CN106229397B - 一种发光二极管外延片的生长方法 - Google Patents

一种发光二极管外延片的生长方法 Download PDF

Info

Publication number
CN106229397B
CN106229397B CN201610597420.1A CN201610597420A CN106229397B CN 106229397 B CN106229397 B CN 106229397B CN 201610597420 A CN201610597420 A CN 201610597420A CN 106229397 B CN106229397 B CN 106229397B
Authority
CN
China
Prior art keywords
layer
growth
temperature
growing method
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610597420.1A
Other languages
English (en)
Other versions
CN106229397A (zh
Inventor
杨兰
万林
胡加辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Semitek Zhejiang Co Ltd
Original Assignee
HC Semitek Zhejiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Zhejiang Co Ltd filed Critical HC Semitek Zhejiang Co Ltd
Priority to CN201610597420.1A priority Critical patent/CN106229397B/zh
Publication of CN106229397A publication Critical patent/CN106229397A/zh
Application granted granted Critical
Publication of CN106229397B publication Critical patent/CN106229397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种发光二极管外延片的生长方法,属于半导体技术领域。所述生长方法包括:进行多个阶段的升温,再将衬底在纯氢气气氛下进行热处理;降低温度沉积缓冲层;进行多个阶段的升温,再生长过渡层,过渡层为从二维生长先转为三维生长再转为二维生长的AlGaN层;升高温度沉积非掺杂GaN层;生长掺杂Si的GaN层,形成N型层;交替生长InGaN层和GaN层,形成多量子阱层;生长掺杂Mg的AlGaN层,形成P型电子阻挡层;生长掺杂Mg的GaN层,形成P型层;生长掺杂Mg的GaN层,形成P型接触层;同一阶段的温度恒定,且不同阶段的温度随时间的增长而升高。本发明适应大尺寸外延片的生产。

Description

一种发光二极管外延片的生长方法
技术领域
本发明涉及半导体技术领域,特别涉及一种发光二极管外延片的生长方法。
背景技术
发光二极管(Light Emitting Diodes,简称LED)具有超长寿命、节能省电、健康环保、高亮低热、坚固耐用等优点,应用广泛。以GaN为代表的Ⅲ族氮化物是直接带隙的宽禁带半导体,具有导热率高、发光效率高、物理化学性质稳定、能实现P型或N型掺杂的优点,而且GaN的多元合金InGaN和GaN构成的量子阱结构,发光波长可覆盖整个可见光区域,还具有较高的内量子效率,因此GaN是制作LED的理想材料。
随着近年来经济的不断发展和人力成本的不断提高,LED芯片厂商已经逐步超大尺寸外延工艺(大于2英寸的外延片)发展,以提高生产效率和LED芯片产能(如6英寸外延片为4英寸外延片的2倍、3英寸外延片的3-4倍、2英寸外延片的8-9倍),降低生产成本。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
GaN基外延片与蓝宝石衬底之间存在晶格失配,造成高密度缺陷、热膨胀系数大,应力释放不充分导致外延片表面不平整,大尺寸外延片具有更高的翘曲度,破片率较高,严重制约大尺寸外延技术的发展。
发明内容
为了解决现有技术翘曲度和破片率较高的问题,本发明实施例提供了一种发光二极管外延片的生长方法。所述技术方案如下:
本发明实施例提供了一种发光二极管外延片的生长方法,所述生长方法包括:
进行多个阶段的升温,再将衬底在纯氢气气氛下进行热处理;
降低温度沉积缓冲层;
进行多个阶段的升温,再生长过渡层,所述过渡层为从二维生长先转为三维生长再转为二维生长的AlGaN层;
升高温度沉积非掺杂GaN层;
生长掺杂Si的GaN层,形成N型层;
交替生长InGaN层和GaN层,形成多量子阱层;
生长掺杂Mg的AlGaN层,形成P型电子阻挡层;
生长掺杂Mg的GaN层,形成P型层;
生长掺杂Mg的GaN层,形成P型接触层,所述P型接触层的厚度小于所述P型层的厚度;
其中,同一所述阶段的温度恒定,且不同所述阶段的温度随时间的增长而升高。
可选地,不同所述阶段的温度的升高速率保持不变、逐渐减小或者逐渐升高。
可选地,所述衬底的尺寸为3英寸、4英寸、6英寸、8英寸或者2英寸。
可选地,相邻两个所述阶段的温度的差值根据外延生长的要求设定。
优选地,相邻两个所述阶段的温度的差值为定值。
优选地,相邻两个所述阶段的温度的差值各不相同。
可选地,各个所述阶段占用的时间根据外延生长的要求设定。
优选地,各个所述阶段占用的时间为定值。
优选地,各个所述阶段占用的时间各不相同。
可选地,热处理之前进行多个阶段的升温的方式与生长过渡层之前进行多个阶段的升温的方式相同或不同。
本发明实施例提供的技术方案带来的有益效果是:
通过进行多个阶段的升温,再将衬底在纯氢气气氛下进行热处理,并且进行多个阶段的升温,再生长过渡层,同一阶段的温度恒定,且不同阶段的温度随时间的增长而升高,温场稳定、受热均匀,有利于底层温场的均匀性和稳定性,降低因热膨胀系数的差异而引起的张应力,缓解晶格失配产生的应力,改善外延片的翘曲度,降低外延片的位错和缺陷密度,改善晶体质量,提高空穴的注入效率和器件的发光效率,减少破片率,适应大尺寸外延片的生产。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的一种发光二极管外延片的生长方法的流程图;
图2a是本发明实施例一提供的温度速率保持不变的示意图;
图2b是本发明实施例一提供的温度速率逐渐减小的示意图;
图2c是本发明实施例一提供的温度速率逐渐增大的示意图;
图3是本发明实施例二提供的一种发光二极管外延片的生长方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
本发明实施例提供了一种发光二极管外延片的生长方法,参见图1,该生长方法包括:
步骤101:进行多个阶段的升温,再将衬底在纯氢气气氛下进行热处理。
在本实施例中,同一阶段的温度恒定,且不同阶段的温度随时间的增长而升高。
可选地,不同阶段的温度的升高速率可以保持不变(如图2a所示)、逐渐减小(如图2b所示)或者逐渐升高(如图2c所示)。
可选地,相邻两个阶段的温度的差值可以根据外延生长的要求设定,以选取匹配外延片生长的最优值。
优选地,相邻两个阶段的温度的差值可以为定值。
优选地,相邻两个阶段的温度的差值可以各不相同。
具体地,衬底的尺寸可以为3英寸、4英寸、6英寸、8英寸或者2英寸。
具体地,衬底的材料可以采用蓝宝石、Si、SiC、GaN、AlN、ZnO、GaAs、金属中的任一种。
需要说明的是,热处理的目的是清洁衬底表面。
步骤102:降低温度沉积缓冲层。
步骤103:进行多个阶段的升温,再生长过渡层。
在本实施例中,过渡层为从二维生长先转为三维生长再转为二维生长的AlGaN层。同一阶段的温度恒定,且不同阶段的温度随时间的增长而升高。
可选地,不同阶段的温度的升高速率可以保持不变(如图2a所示)、逐渐减小(如图2b所示)或者逐渐升高(如图2c所示)。
可选地,各个阶段占用的时间可以根据外延生长的要求设定,以选取匹配外延片生长的最优值。
优选地,各个阶段占用的时间可以为定值。
优选地,各个阶段占用的时间可以各不相同。
需要说明的是,热处理之前进行多个阶段的升温的方式与生长过渡层之前进行多个阶段的升温的方式可以相同,也可以不同。例如,热处理之前进行多个阶段的升温的速率逐渐升高,生长过渡层之前进行多个阶段的升温的速率保持不变。
步骤104:升高温度沉积非掺杂GaN层。
步骤105:生长掺杂Si的GaN层,形成N型层。
步骤106:交替生长InGaN层和GaN层,形成多量子阱层。
步骤107:生长掺杂Mg的AlGaN层,形成P型电子阻挡层。
步骤108:生长掺杂Mg的GaN层,形成P型层。
步骤109:生长掺杂Mg的GaN层,形成P型接触层。
在本实施例中,P型接触层的厚度小于P型层的厚度。
本发明实施例通过进行多个阶段的升温,再将衬底在纯氢气气氛下进行热处理,并且进行多个阶段的升温,再生长过渡层,同一阶段的温度恒定,且不同阶段的温度随时间的增长而升高,温场稳定、受热均匀,有利于底层温场的均匀性和稳定性,降低因热膨胀系数的差异而引起的张应力,缓解晶格失配产生的应力,改善外延片的翘曲度,降低外延片的位错和缺陷密度,改善晶体质量,提高空穴的注入效率和器件的发光效率,减少破片率,适应大尺寸外延片的生产。
实施例二
本发明实施例提供了一种发光二极管外延片的生长方法,本实施例提供的生长方法是实施例一提供的生长方法的具体实现。在实施例中,以高纯氢气(H2)或氮气(N2)作为载气,以三甲基镓(TMGa)、三甲基铝(TMAl)、三甲基铟(TMIn)和氨气(NH3)分别作为Ga、Al、In、N源,采用硅烷(SiH4)、二茂镁(Cp2Mg)分别作为N型、P型掺杂剂。参见图3,该生长方法包括:
步骤201:将衬底先升温到500℃,再升温到800℃并稳定30s,再升温到1000℃并稳定30s,再升温到1230℃并稳定10min,在纯氢气气氛下进行热处理。
步骤202:降低温度至540℃,沉积一层厚度为30nm的GaN层,形成缓冲层。
步骤203:先升温到800℃并稳定30s,再升温到1000℃并稳定30s,再升温到1205℃并稳定300s,生长1μm的过渡层。
步骤204:升高温度至1255℃,沉积厚度为1.5μm的非掺杂GaN层。
步骤205:生长厚度为2μm的掺杂Si的GaN层,形成N型层。
步骤206:交替生长8层InGaN层和8层GaN层,形成多量子阱层。
在本实施例中,InGaN层的厚度为3nm,InGaN层的生长温度为880℃;GaN层的厚度为12nm,GaN层的生长温度为960℃。
步骤207:在970℃的温度下,生长50nm的掺杂Mg的AlGaN层,形成P型电子阻挡层。
步骤208:在1090℃的温度下,生长200nm的生长掺杂Mg的GaN层,形成P型层。
步骤209:在1120℃的温度下,生长10nm的生长掺杂Mg的GaN层,形成P型接触层。
在本实施例中,P型接触层的厚度小于P型层的厚度。
需要说明的是,上述步骤可以采用金属有机化学气相沉积设备实现,外延生长结束后,对生长的外延片进行清洗、沉积、光刻和刻蚀等半导体加工工艺,即可制成单颗芯片。
本发明实施例通过进行多个阶段的升温,再将衬底在纯氢气气氛下进行热处理,并且进行多个阶段的升温,再生长过渡层,同一阶段的温度恒定,且不同阶段的温度随时间的增长而升高,温场稳定、受热均匀,有利于底层温场的均匀性和稳定性,降低因热膨胀系数的差异而引起的张应力,缓解晶格失配产生的应力,改善外延片的翘曲度,降低外延片的位错和缺陷密度,改善晶体质量,提高空穴的注入效率和器件的发光效率,减少破片率,适应大尺寸外延片的生产。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种发光二极管外延片的生长方法,其特征在于,所述生长方法包括:
进行多个阶段的升温,再将衬底在纯氢气气氛下进行热处理;
降低温度沉积缓冲层;
进行多个阶段的升温,再生长过渡层,所述过渡层为从二维生长先转为三维生长再转为二维生长的AlGaN层;
升高温度沉积非掺杂GaN层;
生长掺杂Si的GaN层,形成N型层;
交替生长InGaN层和GaN层,形成多量子阱层;
生长掺杂Mg的AlGaN层,形成P型电子阻挡层;
生长掺杂Mg的GaN层,形成P型层;
生长掺杂Mg的GaN层,形成P型接触层,所述P型接触层的厚度小于所述P型层的厚度;
其中,同一所述阶段的温度恒定,且不同所述阶段的温度随时间的增长而升高。
2.根据权利要求1所述的生长方法,其特征在于,不同所述阶段的温度的升高速率保持不变、逐渐减小或者逐渐升高。
3.根据权利要求1或2所述的生长方法,其特征在于,所述衬底的尺寸为3英寸、4英寸、6英寸、8英寸或者2英寸。
4.根据权利要求1或2所述的生长方法,其特征在于,相邻两个所述阶段的温度的差值根据外延生长的要求设定。
5.根据权利要求4所述的生长方法,其特征在于,相邻两个所述阶段的温度的差值为定值。
6.根据权利要求4所述的生长方法,其特征在于,相邻两个所述阶段的温度的差值各不相同。
7.根据权利要求1或2所述的生长方法,其特征在于,各个所述阶段占用的时间根据外延生长的要求设定。
8.根据权利要求7所述的生长方法,其特征在于,各个所述阶段占用的时间为定值。
9.根据权利要求7所述的生长方法,其特征在于,各个所述阶段占用的时间各不相同。
10.根据权利要求1或2所述的生长方法,其特征在于,热处理之前进行多个阶段的升温的方式与生长过渡层之前进行多个阶段的升温的方式相同或不同。
CN201610597420.1A 2016-07-25 2016-07-25 一种发光二极管外延片的生长方法 Active CN106229397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610597420.1A CN106229397B (zh) 2016-07-25 2016-07-25 一种发光二极管外延片的生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610597420.1A CN106229397B (zh) 2016-07-25 2016-07-25 一种发光二极管外延片的生长方法

Publications (2)

Publication Number Publication Date
CN106229397A CN106229397A (zh) 2016-12-14
CN106229397B true CN106229397B (zh) 2019-05-14

Family

ID=57533120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610597420.1A Active CN106229397B (zh) 2016-07-25 2016-07-25 一种发光二极管外延片的生长方法

Country Status (1)

Country Link
CN (1) CN106229397B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887492B (zh) * 2017-01-12 2019-03-08 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片的制备方法
CN106816499B (zh) * 2017-02-15 2019-03-08 华灿光电(浙江)有限公司 一种发光二极管外延片的制备方法
CN113363362B (zh) * 2021-06-02 2023-08-25 福建兆元光电有限公司 一种在衬底上生长外延结构的方法及外延结构
CN115188863B (zh) * 2022-09-09 2022-12-06 江西兆驰半导体有限公司 发光二极管外延片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498193A (zh) * 2013-09-26 2014-01-08 西安神光皓瑞光电科技有限公司 一种提高材料晶体质量的外延生长方法
CN103647009A (zh) * 2013-12-11 2014-03-19 天津三安光电有限公司 氮化物发光二极管及其制备方法
CN105489723A (zh) * 2016-01-15 2016-04-13 厦门市三安光电科技有限公司 氮化物底层及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498193A (zh) * 2013-09-26 2014-01-08 西安神光皓瑞光电科技有限公司 一种提高材料晶体质量的外延生长方法
CN103647009A (zh) * 2013-12-11 2014-03-19 天津三安光电有限公司 氮化物发光二极管及其制备方法
CN105489723A (zh) * 2016-01-15 2016-04-13 厦门市三安光电科技有限公司 氮化物底层及其制作方法

Also Published As

Publication number Publication date
CN106229397A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
CN106098871B (zh) 一种发光二极管外延片的制备方法
CN106057988B (zh) 一种GaN基发光二极管的外延片的制备方法
CN106784216B (zh) 一种GaN基发光二极管的外延片及其生长方法
KR101636032B1 (ko) 고전위 밀도의 중간층을 갖는 발광 다이오드 및 그것을 제조하는 방법
CN106711295B (zh) 一种GaN基发光二极管外延片的生长方法
CN106816499B (zh) 一种发光二极管外延片的制备方法
CN106684222B (zh) 一种发光二极管外延片的制造方法
CN109616561B (zh) 深紫外led芯片、深紫外led外延片及其制备方法
CN106229397B (zh) 一种发光二极管外延片的生长方法
CN103337573A (zh) 半导体发光二极管的外延片及其制造方法
CN104576853B (zh) 一种改善GaN基LED芯片电流扩展的外延方法
CN106159052A (zh) 一种发光二极管外延片及其制造方法
CN106848017B (zh) 一种GaN基发光二极管的外延片及其生长方法
CN114883460A (zh) 发光二极管外延片及其制备方法
WO2019149095A1 (zh) 一种GaN基LED外延结构及其制备方法
JP2009023853A (ja) Iii−v族窒化物系半導体基板及びその製造方法、並びにiii−v族窒化物系半導体デバイス
CN106206869B (zh) 一种GaN基发光二极管外延片的生长方法
CN113571607B (zh) 高发光效率的发光二极管外延片及其制造方法
KR101384071B1 (ko) 질화물 반도체 기판, 이의 제조방법 및 질화물 반도체 기판을 구비하는 발광 다이오드
KR100834698B1 (ko) 질화 갈륨 박막 형성 방법 및 이 방법에 의해 제조된 질화갈륨 박막 기판
KR100304733B1 (ko) 질화물 반도체의 구조 및 그 결정성장방법
CN105633232A (zh) 一种具有GaN缓冲层衬底的GaN基LED外延结构及其制备方法
CN110459654A (zh) 紫外led外延结构
US9680055B2 (en) Hetero-substrate, nitride-based semiconductor light emitting device, and method for manufacturing the same
CN114122201B (zh) 微型发光二极管外延片的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant