CN109616561B - 深紫外led芯片、深紫外led外延片及其制备方法 - Google Patents

深紫外led芯片、深紫外led外延片及其制备方法 Download PDF

Info

Publication number
CN109616561B
CN109616561B CN201811527141.3A CN201811527141A CN109616561B CN 109616561 B CN109616561 B CN 109616561B CN 201811527141 A CN201811527141 A CN 201811527141A CN 109616561 B CN109616561 B CN 109616561B
Authority
CN
China
Prior art keywords
layer
deep ultraviolet
ultraviolet led
algan
epitaxial wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811527141.3A
Other languages
English (en)
Other versions
CN109616561A (zh
Inventor
何苗
丛海云
黄仕华
熊德平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201811527141.3A priority Critical patent/CN109616561B/zh
Publication of CN109616561A publication Critical patent/CN109616561A/zh
Application granted granted Critical
Publication of CN109616561B publication Critical patent/CN109616561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种深紫外LED芯片、深紫外LED外延片及其制备方法,其中,制备方法包括:在衬底上生长AlGaN缓冲层,并在AlGaN缓冲层上生长N型AlGaN层;在N型AlGaN层上生长Al组分渐变的N型AlGaN层,并在Al组分渐变的N型AlGaN层上生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区;在Al0.5Ga0.5N/Al0.15Ga0.85N有源区上生长AlGaN阻挡层,并在AlGaN阻挡层上生长P型GaN层。本申请公开的上述技术方案,由于生长Al组分渐变的N型AlGaN层在生长有源区之前,因此,则不会引起有源区能带结构发生变化,从而可以提高深紫外LED芯片的发光效率。

Description

深紫外LED芯片、深紫外LED外延片及其制备方法
技术领域
本发明涉及光电技术领域,更具体地说,涉及一种深紫外LED芯片、深紫外LED外延片及其制备方法。
背景技术
随着半导体技术的不断发展,深紫外LED(Light Emitting Diode,发光二极管)在空气和水的净化、消毒、紫外医疗、高密度光学存储系统、全彩显示器、及固态白光照明等领域得到了广泛的应用。
考虑到高Al组分的AlGaN基深紫外LED光源的内量子效率和发光效率比较低,为了提高AlGaN基深紫外LED芯片的内量子效率,目前,在制备AlGaN基深紫外LED外延片时常以抑制量子限制斯塔克效应为目的,在AlGaN有源区之上生长Al组分渐变的P型层,以削弱有源区的极化电场,从而提高AlGaN基深紫外LED芯片的内量子效率。但是,在AlGaN有源区之上生长Al组分渐变的P型层时,生长条件(温度和时间)的变化会使AlGaN有源区中的Al发生迁移而导致有源区中的Al组分发生变化,而有源区Al组分的变化会导致有源区能带结构发生变化,从而会对最终所制备出的深紫外LED芯片的发光效率造成影响。
综上所述,如何在制备深紫外LED外延片的过程中尽量减少有源区中Al组分所发生的变化,以提高深紫外LED芯片的发光效率,是目前本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的目的是提供一种深紫外LED芯片、深紫外LED外延片及其制备方法,以在制备深紫外LED外延片的过程中尽量减少有源区中Al组分所发生的变化,从而提高深紫外LED芯片的发光效率。
为了实现上述目的,本发明提供如下技术方案:
一种深紫外LED外延片的制备方法,包括:
在衬底上生长AlGaN缓冲层,并在所述AlGaN缓冲层上生长N型AlGaN层;
在所述N型AlGaN层上生长Al组分渐变的N型AlGaN层,并在所述Al组分渐变的N型AlGaN层上生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区;
在所述Al0.5Ga0.5N/Al0.15Ga0.85N有源区上生长AlGaN阻挡层,并在所述AlGaN阻挡层上生长P型GaN层,以制备深紫外LED外延片。
优选的,在衬底上生长AlGaN缓冲层之前,还包括:
将所述衬底放置在MOCVD反应室内,以利用MOCVD法制备所述深紫外LED外延片。
优选的,在利用MOCVD法制备所述深紫外LED外延片时,所用Ga源为三甲基镓,Al源为三甲基铝,氮源为氨气,载气为氢气,N型掺杂源为硅烷,P型掺杂源为二茂镁。
一种深紫外LED外延片,包括衬底、及从下至上依次位于所述衬底上的AlGaN缓冲层、N型AlGaN层、Al组分渐变的N型AlGaN层、Al0.5Ga0.5N/Al0.15Ga0.85N有源区、AlGaN阻挡层、P型GaN层。
优选的,所述Al组分渐变的N型AlGaN层包括10层AlGaN层,第一层与第十层均为Al0.65Ga0.35N层,第二层至第九层为AlxGa1-xN层,0.2≤x≤0.4,其中,第二层到第五层中的x逐渐减小,第五层与第六层中的x相等,第六层到第九层中的x逐渐增大。
优选的,所述Al组分渐变的N型AlGaN层中的掺杂浓度为3×1018cm-3
优选的,所述Al0.5Ga0.5N/Al0.15Ga0.85N有源区为5周期结构,每一周期结构包括Al0.5Ga0.5N量子垒层、及Al0.15Ga0.85N量子阱层。
优选的,所述衬底为蓝宝石衬底。
优选的,所述蓝宝石衬底为c面蓝宝石衬底。
一种深紫外LED芯片,包括如上述任一项所述的深紫外LED外延片。
本发明提供了一种深紫外LED芯片、深紫外LED外延片及其制备方法,其中,深紫外LED外延片的制备方法包括:在衬底上生长AlGaN缓冲层,并在AlGaN缓冲层上生长N型AlGaN层;在N型AlGaN层上生长Al组分渐变的N型AlGaN层,并在Al组分渐变的N型AlGaN层上生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区;在Al0.5Ga0.5N/Al0.15Ga0.85N有源区上生长AlGaN阻挡层,并在AlGaN阻挡层上生长P型GaN层,以制备深紫外LED外延片。
本申请公开的上述技术方案,先依次在衬底上生长AlGaN缓冲层、N型AlGaN层、Al组分渐变的N型AlGaN层,然后,再在Al组分渐变的N型AlGaN层上依次生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区、AlGaN阻挡层、及P型GaN层,由于生长Al组分渐变的N型AlGaN层在生长有源区之前,因此,在生长Al组分渐变的N型AlGaN层时,生长条件的变化并不会对未生长的有源区造成影响,所以,有源区中的Al组分不会因生长条件的变化而发生变化,相应地,则不会引起有源区能带结构发生变化,从而可以提高最终所制备出的深紫外LED芯片的发光效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种深紫外LED外延片的制备方法的流程图;
图2为本发明实施例提供的一种深紫外LED外延片的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1,其示出了本发明实施例提供的一种深紫外LED外延片的制备方法的流程图,可以包括:
S11:在衬底上生长AlGaN缓冲层,并在AlGaN缓冲层上生长N型AlGaN层。
将衬底清洗干净,然后,在衬底上生长AlGaN缓冲层,并在AlGaN缓冲层上生长N型AlGaN层。其中,AlGaN缓冲层用于缓冲衬底与N型AlGaN层之间的晶格失配,从而尽量防止最终所制备出的深紫外LED外延片发生开裂。
为了起到更好的缓冲作用,AlGaN缓冲层具体可以为未掺杂的Al0.5Ga0.5N缓冲层,其厚度可以在1.5-1.7μm(包括端点值)范围内。另外,所生长出的N型AlGaN层具体可以为N型Al0.5Ga0.5N层,其厚度大约在3μm,其掺杂浓度可以为5×1018cm-3
S12:在N型AlGaN层上生长Al组分渐变的N型AlGaN层,并在Al组分渐变的N型AlGaN层上生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区。
在生长完N型AlGaN层之后,在N型AlGaN层上生长Al组分渐变的N型AlGaN层,并在Al组分渐变的N型AlGaN层上生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区(也可以称为多量子阱结构)。
其中,Al组分渐变的N型AlGaN层可以有效地抑制量子限制斯塔克效应,削弱Al0.5Ga0.5N/Al0.15Ga0.85N有源区的极化电场,从而提高最终所得到的深紫外LED芯片的内量子效率。另外,由于生长Al组分渐变的N型AlGaN层在生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区之前进行,因此,在生长Al组分渐变的N型AlGaN层时,则可以减少对未生长的Al0.5Ga0.5N/Al0.15Ga0.85N有源区所造成的影响,以减少Al0.5Ga0.5N/Al0.15Ga0.85N有源区中Al组分所发生的迁移,从而可以避免Al0.5Ga0.5N/Al0.15Ga0.85N有源区中的能带结构发生变化,进而可以提高最终所制备出的深紫外LED芯片的发光效率。
S13:在Al0.5Ga0.5N/Al0.15Ga0.85N有源区上生长AlGaN阻挡层,并在AlGaN阻挡层上生长P型GaN层,以制备深紫外LED外延片。
在生长完Al0.5Ga0.5N/Al0.15Ga0.85N有源区之后,在Al0.5Ga0.5N/Al0.15Ga0.85N有源区上生长AlGaN阻挡层(具体可以为本征AlGaN阻挡层),并在AlGaN阻挡层上生长P型GaN层,以制备得到深紫外LED外延片,其中,P型GaN层的厚度可以在10nm左右,其掺杂浓度可以为1×1018cm-3
AlGaN阻挡层用于防止电子从Al0.5Ga0.5N/Al0.15Ga0.85N有源区溢出到P型GaN层中而对P型GaN层中的空穴造成影响。
由上述制备深紫外LED外延片的过程可知,其并非是通过在有源区之上生长Al组分渐变的P型层来抑制量子限制斯塔克效应的,而是通过先生长Al组分渐变的N型AlGaN层,然后,在Al组分渐变的N型AlGaN层上生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区来抑制量子限制斯塔克效应的,因此,则可以减少生长P型GaN层时对Al0.5Ga0.5N/Al0.15Ga0.85N有源区所造成的影响,从而可以提高最终所制备出的深紫外LED芯片的发光效率。
本申请公开的上述技术方案,先依次在衬底上生长AlGaN缓冲层、N型AlGaN层、Al组分渐变的N型AlGaN层,然后,再在Al组分渐变的N型AlGaN层上依次生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区、AlGaN阻挡层、及P型GaN层,由于生长Al组分渐变的N型AlGaN层在生长有源区之前,因此,在生长Al组分渐变的N型AlGaN层时,生长条件的变化并不会对未生长的有源区造成影响,所以,有源区中的Al组分不会因生长条件的变化而发生变化,相应地,则不会引起有源区能带结构发生变化,从而可以提高最终所制备出的深紫外LED芯片的发光效率。
本发明实施例提供的一种深紫外LED外延片的制备方法,在衬底上生长AlGaN缓冲层之前,还可以包括:
将衬底放置在MOCVD反应室内,以利用MOCVD法制备深紫外LED外延片。
可以利用MOCVD(Metal-Organic Chemical Vapor Deposition,金属有机化学气相沉积)法来制备深紫外LED外延片。具体地,将清洗干净的衬底放置在MOCVD反应室内,在1090℃左右的温度下通高纯载气高温灼烧衬底,然后,在530℃左右的温度下通Ga源、Al源和氮源,以生长低温AlGaN缓冲层,在生长完AlGaN缓冲层之后,升温到1050℃左右的温度并恒温6min左右,使得AlGaN缓冲层重结晶;随后,在1050℃左右的温度下通入Ga源、Al源、氮源和N型掺杂源,生长N型AlGaN层;在生长完N型AlGaN层之后,则生长Al组分渐变的N型AlGaN层;然后,降温到1020℃左右的温度并通入Ga源、Al源和氮源生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区,紧接着,降温到990℃左右的温度,生长一层AlGaN阻挡层,并通入Ga源、氮源和P型掺杂源,以在AlGaN阻挡层上生长一层P型GaN层,最后,在700℃左右的温度下退火20min,得到高空穴浓度的P型GaN层。
利用MOCVD法制备深紫外LED外延片具有生长易于控制、可大规模生产、外延层面积大且均匀性良好等特点。
本发明实施例提供的一种深紫外LED外延片的制备方法,在利用MOCVD法制备深紫外LED外延片时,所用Ga源可以为三甲基镓,Al源可以为三甲基铝,氮源可以为氨气,载气可以为氢气,N型掺杂源可以为硅烷,P型掺杂源可以为二茂镁。
在利用MOCVD法制备深紫外LED外延片时,所用的Ga源具体可以为三甲基镓,Al源具体可以为三甲基铝,氮源具体可以为氨气,载气具体可以为氢气,N型掺杂源具体可以为硅烷,P型掺杂源具体可以为二茂镁,以制备纯度较高、性能较优的深紫外LED外延片。
本发明实施例还提供了一种深紫外LED外延片,具体可以参见图2,其示出了本发明实施例提供的一种深紫外LED外延片的结构示意图,可以包括衬底1、及从下至上依次位于衬底1上的AlGaN缓冲层2、N型AlGaN层3、Al组分渐变的N型AlGaN层4、Al0.5Ga0.5N/Al0.15Ga0.85N有源区5、AlGaN阻挡层6、P型GaN层7。
深紫外LED外延片可以包括衬底1、位于衬底1表面的AlGaN缓冲层2、位于AlGaN缓冲层2表面的N型AlGaN层3、位于N型AlGaN层3表面的Al组分渐变的N型AlGaN层4、位于Al组分渐变的N型AlGaN层4表面的Al0.5Ga0.5N/Al0.15Ga0.85N有源区5、位于Al0.5Ga0.5N/Al0.15Ga0.85N有源区5表面的AlGaN阻挡层6、及位于AlGaN阻挡层6表面的P型GaN层7。
其中,Al组分渐变的N型AlGaN层4可以抑制量子限制斯塔克效应,以削弱Al0.5Ga0.5N/Al0.15Ga0.85N有源区5的极化电场,从而提高深紫外LED外延片、及最终所得到的深紫外LED芯片的内量子效率。另外,由于Al组分渐变的N型AlGaN层4位于N型AlGaN层3和Al0.5Ga0.5N/Al0.15Ga0.85N有源区5之间,因此,可以减少生长Al组分渐变的N型AlGaN层4、及生长P型GaN层7时对有源区所造成的影响,从而可以提高深紫外LED芯片的发光效率。
本发明实施例提供的一种深紫外LED外延片,Al组分渐变的N型AlGaN层4可以包括10层AlGaN层,第一层与第十层均为Al0.65Ga0.35N层,第二层至第九层为AlxGa1-xN层,0.2≤x≤0.4,其中,第二层到第五层中的x逐渐减小,第五层与第六层中的x相等,第六层到第九层中的x逐渐增大。
Al组分渐变的N型AlGaN层4可以包括10层AlGaN层,每层的厚度均可以为11nm(相应地,Al组分渐变的N型AlGaN层4厚度即为110nm),其中,第一层与第十层均可以为Al0.65Ga0.35N层,第二层至第九层可以为AlxGa1-xN层,0.2≤x≤0.4,其中,第二层到第五层中的x逐渐减小,第五层与第六层中的x相等,第六层到第九层中的x逐渐增大。具体地,第二层到第九层依次可以为:Al0.4Ga0.6N层、Al0.35Ga0.65N层、Al0.3Ga0.7N层、Al0.25Ga0.75N层、Al0.25Ga0.75N层、Al0.3Ga0.7N层、Al0.35Ga0.65N层、Al0.4Ga0.6N层。当然,也可以为第二层到第九层中所包含的AlxGa1-xN层设置其他具体的x值。
需要说明的是,Al组分渐变的N型AlGaN层4中的第一层与N型AlGaN层3相接触,第十层与Al0.5Ga0.5N/Al0.15Ga0.85N有源区5相接触。
本发明实施例提供的一种深紫外LED外延片,Al组分渐变的N型AlGaN层4中的掺杂浓度可以为3×1018cm-3
Al组分渐变的N型AlGaN层4可以采用极化掺杂,其掺杂浓度具体可以为3×1018cm-3
本发明实施例提供的一种深紫外LED外延片,Al0.5Ga0.5N/Al0.15Ga0.85N有源区5可以为5周期结构,每一周期结构包括Al0.5Ga0.5N量子垒层、及Al0.15Ga0.85N量子阱层。
Al0.5Ga0.5N/Al0.15Ga0.85N有源区5可以为5周期结构,并且每一个周期结构中均可以包括Al0.5Ga0.5N量子垒层和Al0.15Ga0.85N量子阱层,即在Al0.5Ga0.5N/Al0.15Ga0.85N有源区5中,Al0.5Ga0.5N量子垒层和Al0.15Ga0.85N量子阱层交替生长5个周期。其中,Al0.5Ga0.5N量子垒层的厚度可以为10nm,Al0.15Ga0.85N量子阱层的厚度可以为3nm。
当然,Al0.5Ga0.5N/Al0.15Ga0.85N有源区5也可以为其他的周期结构。
本发明实施例提供的一种深紫外LED外延片,衬底1可以为蓝宝石衬底。
深紫外LED外延片所用到的衬底1具体可以为蓝宝石衬底,其生产技术比较成熟,所制备出的深紫外LED外延片的质量比较好,而且蓝宝石衬底的稳定性比较高,因此,能够运用到高温生长过程中,并且蓝宝石衬底的机械强度比较高,易于处理和清洗。
当然,也可以利用碳化硅作为深紫外LED外延片中的衬底1。
本发明实施例提供的一种深紫外LED外延片,蓝宝石衬底可以为c面蓝宝石衬底。
深紫外LED外延片中所用到的蓝宝石衬底具体可以为c面蓝宝石衬底,以生长出质量比较好的深紫外LED外延片。
需要说明的是,本发明实施例所提供的一种深紫外LED外延片的制备方法、及本发明实施例所提供的一种深紫外LED外延片中相关部分的说明可以对应相互参考,在此不再赘述。
本发明实施例还提供了一种深紫外LED芯片,包括上述任一种深紫外LED外延片。
可以将上述任一种深紫外LED外延片应用在深紫外LED芯片中。
由于上述任一种深紫外LED外延片均包含有Al组分渐变的N型AlGaN层,因此,则可以抑制量子限制斯塔克效应,从而可以提高深紫外LED芯片的内量子效率。另外,由于Al组分渐变的N型AlGaN层设置在N型AlGaN层与Al0.5Ga0.5N/Al0.15Ga0.85N有源区之间,因此,则可以减少生长Al组分渐变的N型AlGaN层、及P型GaN层时对Al0.5Ga0.5N/Al0.15Ga0.85N有源区所造成的影响,从而可以提高深紫外LED芯片的发光效率。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。另外,本发明实施例提供的上述技术方案中与现有技术中对应技术方案实现原理一致的部分并未详细说明,以免过多赘述。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种深紫外LED外延片的制备方法,其特征在于,包括:
在衬底上生长AlGaN缓冲层,并在所述AlGaN缓冲层上生长N型AlGaN层;
在所述N型AlGaN层上生长Al组分渐变的N型AlGaN层,并在所述Al组分渐变的N型AlGaN层上生长Al0.5Ga0.5N/Al0.15Ga0.85N有源区;其中,所述Al组分渐变的N型AlGaN层包括10层AlGaN层,第一层与第十层均为Al0.65Ga0.35N层,第二层至第九层为AlxGa1-xN层,0.2≤x≤0.4,其中,第二层到第五层中的x逐渐减小,第五层与第六层中的x相等,第六层到第九层中的x逐渐增大;
在所述Al0.5Ga0.5N/Al0.15Ga0.85N有源区上生长AlGaN阻挡层,并在所述AlGaN阻挡层上生长P型GaN层,以制备深紫外LED外延片。
2.根据权利要求1所述的深紫外LED外延片的制备方法,其特征在于,在衬底上生长AlGaN缓冲层之前,还包括:
将所述衬底放置在MOCVD反应室内,以利用MOCVD法制备所述深紫外LED外延片。
3.根据权利要求2所述的深紫外LED外延片的制备方法,其特征在于,在利用MOCVD法制备所述深紫外LED外延片时,所用Ga源为三甲基镓,Al源为三甲基铝,氮源为氨气,载气为氢气,N型掺杂源为硅烷,P型掺杂源为二茂镁。
4.一种深紫外LED外延片,其特征在于,包括衬底、及从下至上依次位于所述衬底上的AlGaN缓冲层、N型AlGaN层、Al组分渐变的N型AlGaN层、Al0.5Ga0.5N/Al0.15Ga0.85N有源区、AlGaN阻挡层、P型GaN层;
其中,所述Al组分渐变的N型AlGaN层包括10层AlGaN层,第一层与第十层均为Al0.65Ga0.35N层,第二层至第九层为AlxGa1-xN层,0.2≤x≤0.4,其中,第二层到第五层中的x逐渐减小,第五层与第六层中的x相等,第六层到第九层中的x逐渐增大。
5.根据权利要求4所述的深紫外LED外延片,其特征在于,所述Al组分渐变的N型AlGaN层中的掺杂浓度为3×1018cm-3
6.根据权利要求4所述的深紫外LED外延片,其特征在于,所述Al0.5Ga0.5N/Al0.15Ga0.85N有源区为5周期结构,每一周期结构包括Al0.5Ga0.5N量子垒层、及Al0.15Ga0.85N量子阱层。
7.根据权利要求4所述的深紫外LED外延片,其特征在于,所述衬底为蓝宝石衬底。
8.根据权利要求7所述的深紫外LED外延片,其特征在于,所述蓝宝石衬底为c面蓝宝石衬底。
9.一种深紫外LED芯片,其特征在于,包括如权利要求4至8任一项所述的深紫外LED外延片。
CN201811527141.3A 2018-12-13 2018-12-13 深紫外led芯片、深紫外led外延片及其制备方法 Active CN109616561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811527141.3A CN109616561B (zh) 2018-12-13 2018-12-13 深紫外led芯片、深紫外led外延片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811527141.3A CN109616561B (zh) 2018-12-13 2018-12-13 深紫外led芯片、深紫外led外延片及其制备方法

Publications (2)

Publication Number Publication Date
CN109616561A CN109616561A (zh) 2019-04-12
CN109616561B true CN109616561B (zh) 2020-04-28

Family

ID=66009104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811527141.3A Active CN109616561B (zh) 2018-12-13 2018-12-13 深紫外led芯片、深紫外led外延片及其制备方法

Country Status (1)

Country Link
CN (1) CN109616561B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165030B (zh) * 2019-04-24 2022-04-22 华南师范大学 一种基于AlGaN的深紫外LED发光器
CN110112270A (zh) * 2019-05-10 2019-08-09 马鞍山杰生半导体有限公司 深紫外led外延片及其制备方法和深紫外led
CN110459655A (zh) * 2019-08-21 2019-11-15 苏州紫灿科技有限公司 一种量子垒掺杂的深紫外led及制备方法
CN110993757B (zh) * 2019-12-30 2023-10-27 广东省半导体产业技术研究院 一种发光二极管及其制备方法
CN111244234A (zh) * 2020-03-06 2020-06-05 山西中科潞安紫外光电科技有限公司 一种可改善n型欧姆接触的深紫外LED外延片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782883A (zh) * 2010-01-05 2012-11-14 首尔Opto仪器股份有限公司 发光二极管及其制造方法
CN103165777A (zh) * 2013-03-26 2013-06-19 合肥彩虹蓝光科技有限公司 具有梯形结构的n型插入层的led外延片及其生长方法
CN104810447A (zh) * 2015-03-13 2015-07-29 西安神光皓瑞光电科技有限公司 一种GaN基LED的电子阻挡层结构及其外延生长方法
CN107180899A (zh) * 2017-07-21 2017-09-19 广东工业大学 一种深紫外led
CN108365069A (zh) * 2018-02-06 2018-08-03 华南师范大学 一种高亮度v型极化掺杂深紫外led制备方法
CN208014724U (zh) * 2018-02-06 2018-10-26 华南师范大学 一种AlGaN基深紫外LED外延结构
US10115858B2 (en) * 2016-07-19 2018-10-30 Xiamen San'an Optoelectronics Co., Ltd. Light emitting diode and fabrication method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782883A (zh) * 2010-01-05 2012-11-14 首尔Opto仪器股份有限公司 发光二极管及其制造方法
CN103165777A (zh) * 2013-03-26 2013-06-19 合肥彩虹蓝光科技有限公司 具有梯形结构的n型插入层的led外延片及其生长方法
CN104810447A (zh) * 2015-03-13 2015-07-29 西安神光皓瑞光电科技有限公司 一种GaN基LED的电子阻挡层结构及其外延生长方法
US10115858B2 (en) * 2016-07-19 2018-10-30 Xiamen San'an Optoelectronics Co., Ltd. Light emitting diode and fabrication method thereof
CN107180899A (zh) * 2017-07-21 2017-09-19 广东工业大学 一种深紫外led
CN108365069A (zh) * 2018-02-06 2018-08-03 华南师范大学 一种高亮度v型极化掺杂深紫外led制备方法
CN208014724U (zh) * 2018-02-06 2018-10-26 华南师范大学 一种AlGaN基深紫外LED外延结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Low-threshold voltage ultraviolet light-emitting diodes based on (Al,Ga)N metal-insulator-semiconductor structures;Liang YH,etc.;《APPLIED PHYSICS EXPRESS》;20171114;第10卷(第12期);121005 1-3页 *

Also Published As

Publication number Publication date
CN109616561A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109616561B (zh) 深紫外led芯片、深紫外led外延片及其制备方法
KR101316492B1 (ko) 질화물 반도체 발광소자 및 그 제조 방법
US7473570B2 (en) Method for forming epitaxial layers of gallium nitride-based compound semiconductors
JP2003252700A (ja) Iii族窒化物系化合物半導体
JP2003124128A (ja) Iii族窒化物系化合物半導体の製造方法
KR101560459B1 (ko) 3족 질화물 반도체 발광 소자의 제조 방법
JP2008263023A (ja) Iii−v族化合物半導体の製造方法、ショットキーバリアダイオード、発光ダイオード、レーザダイオード、およびそれらの製造方法
US20180182916A1 (en) Group iii nitride semiconductor light-emitting device and production method therefor
WO2010113423A1 (ja) 窒化物半導体の結晶成長方法および半導体装置の製造方法
JP2011176130A (ja) 結晶成長方法
JP4770580B2 (ja) 窒化物半導体素子の製造方法
JP4647723B2 (ja) 窒化物半導体の結晶成長方法および半導体装置の製造方法
CN106229397B (zh) 一种发光二极管外延片的生长方法
JP2008235758A (ja) 化合物半導体エピタキシャル基板の製造方法
CN110085713B (zh) 一种带有插入层的多量子阱发光二极管及其制备方法
JP2004356522A (ja) 3−5族化合物半導体、その製造方法及びその用途
KR100604617B1 (ko) Ⅲ-ⅴ족화합물반도체의제조방법
US10461214B2 (en) Method for producing group III nitride semiconductor light-emitting device
JP4609917B2 (ja) 窒化アルミニウムガリウム層の製造方法、iii族窒化物半導体発光素子の製造方法およびiii族窒化物半導体発光素子
US9564552B2 (en) Method for producing group III nitride semiconductor light-emitting device
JP2006128653A (ja) 3−5族化合物半導体、その製造方法及びその用途
KR100881053B1 (ko) 질화물계 발광소자
KR100765386B1 (ko) 질화 갈륨계 화합물 반도체 및 이의 제조 방법
TW201528547A (zh) 氮化物半導體發光元件及其製造方法
JP4765751B2 (ja) 窒化物半導体素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant