fe的掺入量为5﹪,Fe-BiVO4光催化剂对亚甲基蓝的降解率为81%。Huang等人(Enhanced photocatalytic activity of tetragonal BiVO4:Influenced by rareearth ion Yb3+.Mater Lett.2014;133:20-3.)用微博水热法制备了不同浓度Yb3+掺杂BiVO4的光催化材料,同等条件下,掺杂样品降解效率比单体高出80%。但上述水热处理方法需要水热反应釜,水热处理时间过长,温度较高。微波法的微波发生器价格贵,而且现行的微波发生器的体积过小,限制了光催化剂产品的产量。
发明内容
本发明针对现有技术存在的问题,目的在于提供一种金属离子掺杂钒酸盐纳米催化剂的合成方法。
为了实现上述目的,本发明采用以下技术方案:
一种金属离子掺杂钒酸盐纳米催化剂的合成方法,其特征在于:所述制备方法是指将过渡金属盐、偏钒酸铵、二水合草酸、六次亚甲基四铵按一定比例溶于蒸馏水中,超声溶解得到前驱体,将前驱体移入含有基底的高压反应釜中进行水热反应,反应结束后将负载有过渡金属钒酸盐纳米线的基底洗净,干燥,之后将负载有过渡金属钒酸盐纳米线的基底在10-100℃下浸泡在可溶性金属盐溶液中,取出、清洗、干燥,最后通过煅烧处理得到所述的一种金属离子掺杂钒酸盐纳米光催化剂,制备方法按以下步骤进行:
a将过渡金属盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声溶解得到前驱体,其中偏钒酸铵的浓度为0.2~1mol/L,偏钒酸铵和过渡金属盐的浓度比为1:6~1:20,二水合草酸和过渡金属盐的浓度比为1:3~1:10,六次亚甲基四铵和过渡金属盐的浓度比为1:3~1:6;
b清洗基底,将清洗后的基底放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有基底的高压反应釜内衬中后,在90~150℃反应40~120min,取出反应釜在室温自然冷却后,将反应后负载有过渡金属钒酸盐纳米线的基底取出,用蒸馏水冲洗,在烘箱中30~100℃干燥;
d取将c步骤干燥后的负载有过渡金属钒酸盐纳米线的基底在10-100℃下浸泡在0.01-1mol/L金属盐溶液中1~24h;
e取在c步骤中在金属盐溶液中浸泡后的负载有过渡金属钒酸盐纳米线的基底,在马弗炉中以0.5~2℃/min的升温速率,加热到200~300℃,保温2~5h,既得所述的一种金属离子掺杂钒酸盐纳米光催化剂。
所述的过渡金属盐为铋盐、铟盐、铁盐、锌盐、锡盐、银盐、钨盐、铜盐中的一种。
所述的基底为碳布或棉布或钛片或不锈钢钢丝网或泡沫镍中的一种。
所述的可溶性金属盐为铂盐、镧盐、铈盐、钐盐、铕盐、钆盐、镱盐、锰盐、钴盐、钕盐中的一种。
所述的金属离子掺杂光催化剂能够在太阳光下降解废水中有机污染物或光解水产氢或去除气相中有机物。
所述的过渡金属光催化剂能够在太阳光下降解有机污染物或光解水产氢。由于采用了以上技术方案,一种金属离子掺杂钒酸盐纳米催化剂的合成方法,是先制得过渡金属钒酸盐纳米线,再将过渡金属钒酸盐纳米线置于金属盐溶液中浸泡,采用离子交换的方法制得金属离子掺杂钒酸盐纳米催化剂,本发明反应条件温和且因纳米线的比表面积大、反应时间短,制备出的产品长在棉布等成本较低的基底上,工艺简单,操作简便,全过程无二次污染物产生,制备的光催化剂具有优良的光催化性能,金属离子的掺杂能加速光催化剂中光生载流子的迁移,抑制电子与空穴的复合,从而实现电子-空穴的有效分离,增加量子产率,提高光催化剂的催化活性。同时,金属离子的掺杂使光催化剂的光吸收边红移至可见光区。因此本发明的一种金属离子掺杂钒酸盐光催化剂,能够在太阳光下降解有机污染物或光解水产氢,是一种生产成本低且简单易行的高可见光活性光催化剂制备方法。
具体实施方式
下面结合实施例对本发明做进一步详细描述。
实施例1
a将铋盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为0.2mol/L,铋盐的浓度为1.2mol/L,二水合草酸的浓度为0.4mol/L,六次亚甲基四铵的浓度为0.4mol/L;
b清洗碳布,将清洗后的碳布放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有碳布的高压反应釜内衬中后,在90℃反应40min,取出反应釜在室温自然冷却后,将反应后负载有钒酸铋纳米线的碳布取出,用蒸馏水冲洗,在烘箱中30℃干燥;
d取将c步骤干燥后的负载有钒酸铋纳米线的碳布在10-100℃下浸泡在0.01mol/L铂盐溶液中1h;
e取在d步骤中在铂盐溶液中浸泡后的负载有钒酸铋纳米线的碳布,在马弗炉中以0.5℃/min的升温速率,加热到200℃,保温2h,既得所述的一种铂离子掺杂钒酸铋纳米光催化剂。
实施例2
a将铟盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为1mol/L,铟盐的浓度为20mol/L,二水合草酸的浓度为2mol/L,六次亚甲基四铵的浓度为3mol/L;
b清洗棉布,将清洗后的棉布放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有棉布的高压反应釜内衬中后,在150℃反应120min,取出反应釜在室温自然冷却后,将反应后负载有钒酸铟的棉布取出,用蒸馏水冲洗,在烘箱中100℃干燥;
d取将c步骤干燥后的负载有钒酸铟纳米线的碳布在10-100℃下浸泡在1mol/L镧盐溶液中24h;
e取在d步骤中在镧盐溶液中浸泡后的负载有钒酸铟纳米线的碳布,在马弗炉中以2℃/min的升温速率,加热到300℃,保温5h,既得所述的一种镧离子掺杂钒酸铟纳米光催化剂。
实施例3
a将铁盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为0.5mol/L,铁盐的浓度为5mol/L,二水合草酸的浓度为1mol/L,六次亚甲基四铵的浓度为1mol/L;
b清洗钛片,将清洗后的钛片放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有钛片的高压反应釜内衬中后,在90℃反应80min,取出反应釜在室温自然冷却后,将反应后负载有钒酸铁纳米线的钛片取出,用蒸馏水冲洗,在烘箱中80℃干燥;
d取将c步骤干燥后的负载有钒酸铁纳米线的碳布在10-100℃下浸泡在0.1mol/L铈盐溶液中10h;
e取在d步骤中在铈盐溶液中浸泡后的负载有钒酸铁纳米线的碳布,在马弗炉中以1℃/min的升温速率,加热到250℃,保温3h,既得所述的一种铈离子掺杂钒酸铁纳米光催化剂。
实施例4
a将锌盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为0.2mol/L,锌盐的浓度为1.2mol/L,二水合草酸的浓度为0.4mol/L,六次亚甲基四铵的浓度为0.4mol/L;
b清洗不锈钢钢丝网,将清洗后的不锈钢钢丝网放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有不锈钢钢丝网的高压反应釜内衬中后,在90℃反应40min,取出反应釜在室温自然冷却后,将反应后负载有钒酸锌纳米线的不锈钢钢丝网取出,用蒸馏水冲洗,在烘箱中30℃干燥;
d取将c步骤干燥后的负载有钒酸锌纳米线的碳布在10-100℃下浸泡在0.01mol/L钐盐溶液中1h;
e取在d步骤中在钐盐溶液中浸泡后的负载有钒酸锌纳米线的碳布,在马弗炉中以1℃/min的升温速率,加热到250℃,保温3h,既得所述的一种钐离子掺杂钒酸锌纳米光催化剂。
实施例5
a将锡盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为1mol/L,锡盐的浓度为20mol/L,二水合草酸的浓度为2mol/L,六次亚甲基四铵的浓度为3mol/L;
b清洗泡沫镍,将清洗后的泡沫镍放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有泡沫镍的高压反应釜内衬中后,在150℃反应120min,取出反应釜在室温自然冷却后,将反应后负载有钒酸锡的泡沫镍取出,用蒸馏水冲洗,在烘箱中100℃干燥;
d取将c步骤干燥后的负载有钒酸锡纳米线的泡沫镍在10-100℃下浸泡在1mol/L铕盐溶液中1h;
e取在d步骤中在铕盐溶液中浸泡后的负载有钒酸锡纳米线的泡沫镍,在马弗炉中以2℃/min的升温速率,加热到300℃,保温5h,既得所述的一种铕离子掺杂钒酸锡纳米光催化剂。
实施例6
a将银盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为0.2mol/L,银盐的浓度为1.2mol/L,二水合草酸的浓度为0.4mol/L,六次亚甲基四铵的浓度为0.4mol/L;
b清洗碳布,将清洗后的碳布放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有碳布的高压反应釜内衬中后,在90℃反应40min,取出反应釜在室温自然冷却后,将反应后负载有钒酸银纳米线的碳布取出,用蒸馏水冲洗,在烘箱中30℃干燥;
d取将c步骤干燥后的负载有钒酸银纳米线的碳布在10-100℃下浸泡在0.1mol/L钆盐溶液中1h;
e取在d步骤中在钆盐溶液中浸泡后的负载有钒酸银纳米线的碳布,在马弗炉中以0.5℃/min的升温速率,加热到200℃,保温2h,既得所述的一种钆离子掺杂钒酸银纳米光催化剂。
实施例7
a将钨盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为1mol/L,钨盐的浓度为20mol/L,二水合草酸的浓度为2mol/L,六次亚甲基四铵的浓度为3mol/L;
b清洗棉布,将清洗后的棉布放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有棉布的高压反应釜内衬中后,在150℃反应120min,取出反应釜在室温自然冷却后,将反应后负载有钒酸钨的棉布取出,用蒸馏水冲洗,在烘箱中100℃干燥;
d取将c步骤干燥后的负载有钒酸钨纳米线的碳布在10-100℃下浸泡在0.01mol/L镱盐溶液中10h;
e取在d步骤中在镱盐溶液中浸泡后的负载有钒酸钨纳米线的碳布,在马弗炉中以2℃/min的升温速率,加热到300℃,保温5h,既得所述的一种镱离子掺杂钒酸钨纳米光催化剂。
实施例8
a将铜盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为0.5mol/L,铜盐的浓度为5mol/L,二水合草酸的浓度为1mol/L,六次亚甲基四铵的浓度为1mol/L;
b清洗钛片,将清洗后的钛片放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有钛片的高压反应釜内衬中后,在90℃反应80min,取出反应釜在室温自然冷却后,将反应后负载有钒酸铜纳米线的钛片取出,用蒸馏水冲洗,在烘箱中80℃干燥;
d取将c步骤干燥后的负载有钒酸铜纳米线的碳布在10-100℃下浸泡在1mol/L锰盐溶液中24h;
e取在d步骤中在锰盐溶液中浸泡后的负载有钒酸铜纳米线的碳布,在马弗炉中以1℃/min的升温速率,加热到250℃,保温3h,既得所述的一种锰离子掺杂钒酸铜纳米光催化剂。
实施例9
a将钨盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为1mol/L,钨盐的浓度为20mol/L,二水合草酸的浓度为2mol/L,六次亚甲基四铵的浓度为3mol/L;
b清洗棉布,将清洗后的棉布放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有棉布的高压反应釜内衬中后,在150℃反应120min,取出反应釜在室温自然冷却后,将反应后负载有钒酸钨的棉布取出,用蒸馏水冲洗,在烘箱中100℃干燥;
d取将c步骤干燥后的负载有钒酸钨纳米线的碳布在10-100℃下浸泡在0.1mol/L钴盐溶液中10h;
e取在d步骤中在钴盐溶液中浸泡后的负载有钒酸钨纳米线的碳布,在马弗炉中以2℃/min的升温速率,加热到300℃,保温5h,既得所述的一种钴离子掺杂钒酸钨纳米光催化剂。
实施例10
a将铜盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声混合配成混合液得到前驱体,其中偏钒酸铵的浓度为0.5mol/L,铜盐的浓度为5mol/L,二水合草酸的浓度为1mol/L,六次亚甲基四铵的浓度为1mol/L;
b清洗钛片,将清洗后的钛片放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有钛片的高压反应釜内衬中后,在90℃反应80min,取出反应釜在室温自然冷却后,将反应后负载有钒酸铜纳米线的钛片取出,用蒸馏水冲洗,在烘箱中80℃干燥;
d取将c步骤干燥后的负载有钒酸铜纳米线的碳布在10-100℃下浸泡在0.01mol/L钕盐溶液中24h;
e取在d步骤中在钕盐溶液中浸泡后的负载有钒酸铜纳米线的碳布,在马弗炉中以1℃/min的升温速率,加热到250℃,保温3h,既得所述的一种钕离子掺杂钒酸铜纳米光催化剂。

Claims (5)

1.一种金属离子掺杂钒酸盐纳米催化剂的合成方法,其特征在于:所述制备方法是指将过渡金属盐、偏钒酸铵、二水合草酸、六次亚甲基四铵按一定比例溶于蒸馏水中,超声溶解得到前驱体,将前驱体移入含有基底的高压反应釜中进行水热反应,反应结束后将负载有过渡金属钒酸盐纳米线的基底洗净,干燥,之后将负载有过渡金属钒酸盐纳米线的基底在10-100℃下浸泡在可溶性金属盐溶液中,取出、清洗、干燥,最后通过煅烧处理得到所述的一种金属离子掺杂钒酸盐纳米光催化剂,制备方法按以下步骤进行:
a将过渡金属盐、偏钒酸铵、二水合草酸、六次亚甲基四铵加入到蒸馏水中,超声溶解得到前驱体,其中偏钒酸铵的浓度为0.2~1mol/L,偏钒酸铵和过渡金属盐的浓度比为1:6~1:20,二水合草酸和过渡金属盐的浓度比为1:3~1:10,六次亚甲基四铵和过渡金属盐的浓度比为1:3~1:6;
b清洗基底,将清洗后的基底放入高压反应釜内衬中;
c将经a步骤配制好的前驱体溶液转移至装有基底的高压反应釜内衬中后,在90~150℃反应40~120min,取出反应釜在室温自然冷却后,将反应后负载有过渡金属钒酸盐纳米线的基底取出,用蒸馏水冲洗,在烘箱中30~100℃干燥;
d将c步骤干燥后的负载有过渡金属钒酸盐纳米线的基底在10-100℃下浸泡在0.01-1mol/L金属盐溶液中1~24h;
e取在c步骤中在金属盐溶液中浸泡后的负载有过渡金属钒酸盐纳米线的基底,在马弗炉中以0.5~2℃/min的升温速率,加热到200~300℃,保温2~5h,既得所述的一种金属离子掺杂钒酸盐纳米光催化剂。
2.根据权利要求1所述的一种金属离子掺杂钒酸盐纳米催化剂的合成方法,其特征在于:所述的过渡金属盐为铋盐、铟盐、铁盐、锌盐、锡盐、银盐、钨盐、铜盐中的一种。
3.根据权利要求1所述的一种金属离子掺杂钒酸盐纳米催化剂的合成方法,其特征在于:所述的基底为碳布或棉布或钛片或不锈钢钢丝网或泡沫镍中的一种。
4.根据权利要求1所述的一种金属离子掺杂钒酸盐纳米催化剂的合成方法,其特征在于:所述的可溶性金属盐为铂盐、镧盐、铈盐、钐盐、铕盐、钆盐、镱盐、锰盐、钴盐、钕盐中的一种。
5.根据权利要求1所述的一种金属离子掺杂钒酸盐纳米催化剂的合成方法,其特征在于:所述的金属离子掺杂光催化剂能够在太阳光下降解废水中有机污染物或光解水产氢或去除气相中有机物。
CN201810091914.1A 2018-01-30 2018-01-30 一种金属离子掺杂钒酸盐纳米催化剂的合成方法 Pending CN108479749A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810091914.1A CN108479749A (zh) 2018-01-30 2018-01-30 一种金属离子掺杂钒酸盐纳米催化剂的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810091914.1A CN108479749A (zh) 2018-01-30 2018-01-30 一种金属离子掺杂钒酸盐纳米催化剂的合成方法

Publications (1)

Publication Number Publication Date
CN108479749A true CN108479749A (zh) 2018-09-04

Family

ID=63344078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810091914.1A Pending CN108479749A (zh) 2018-01-30 2018-01-30 一种金属离子掺杂钒酸盐纳米催化剂的合成方法

Country Status (1)

Country Link
CN (1) CN108479749A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351358A (zh) * 2018-10-18 2019-02-19 中国科学院城市环境研究所 一种过渡金属氧化物复合催化剂及其制备方法和用途
CN111659407A (zh) * 2020-05-30 2020-09-15 河南省计量科学研究院 一种锌离子掺杂过渡金属钒酸盐纳米线光催化剂及其制备方法
CN112237923A (zh) * 2019-07-16 2021-01-19 上海汇友精密化学品有限公司 一种生产七氟丙烷用催化剂的制备方法
CN114289035A (zh) * 2021-12-28 2022-04-08 中南大学 一种银掺杂钒酸铜复合光催化材料及其制备方法和作为还原二氧化碳光催化剂的应用
CN117488346A (zh) * 2023-10-13 2024-02-02 佛山市菲玛斯新材料科技有限公司 一种钨修饰钒酸铜光电极的制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179318A (zh) * 2016-09-27 2016-12-07 安阳师范学院 一种钒酸铋纳米线‑石墨烯光催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179318A (zh) * 2016-09-27 2016-12-07 安阳师范学院 一种钒酸铋纳米线‑石墨烯光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于谦等: "水热法制备BiVO4及其光催化性能研究", 《应用化工》 *
无机材料学报: "新型Pt/BiVO4可见光活性光催化剂的制备和表征", 《无机材料学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351358A (zh) * 2018-10-18 2019-02-19 中国科学院城市环境研究所 一种过渡金属氧化物复合催化剂及其制备方法和用途
CN112237923A (zh) * 2019-07-16 2021-01-19 上海汇友精密化学品有限公司 一种生产七氟丙烷用催化剂的制备方法
CN111659407A (zh) * 2020-05-30 2020-09-15 河南省计量科学研究院 一种锌离子掺杂过渡金属钒酸盐纳米线光催化剂及其制备方法
CN111659407B (zh) * 2020-05-30 2021-07-23 河南省计量科学研究院 一种锌离子掺杂过渡金属钒酸盐纳米线光催化剂及其制备方法
CN114289035A (zh) * 2021-12-28 2022-04-08 中南大学 一种银掺杂钒酸铜复合光催化材料及其制备方法和作为还原二氧化碳光催化剂的应用
CN117488346A (zh) * 2023-10-13 2024-02-02 佛山市菲玛斯新材料科技有限公司 一种钨修饰钒酸铜光电极的制备方法与应用

Similar Documents

Publication Publication Date Title
CN108479749A (zh) 一种金属离子掺杂钒酸盐纳米催化剂的合成方法
CN108380211A (zh) 一种金属单质掺杂钒酸盐纳米催化剂的合成方法
CN102658130B (zh) 钌-钯双金属负载二氧化钛纳米管光催化剂的制备方法及其应用
CN101653728B (zh) 铁酸锌/二氧化钛纳米复合可见光光催化剂的制备方法及其应用
He et al. NiFe-layered double hydroxide decorated BiVO4 photoanode based bi-functional solar-light driven dual-photoelectrode photocatalytic fuel cell
CN102327779B (zh) 一种氮掺杂二氧化钛异质结构的制备方法及应用
CN101798126A (zh) 一种光电催化处理工业废水的方法
CN111261413B (zh) 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
CN101537354A (zh) 可见光活化的氧化亚铜/二氧化钛纳米复合光催化剂的制备方法及其应用
CN111348728B (zh) 一种MOF和HrGO共修饰的钒酸铋电极及其制备方法和应用
CN109046473B (zh) 一种过渡金属修饰TiO2-MOFs膜的复合电极及其制备方法与应用
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
Liu et al. Visible-light photocatalytic fuel cell with BiVO4/UiO-66/TiO2/Ti photoanode efficient degradation of Rhodamine B and stable generation of electricity
CN109675607A (zh) Fe3O4@ZnO@N-C复合光催化材料的制备方法
CN104971720A (zh) 一种钨酸铋纳米复合材料及其制备方法和应用
CN108400329A (zh) 一种贵金属单质掺杂钒酸盐纳米电极材料的制备方法
CN106395998A (zh) 一种含盐废水资源化处理方法
JP2023104847A (ja) 海洋工事用鉄筋の耐腐性を向上させるフォト陽極フィルム、その製造方法及びその用途
CN108786813A (zh) 一种核壳结构硅纳米线-四氧化三钴复合光催化材料及其制备与应用
CN113856702A (zh) 一种硫化镉纳米棒/硫化亚铜纳米壳异质结构光催化剂及制备方法与应用
CN109957814B (zh) 一种Bi-BiOI/TNA复合材料及其应用
CN105688966A (zh) 一种钒酸铋修饰氮化硼纳米片复合材料及其制备方法
CN112495400B (zh) 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
Leng et al. Enhanced quinoline degradation by 3D stack Z-scheme photoelectrocatalytic system with Ag-TNTs photoanode and CN-CNWs photocathode
Huang et al. A TiO2/Si carrier derived from photovoltaic solid waste to assemble Ag3PO4/Co3 (PO4) 2/TiO2/Si heterostructure for enhancing visible-light photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180904