WO2019149095A1 - 一种GaN基LED外延结构及其制备方法 - Google Patents

一种GaN基LED外延结构及其制备方法 Download PDF

Info

Publication number
WO2019149095A1
WO2019149095A1 PCT/CN2019/072458 CN2019072458W WO2019149095A1 WO 2019149095 A1 WO2019149095 A1 WO 2019149095A1 CN 2019072458 W CN2019072458 W CN 2019072458W WO 2019149095 A1 WO2019149095 A1 WO 2019149095A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gan
composition
type
epitaxial
Prior art date
Application number
PCT/CN2019/072458
Other languages
English (en)
French (fr)
Inventor
卢国军
马后永
Original Assignee
映瑞光电科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 映瑞光电科技(上海)有限公司 filed Critical 映瑞光电科技(上海)有限公司
Publication of WO2019149095A1 publication Critical patent/WO2019149095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the invention belongs to the field of semiconductor light-emitting, and particularly relates to a GaN-based LED epitaxial structure and a preparation method thereof.
  • LED Light Emitting Diode
  • LED has the advantages of long life, low energy consumption, small size, fast response, shock resistance, low temperature resistance and environmental protection. It is one of the most promising high-tech fields in the world in recent years.
  • the fourth-generation illumination source or green light source it will become another iconic leap in the history of human lighting following incandescent and fluorescent lamps. It has been widely used in general lighting, display, backlight and other fields.
  • the invention provides a GaN-based LED epitaxial structure and a preparation method thereof, which are beneficial to reducing dislocations of the epitaxial structure of the LED, improving the crystal quality of the epitaxial junction of the LED, and effectively improving the luminous efficiency of the LED.
  • the present invention provides a GaN-based LED epitaxial structure, including:
  • An undoped epitaxial layer is disposed on the substrate, and the undoped epitaxial layer comprises a periodically stacked AlInN layer and a GaN layer;
  • the first type is one of a P-type conductivity type and an N-type conductivity type
  • the second type is another one of a P-type conductivity type and an N-type conductivity type.
  • the undoped epitaxial layer includes at least one periodic structure layer of Al 1-x In x N/GaN/Al 1-y In y N/GaN, wherein ⁇ x ⁇ y ⁇ 1.
  • the undoped epitaxial layer includes more than two of the periodic structural layers.
  • all of the periodic structure layers have the same In composition x, or at least part of the periodic structure layer has different In composition x; all of the periodic structural layers
  • the In composition y is the same, or at least a portion of the periodic structure layer has a different In composition y.
  • the In composition x of the periodic structural layer changes in a gradual manner; and the In composition y of the periodic structural layer changes in a gradual manner.
  • the In composition x of the periodic structural layer changes in an increasing or decreasing manner; and the In composition y of the periodic structural layer changes in an increasing or decreasing manner.
  • the In composition x is between 0.06 and 0.18
  • the In composition y is between 0.18 and 0.30.
  • the AlInN layer has a rough surface.
  • the rough surface of the AlInN layer is a hole-like structure.
  • the undoped epitaxial layer has a thickness of 2.0 ⁇ m to 4.0 ⁇ m.
  • the AlInN layer has a thickness of between 20 nm and 50 nm, and the GaN layer has a thickness of between 40 nm and 100 nm.
  • the present invention also provides a method for preparing a GaN-based LED epitaxial structure, the preparation method comprising:
  • the undoped epitaxial layer comprising a periodically stacked AlInN layer and a GaN layer;
  • the first type is one of a P-type conductivity type and an N-type conductivity type
  • the second type is another one of a P-type conductivity type and an N-type conductivity type.
  • the undoped epitaxial layer includes at least one periodic structure layer of Al 1-x In x N/GaN/Al 1-y In y N/GaN, wherein 0 ⁇ x ⁇ y ⁇ 1.
  • the undoped epitaxial layer comprises more than two of the periodic structural layers.
  • all of the periodic structural layers have the same In composition x, or at least part of the periodic structural layer has different In composition x; all of the periodic structural layers In composition y is the same, or at least part of the In composition y in the periodic structural layer is different.
  • the In composition x of the periodic structural layer changes gradually; the In composition y of the periodic structural layer changes in a gradual manner.
  • the In composition x of the periodic structural layer changes in an increasing or decreasing manner; and the In composition y of the periodic structural layer changes in an increasing or decreasing manner.
  • the In composition x is between 0.06 and 0.18
  • the In composition y is between 0.12 and 0.23.
  • the AlInN layer has a rough surface.
  • the rough surface of the AlInN layer is a pore-like structure.
  • the growth temperature of the undoped epitaxial layer is between 650 degrees Celsius and 1200 degrees Celsius.
  • the growth temperature of the AlInN layer is between 650 degrees Celsius and 950 degrees Celsius.
  • the undoped epitaxial layer has a growth pressure of between 50 Torr and 600 Torr.
  • the flow molar ratio of the group V source and the group III source used is from 2000 to 8000, wherein the flow molar ratio of the trimethylindium to the trimethylaluminum used is Between 2 and 8.
  • the undoped epitaxial layer has a thickness of 2.0 ⁇ m to 4.0 ⁇ m.
  • the AlInN layer has a thickness of between 20 nm and 50 nm, and the GaN layer has a thickness of between 40 nm and 100 nm.
  • the present invention has the following beneficial effects:
  • the GaN-based LED epitaxial structure of the present invention comprises: a substrate comprising an undoped epitaxial layer of a periodically stacked AlInN layer and a GaN layer, and a first layer stacked on the undoped epitaxial layer and sequentially stacked from bottom to top a type epitaxial layer, a quantum well layer, and a second type epitaxial layer. Since the undoped epitaxial layer includes a periodically stacked AlInN layer and a GaN layer, the periodically stacked structure can change its stress state, which is advantageous for reducing dislocations thereof. To provide a high crystal quality platform for the subsequent epitaxial layer, not only can improve the crystal quality of the LED epitaxial structure, improve the antistatic ability and anti-aging ability of the LED, but also improve the luminous efficiency of the LED.
  • the undoped epitaxial layer includes at least one periodic structure layer of Al 1-x In x N/GaN/Al 1-y In y N/GaN, wherein 0 ⁇ x ⁇ y ⁇ 1, the non The doped epitaxial layer includes more than two of the periodic structural layers, and the stress state of the undoped epitaxial layer is in an alternating change of compressive stress and tensile stress, which further reduces dislocations and improves crystals of the LED epitaxial structure. Quality, improve the antistatic ability and anti-aging ability of LED.
  • the AlInN layer has a surface with a hole-like structure, which can improve the light-emitting efficiency of the LED, that is, further improve the luminous efficiency of the LED.
  • FIG. 1 is a flow chart of a method for fabricating a GaN-based LED epitaxial structure according to an embodiment of the present invention
  • FIG. 2 are schematic diagrams showing an epitaxial structure in each process step of a method for fabricating a GaN-based LED epitaxial structure according to an embodiment of the present invention
  • FIG. 4 is a topographical view of an AlInN layer in an embodiment of the present invention.
  • the core idea of the present invention is that the present invention provides a GaN-based LED epitaxial structure, including:
  • An undoped epitaxial layer is disposed on the substrate, and the undoped epitaxial layer comprises a periodically stacked AlInN layer and a GaN layer;
  • a second type of epitaxial layer is on the quantum well layer.
  • the present invention also provides a method for preparing a GaN-based LED epitaxial structure, as shown in FIG. 1: the preparation method comprises the following steps:
  • Step S1 providing a substrate
  • Step S2 growing an undoped epitaxial layer on the substrate, the undoped epitaxial layer comprising a periodically stacked AlInN layer and a GaN layer;
  • Step S3 growing a first type of epitaxial layer on the undoped epitaxial layer
  • Step S4 growing a quantum well layer on the first type epitaxial layer
  • Step S5 growing a second type of epitaxial layer on the quantum well layer.
  • the present invention grows an undoped epitaxial layer between the substrate and the first type of epitaxial layer, the undoped epitaxial layer comprises a periodically stacked AlInN layer and a GaN layer, and the periodically stacked structure may Changing the stress state of the undoped epitaxial layer is beneficial to reducing the dislocation thereof, and providing a platform with high crystal quality for the subsequent epitaxial layer, which can not only improve the crystal quality of the LED epitaxial structure, but also improve the antistatic capability and anti-aging ability of the LED. And it can also improve the luminous efficiency of LEDs.
  • step S1 is performed to provide a substrate 10, as shown in FIG.
  • the substrate 10 may be a sapphire substrate, a silicon nitride substrate, an aluminum nitride substrate, a silicon substrate or a silicon carbide substrate, etc., and the substrate 10 of the present embodiment is preferably a sapphire substrate.
  • step S2 is performed to grow an undoped epitaxial layer 11 on the substrate 10, the undoped epitaxial layer 11 including a periodically stacked AlInN layer and a GaN layer, as shown in FIG.
  • the epitaxial growth method may employ MOCVD (metal organic chemical vapor deposition) method, CVD (chemical vapor deposition) method, PECVD (plasma enhanced chemical vapor deposition) method, MBE (molecular beam epitaxy) method or HVPE (hydride vapor phase epitaxy) method.
  • the epitaxial growth method may be a MOCVD method, which is not limited herein.
  • a nucleation layer for improving the lattice matching degree is also formed between the undoped epitaxial layer 11 and the substrate 10 (the schematic diagram in the figure)
  • the material of the nucleation layer may be at least one of GaN, AlInGaN, and AlGaN, and the growth temperature of the nucleation layer may be between 500 degrees Celsius and 900 degrees Celsius.
  • the growth pressure of the layer is from 100 Torr to 600 Torr, and the thickness of the nucleation layer is from about 10 nm to 30 nm.
  • the undoped epitaxial layer 11 of the AlInN layer and the GaN layer which are periodically laminated is compared with the conventional single-layer GaN layer.
  • the dislocation density of the undoped epitaxial layer is much smaller. Therefore, the undoped epitaxial layer 11 grown by the present embodiment is advantageous in reducing the dislocation thereof, thereby improving the crystal quality of the epitaxial structure of the LED.
  • the undoped epitaxial layer 11 includes at least one period consisting of an Al 1-x In x N layer 1100, a first GaN layer 1101, an Al 1-y In y N layer 1102, and a second GaN layer 1103.
  • the structural layer 110 that is, the undoped epitaxial layer 11 includes at least one periodic structure layer 110 of Al 1-x In x N/GaN/Al 1-y In y N/GaN, where 0 ⁇ x ⁇ y ⁇ 1
  • the undoped epitaxial layer 11 includes more than two of the periodic structural layers 110, as shown in FIG.
  • the structure of the undoped epitaxial layer 11 can cause the stress state to be alternated between compressive stress and tensile stress, further reducing the dislocation thereof, providing a high crystal quality platform for the subsequent epitaxial layer, and improving the LED epitaxy.
  • the crystal quality of the structure enhances the antistatic ability and anti-aging ability of the LED.
  • all of the periodic structure layers 110 have the same In composition x, or at least part of the periodic structure layer 110 has different In composition x; all of the periodic structures
  • the In composition y of the layer 110 is the same, or at least part of the In composition y of the periodic structural layer 110 is different.
  • the In composition x of the periodic structural layer 110 may change in a gradual manner (such as increasing or decreasing).
  • the In composition y of the periodic structural layer 110 may change in a gradual manner (eg, incrementally or incrementally).
  • the In composition x is between 0.06 and 0.18, such as x is 0.10 or 0.14; the In composition y is between 0.18 and 0.30, and if y is 0.22 or 0.26.
  • the undoped epitaxial layer 11 includes three of the periodic structure layers 110, such as the undoped epitaxial layer 11 from Al 0.86 In 0.14 N/GaN/Al 0.78 In 0.22 N/GaN. , Al 0.88 In 0.12 N/GaN/Al 0.76 In 0.24 N/GaN and Al 0.90 In 0.10 N/GaN/Al 0.74 In 0.26 N/GaN composition, and those skilled in the art can obtain many similarities on the basis of the above expressions. The structure is not illustrated here.
  • the stress release of the undoped epitaxial layer 11 is further facilitated, the dislocation density is lowered, and the crystal of the epitaxial structure of the LED is improved. Quality can also improve the antistatic and anti-aging capabilities of LEDs.
  • the specific growth process of the undoped epitaxial layer 11 may be as follows: the growth temperature of the undoped epitaxial layer 11 is between 650 degrees Celsius and 1200 degrees Celsius, and the growth pressure of the undoped epitaxial layer 11 is 50 Torr to 600 Torr. The thickness of the undoped epitaxial layer 11 is between 2.0 ⁇ m and 4.0 ⁇ m.
  • the flow molar ratio of the group V source and the group III source used is 2000 to 8000, wherein The molar ratio of trimethylindium to trimethylaluminum used is 2-8, and the growth temperature of the Al 1-x In x N layer 1100 and the Al 1-y In y N layer 1102 are both 650 ° C.
  • the thickness of the Al 1-x In x N layer 1100 and the Al 1-y In y N layer 1102 are both 20 nm to 50 nm, and the first GaN layer 1101 and the second GaN layer
  • the thickness of 1103 is 40 nm to 100 nm.
  • the Al 1-x In x N layer 1100 and the Al 1-y In y N layer 1102 obtained by the above process have a rough surface.
  • the Al 1-x In x N layer 1100 And the rough surface of the Al 1-y In y N layer 1102 is a hole-like structure as shown in FIG.
  • the AlInN layer having the pore structure is advantageous for improving the light extraction efficiency of the LED, thereby improving the luminous efficiency of the LED.
  • step S3 is performed to grow a first type epitaxial layer 12 on the undoped epitaxial layer 11, as shown in FIG.
  • the first type epitaxial layer 12 is an N-type nitride layer 12, and the material of the N-type nitride layer 12 may be at least one of GaN, InAlGaN, and AlGaN, the N-type nitride layer.
  • the growth temperature of 12 may be between 1000 degrees Celsius and 1150 degrees Celsius
  • the growth pressure of the N-type nitride layer 12 is 100 Torr to 300 Torr
  • the thickness of the N-type nitride layer 12 may range between 2.0 ⁇ m and 4.0 ⁇ m.
  • the N-type nitride layer 12 has a Si doping concentration of 1.5e19 cm -3 to 3e19 cm -3 .
  • step S4 is performed to grow a quantum well layer 14 on the first type epitaxial layer 12, as shown in FIG.
  • stress release is performed, and a stress adjustment layer 13 is further grown between the first type epitaxial layer 12 and the quantum well layer 14, as shown in FIG. 6.
  • the stress adjustment layer 13 may include a plurality of periodically overlapping GaN layers and InGaN layers, wherein the composition of In of the InGaN layer may be between 0 and 20%, and the growth temperature of the stress adjustment layer 13 The range is between 700 degrees Celsius and 900 degrees Celsius, the thickness of GaN of the stress adjustment layer 13 is 1.0 nm to 3.0 nm, and the thickness of InGaN is 1.0 nm to 3.0 nm.
  • a quantum well layer 14 is grown on the stress adjustment layer 13, and the quantum well layer 14 includes a well layer and a barrier layer which are periodically stacked.
  • the quantum well layer 14 may be composed of 8 to 12 sets of periodically stacked well layers and barrier layers.
  • the thickness of the well layer is 3.0 nm to 4.0 nm
  • the thickness of the barrier layer is 4.0 nm to 6.0 nm
  • the growth temperature of the quantum well layer 14 is between 700 degrees Celsius and 900 degrees Celsius.
  • the material of the layer may be a ternary or quaternary material such as InGaN or InAlGaN containing In elements, wherein the composition of In may be between 0 and 30%; and the barrier layer may be, but not limited to, a GaN layer.
  • step S5 is performed to grow a second type epitaxial layer 15 on the quantum well layer 14, as shown in FIG.
  • the second type epitaxial layer 15 includes, but is not limited to, a P-type electron blocking layer and a P-type nitride layer stacked on the quantum well layer 14 from bottom to top.
  • the function of the P-type electron blocking layer is to block electrons in the quantum well from entering the P-type region, so as to increase the recombination efficiency of electrons in the quantum well region and the holes, that is, the internal quantum efficiency of the quantum well can be improved.
  • the P-type electron blocking layer is at least one of P-type AlGaN, P-type InAlGaN, and P-type AlGaN/GaN, and may be a superlattice structure, and the P-type electron blocking layer has a thickness of 30 nm to 70 nm, and Mg is doped.
  • the impurity concentration is 5e18cm -3 to 1.5e19cm -3 .
  • the P-type nitride layer has a thickness of 40 nm to 80 nm, and the P-type nitride layer has a Mg doping concentration of 5e19 cm -3 to 1.5e21 cm -3 .
  • the LED epitaxial structure obtained by the above preparation method includes: a substrate 10; an undoped epitaxial layer 11 on the substrate 10, the undoped epitaxial layer 11 including two or more periodic structure layers 110,
  • the periodic structure layer 110 is composed of an Al 1-x In x N layer 1100, a first GaN layer 1101, an Al 1-y In y N layer 1102, and a second GaN layer 1103, where 0.06 ⁇ x ⁇ 0.18 ⁇ y ⁇ 0.30, And the Al 1-x In x N layer 1100 and the Al 1-y In y N layer 1102 have a surface having a pore-like structure; a first type epitaxy which is deposited on the undoped epitaxial layer 11 and sequentially stacked from bottom to top Layer 12, stress adjustment layer 13, quantum well layer 14, and second type epitaxial layer 15.
  • the LED epitaxial structure is not limited to being obtained by the above preparation method.
  • the undoped epitaxial layer 11 since the undoped epitaxial layer 11 includes two or more periodic structure layers 110, the periodic structure layer 110 is composed of an Al 1-x In x N layer 1100, a first GaN layer 1101, and Al 1 . -y In y N layer 1102 and second GaN layer 1103, wherein 0.06 ⁇ x ⁇ 0.18 ⁇ y ⁇ 0.30, the stress state of the undoped epitaxial layer 11 is in alternating changes of compressive stress and tensile stress, It can significantly reduce its dislocation, improve the crystal quality of the LED epitaxial structure, improve the antistatic ability and anti-aging ability of the LED, and improve the luminous efficiency of the LED; moreover, the Al 1-x In x N layer 1100 and Al 1-y
  • the In y N layer 1102 has a surface with a hole-like structure, which can improve the light-emitting efficiency of the LED and further improve the luminous efficiency of the LED.
  • the GaN-based LED epitaxial structure of the present invention comprises: a substrate including a periodically stacked AlInN layer and an undoped epitaxial layer of a GaN layer, and is stacked on the undoped epitaxial layer and sequentially stacked from bottom to top. a first type of epitaxial layer, a quantum well layer, and a second type of epitaxial layer.
  • the undoped epitaxial layer includes a periodically stacked AlInN layer and a GaN layer
  • the periodically stacked structure can change its stress state, which is advantageous for reducing Its dislocations provide a high crystal quality platform for the subsequent epitaxial layers, which not only improves the crystal quality of the LED epitaxial structure, but also improves the antistatic and anti-aging capabilities of the LED, and also improves the luminous efficiency of the LED.
  • the undoped epitaxial layer includes at least one periodic structure layer of Al 1-x In x N/GaN/Al 1-y In y N/GaN, wherein 0 ⁇ x ⁇ y ⁇ 1, the non The doped epitaxial layer includes more than two of the periodic structural layers, and the stress state of the undoped epitaxial layer is in an alternating change of compressive stress and tensile stress, which further reduces dislocations and improves crystals of the LED epitaxial structure. Quality, improve the antistatic ability and anti-aging ability of LED.
  • the AlInN layer has a surface with a hole-like structure, which can improve the light-emitting efficiency of the LED, that is, further improve the luminous efficiency of the LED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种GaN基LED外延结构及其制备方法,GaN基LED外延结构包括:衬底(10),包括周期层叠的AlInN层和GaN层的非掺杂外延层(11),和位于所述非掺杂外延层(11)上且自下至上依次层叠的第一类型外延层(12)、量子阱层(14)以及第二类型外延层(15),因所述非掺杂外延层(11)包括周期层叠的AlInN层和GaN层,这种周期层叠的结构可以改变其应力状态,有利于降低其位错,为后续外延层提供高晶体质量的平台,不仅可以提高LED外延结构的晶体质量,提升LED的抗静电能力和抗老化能力,而且还能够提高LED的发光效率。

Description

一种GaN基LED外延结构及其制备方法 技术领域
本发明属于半导体发光领域,特别涉及一种GaN基LED外延结构及其制备方法。
背景技术
发光二极管(Light Emitting Diode,简称LED)具有寿命长、耗能少、体积小、响应快、抗震、抗低温、绿色环保等突出的优点,是近年来全球最具发展前景的高技术领域之一,被称为第四代照明光源或绿色光源,将成为人类照明史上继白炽灯、荧光灯之后的又一次标志性飞跃。在通用照明、显示、背光等领域已经得到广泛的应用。
随着LED产业的发展,以及在商业照明、舞台灯、汽车头灯或袖珍投影机等高端大功率器件上的应用,对LED外延结构的晶体质量、LED的发光效率等提出了更高的要求。因此,有必要提供一种GaN基LED外延结构及其制备方法,以提高LED外延结构的晶体质量,同时有效提高LED的发光效率。
发明内容
本发明提供一种GaN基LED外延结构及其制备方法,有利于降低LED外延结构的位错,提高LED外延结的晶体质量,同时有效提高LED的发光效率。
为达到上述技术效果,本发明提供一种GaN基LED外延结构,包括:
衬底;
非掺杂外延层,位于所述衬底上,且所述非掺杂外延层包括周期层叠的AlInN层和GaN层;
第一类型外延层,位于所述非掺杂外延层上;
量子阱层,位于所述第一类型外延层上;以及
第二类型外延层,位于所述量子阱层上;
其中,所述第一类型为P型导电类型和N型导电类型中的一种,所述第 二类型为P型导电类型和N型导电类型中的另一种。
进一步的,在所述GaN基LED外延结构中,所述非掺杂外延层包括至少一个Al 1-xIn xN/GaN/Al 1-yIn yN/GaN的周期结构层,其中,0<x≤y<1。
较佳的,在所述GaN基LED外延结构中,所述非掺杂外延层包括两个以上的所述周期结构层。
可选的,在所述GaN基LED外延结构中,所有的所述周期结构层的In组分x相同,或至少部分所述周期结构层的In组分x不同;所有的所述周期结构层的In组分y相同,或至少部分所述周期结构层的In组分y不同。
可选的,在所述GaN基LED外延结构中,所述周期结构层的In组分x呈渐变式变化;所述周期结构层的In组分y呈渐变式变化。
较佳的,在所述GaN基LED外延结构中,所述周期结构层的In组分x呈递增或递减变化;所述周期结构层的In组分y呈递增或递减变化。
进一步的,在所述GaN基LED外延结构中,In组分x在0.06~0.18之间,In组分y在0.18~0.30之间。
较佳的,在所述GaN基LED外延结构中,所述AlInN层具有粗糙表面。
可选的,在所述GaN基LED外延结构中,所述AlInN层的粗糙表面为孔状结构。
进一步的,在所述GaN基LED外延结构中,所述非掺杂外延层的厚度为2.0μm~4.0μm。
进一步的,在所述GaN基LED外延结构中,所述AlInN层的厚度在20nm~50nm之间,所述GaN层的厚度在40nm~100nm之间。
根据本发明的另一面,本发明还提供一种GaN基LED外延结构的制备方法,所述制备方法包括:
提供一衬底;
在所述衬底上生长非掺杂外延层,所述非掺杂外延层包括周期层叠的AlInN层和GaN层;
在所述非掺杂外延层上生长第一类型外延层;
在所述第一类型外延层上生长量子阱层;以及
在所述量子阱层上生长第二类型外延层;
其中,所述第一类型为P型导电类型和N型导电类型中的一种,所述第二类型为P型导电类型和N型导电类型中的另一种。
进一步的,在所述的制备方法中,所述非掺杂外延层包括至少一个Al 1-xIn xN/GaN/Al 1-yIn yN/GaN的周期结构层,其中,0<x≤y<1。
较佳的,在所述的制备方法中,所述非掺杂外延层包括两个以上的所述周期结构层。
可选的,在所述的制备方法中,所有的所述周期结构层的In组分x相同,或至少部分所述周期结构层的In组分x不同;所有的所述周期结构层中的In组分y相同,或至少部分所述周期结构层中的In组分y不同。
进一步的,在所述的制备方法中,所述周期结构层的In组分x呈渐变式变化;所述周期结构层的In组分y呈渐变式变化。
较佳的,在所述的制备方法中,所述周期结构层的In组分x呈递增或递减变化;所述周期结构层的In组分y呈递增或递减变化。
进一步的,在所述的制备方法中,In组分x在0.06~0.18之间,In组分y在0.12~0.23之间。
较佳的,在所述的制备方法中,所述AlInN层具有粗糙表面。
较佳的,在所述的制备方法中,所述AlInN层的粗糙表面为孔状结构。
进一步的,在所述的制备方法中,所述非掺杂外延层的生长温度在650摄氏度~1200摄氏度之间。
进一步的,在所述的制备方法中,所述AlInN层的生长温度在650摄氏度~950摄氏度之间。
进一步的,在所述的制备方法中,所述非掺杂外延层的生长压力在50Torr~600Torr之间。
进一步的,在生长所述非掺杂外延层时,所用的V族源和III族源的流量摩尔比在2000~8000,其中,所用的三甲基铟和三甲基铝的流量摩尔比在2~8之间。
进一步的,在所述的制备方法中,所述非掺杂外延层的厚度为 2.0μm~4.0μm。
进一步的,在所述的制备方法中,所述AlInN层的厚度在20nm~50nm之间,所述GaN层的厚度在40nm~100nm之间。
与现有技术相比,本发明具有以下有益效果:
本发明所述的GaN基LED外延结构包括:衬底,包括周期层叠的AlInN层和GaN层的非掺杂外延层,和位于所述非掺杂外延层上且自下至上依次层叠的第一类型外延层、量子阱层以及第二类型外延层,因所述非掺杂外延层包括周期层叠的AlInN层和GaN层,这种周期层叠的结构可以改变其应力状态,有利于降低其位错,为后续外延层提供高晶体质量的平台,不仅可以提高LED外延结构的晶体质量,提升LED的抗静电能力和抗老化能力,而且还能够提高LED的发光效率。
进一步的,所述非掺杂外延层包括至少一个Al 1-xIn xN/GaN/Al 1-yIn yN/GaN的周期结构层,其中,0<x≤y<1,所述非掺杂外延层包括两个以上的所述周期结构层,则所述非掺杂外延层的应力状态处于压应力和张应力的交替变化中,进一步可以降低其位错,提高LED外延结构的晶体质量,提升LED的抗静电能力和抗老化能力。
此外,所述AlInN层具有孔状结构的表面,能够提高LED的出光效率,即进一步提升LED的发光效率。
附图说明
图1为本发明实施例中一种GaN基LED外延结构的制备方法的流程图;
图2、图3、图5至图7为本发明实施例中一种GaN基LED外延结构的制备方法的各工艺步骤中外延结构的示意图;
图4为本发明实施例中AlInN层的表面形貌图。
具体实施方式
下面将结合流程图和示意图对本发明的一种GaN基LED外延结构及其制备方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领 域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于,本发明提供一种GaN基LED外延结构,包括:
衬底;
非掺杂外延层,位于所述衬底上,且所述非掺杂外延层包括周期层叠的AlInN层和GaN层;
第一类型外延层,位于所述非掺杂外延层上;
量子阱层,位于所述第一类型外延层上;以及
第二类型外延层,位于所述量子阱层上。
相应的,本发明还提供了一种GaN基LED外延结构的制备方法,如图1所示:所述制备方法包括以下步骤:
步骤S1、提供一衬底;
步骤S2、在所述衬底上生长非掺杂外延层,所述非掺杂外延层包括周期层叠的AlInN层和GaN层;
步骤S3、在所述非掺杂外延层上生长第一类型外延层;
步骤S4、在所述第一类型外延层上生长量子阱层;
步骤S5、在所述量子阱层上生长第二类型外延层。
本发明在所述衬底和所述第一类型外延层之间生长一非掺杂外延层,所述非掺杂外延层包括周期层叠的AlInN层和GaN层,则这种周期层叠的结构可以改变所述非掺杂外延层的应力状态,有利于降低其位错,为后续外延层提供高晶体质量的平台,不仅可以提高LED外延结构的晶体质量,提升LED的抗静电能力和抗老化能力,而且还能够提高LED的发光效率。
以下列举所述一种GaN基LED外延结构及其制备方法的实施例,以清楚说明本发明的内容,应当明确的是,本发明的内容并不限制于以下实施例,其他通过本领域普通技术人员的常规技术手段的改进亦在本发明的思想范围之内。
请参阅图1,首先,执行步骤S1,提供一衬底10,如图2所示。所述衬底10可以为蓝宝石衬底、氮化硅衬底、氮化铝衬底、硅衬底或碳化硅衬底等,本实施例的衬底10优选为蓝宝石衬底。
然后,如图1所示,执行步骤S2,在衬底10上生长非掺杂外延层11,所述非掺杂外延层11包括周期层叠的AlInN层和GaN层,如图3所示。外延生长方法可以选用MOCVD(金属有机化学气相沉积)方法、CVD(化学气相沉积)方法、PECVD(等离子体增强化学气相沉积)方法、MBE(分子束外延)方法或HVPE(氢化物气相外延)方法等,本实施例中,外延生长方法可以优选MOCVD方法,在此并不做限定。在实际外延生长过程中,为了改善LED外延生长的晶体质量,在所述非掺杂外延层11和所述衬底10之间还会形成以提高晶格匹配度的成核层(图中示意图省略),所述成核层的材料可以是GaN、AlInGaN和AlGaN中的至少一种,具体不做限制,所述成核层的生长温度可以在500摄氏度~900摄氏度之间,所述成核层的生长压力为100Torr~600Torr,所述成核层的厚度约为10nm~30nm。
因AlInN的晶格常数和GaN的晶格常数不同,则在相同厚度的情况下,采用周期层叠的AlInN层和GaN层的所述非掺杂外延层11相比于传统的单层GaN层的非掺杂外延层的位错密度要小很多,因此,通过本实施例生长的非掺杂外延层11有利于降低其位错,从而提高LED外延结构的晶体质量。较佳的,所述非掺杂外延层11包括至少一个由Al 1-xIn xN层1100、第一GaN层1101、Al 1-yIn yN层1102和第二GaN层1103组成的周期结构层110,即所述非掺杂外延层11包括至少一个Al 1-xIn xN/GaN/Al 1-yIn yN/GaN的周期结构层110,其中,0<x≤y<1,如所述非掺杂外延层11包括两个以上的所述周期结构层110,如图3所示。所述非掺杂外延层11的这种结构可以使其应力状态处于压应力和 张应力的交替变化中,进一步可以降低其位错,为后续的外延层提供高晶体质量的平台,提高LED外延结构的晶体质量,提升LED的抗静电能力和抗老化能力。其中,在所述非掺杂外延层11中,所有的所述周期结构层110的In组分x相同,或至少部分所述周期结构层110的In组分x不同;所有的所述周期结构层110的In组分y相同,或至少部分所述周期结构层110的In组分y不同,优选的,所述周期结构层110的In组分x可以呈渐变式变化(如递增或递减变化);所述周期结构层110的In组分y可以呈渐变式变化(如递增或递减变化)。进一步的,所述In组分x在0.06~0.18之间,如x取0.10或0.14;所述In组分y在0.18~0.30之间,如y取0.22或0.26。
例如,本实施例中,所述非掺杂外延层11包括3个所述周期结构层110,如所述非掺杂外延层11由Al 0.86In 0.14N/GaN/Al 0.78In 0.22N/GaN、Al 0.88In 0.12N/GaN/Al 0.76In 0.24N/GaN和Al 0.90In 0.10N/GaN/Al 0.74In 0.26N/GaN组成,本领域普通技术人员在上述表述的基础上还可以得到很多类似的结构,在此不一一举例说明。因所述周期结构层110的In组分x和In组分y呈一定规律的变化,更加有利于所述非掺杂外延层11的应力释放,降低其位错密度,提高LED外延结构的晶体质量,也能够提升LED的抗静电能力和抗老化能力。
所述非掺杂外延层11的具体生长工艺可以如下:所述非掺杂外延层11的生长温度在650摄氏度~1200摄氏度之间,所述非掺杂外延层11的生长压力为50Torr~600Torr之间,所述非掺杂外延层11的厚度为2.0μm~4.0μm,生长所述非掺杂外延层11时,所用的V族源和III族源的流量摩尔比为2000~8000,其中,所用的三甲基铟和三甲基铝的流量摩尔比为2~8,所述Al 1-xIn xN层1100和Al 1-yIn yN层1102的生长温度均在650摄氏度~950摄氏度之间,所述Al 1-xIn xN层1100和所述Al 1-yIn yN层1102的厚度均为20nm~50nm,所述第一GaN层1101和所述第二GaN层1103的厚度均为40nm~100nm。
进一步的,通过上述工艺得到的所述Al 1-xIn xN层1100和所述Al 1-yIn yN层1102具有粗糙表面,较佳的,所述Al 1-xIn xN层1100和所述Al 1-yIn yN层1102的粗糙表面为孔状结构,如图4所示。具有所述孔状结构的AlInN层有利于提高LED的出光效率,从而能够提高LED的发光效率。
然后,如图1所示,执行步骤S3,在所述非掺杂外延层11上生长第一类型外延层12,如图5所示。较佳的,所述第一类型外延层12为N型氮化物层12,所述N型氮化物层12的材质可以为GaN、InAlGaN和AlGaN中的至少一种,所述N型氮化物层12的生长温度可以在1000摄氏度~1150摄氏度之间,所述N型氮化物层12的生长压力为100Torr~300Torr,所述N型氮化物层12的厚度范围可以在2.0μm~4.0μm之间,所述N型氮化物层12的Si掺杂浓度为1.5e19cm -3~3e19cm -3
接着,如图1所示,执行步骤S4,在所述第一类型外延层12上生长量子阱层14,如图6所示。较佳的,本实施例中,为了进一步改善外延生长的晶体质量,进行应力释放,在所述第一类型外延层12和量子阱层14之间还生长一层应力调节层13,如图6所示,所述应力调节层13可以包括若干个周期交叠的GaN层和InGaN层,其中,InGaN层的In的组分可以在0~20%之间,所述应力调节层13的生长温度范围在700摄氏度~900摄氏度之间,所述应力调节层13的GaN的厚度为1.0nm~3.0nm,InGaN的厚度为1.0nm~3.0nm。
在所述应力调节层13上生长量子阱层14,所述量子阱层14包括周期层叠的势阱层和势垒层。所述量子阱层14可以由8~12组周期层叠的势阱层和势垒层组成。所述势阱层的厚度为3.0nm~4.0nm,所述势垒层的厚度为4.0nm~6.0nm,所述量子阱层14的生长温度在700摄氏度~900摄氏度之间,所述势阱层的材质可以是包含In元素的InGaN、InAlGaN等三元或四元材料,其中,In的组分可以在0~30%之间;所述势垒层可以但不限于GaN层。
最后,如图1所示,执行步骤S5,在所述量子阱层14上生长第二类型外延层15,如图7所示。本实施例中,所述第二类型外延层15包括但不限于生长在所述量子阱层14上自下至上层叠的P型电子阻挡层和P型氮化物层。具体的,P型电子阻挡层的作用是阻挡量子阱内的电子进入P型区,以增大电子在量子阱区与空穴的复合效率,即可以提高量子阱的内量子效率。所述P型电子阻挡层为P型AlGaN、P型InAlGaN和P型AlGaN/GaN中的至少一种,可以为超晶格结构,所述P型电子阻挡层的厚度为30nm~70nm,Mg掺杂浓度为5e18cm -3~1.5e19cm -3。P型氮化物层的厚度为40nm~80nm,所述P型氮 化物层的Mg掺杂浓度为5e19cm -3~1.5e21cm -3
通过上述制备方法得到的LED外延结构包括:衬底10;位于所述衬底10上的非掺杂外延层11,所述非掺杂外延层11包括两个以上的周期结构层110,所述周期结构层110由Al 1-xIn xN层1100、第一GaN层1101、Al 1-yIn yN层1102和第二GaN层1103组成,其中,0.06≤x≤0.18≤y≤0.30,且所述Al 1-xIn xN层1100和Al 1-yIn yN层1102具有孔状结构的表面;位于所述非掺杂外延层11上且自下至上依次层叠的第一类型外延层12、应力调节层13、量子阱层14和第二类型外延层15。显然,所述LED外延结构并不限于通过上述制备方法得到。
在本实施例中,因所述非掺杂外延层11包括两个以上的周期结构层110,所述周期结构层110由Al 1-xIn xN层1100、第一GaN层1101、Al 1-yIn yN层1102和第二GaN层1103组成,其中,0.06≤x≤0.18≤y≤0.30,则所述非掺杂外延层11的应力状态处于压应力和张应力的交替变化中,可以明显降低其位错,提高LED外延结构的晶体质量,提升LED的抗静电能力和抗老化能力,提高LED的发光效率;而且,所述Al 1-xIn xN层1100和Al 1-yIn yN层1102具有孔状结构的表面,能够提高LED的出光效率,进一步提升LED的发光效率。
综上,本发明所述的GaN基LED外延结构包括:衬底,包括周期层叠的AlInN层和GaN层的非掺杂外延层,和位于所述非掺杂外延层上且自下至上依次层叠的第一类型外延层、量子阱层以及第二类型外延层,因所述非掺杂外延层包括周期层叠的AlInN层和GaN层,这种周期层叠的结构可以改变其应力状态,有利于降低其位错,为后续外延层提供高晶体质量的平台,不仅可以提高LED外延结构的晶体质量,提升LED的抗静电能力和抗老化能力,而且还能够提高LED的发光效率。
进一步的,所述非掺杂外延层包括至少一个Al 1-xIn xN/GaN/Al 1-yIn yN/GaN的周期结构层,其中,0<x≤y<1,所述非掺杂外延层包括两个以上的所述周期结构层,则所述非掺杂外延层的应力状态处于压应力和张应力的交替变化中,进一步可以降低其位错,提高LED外延结构的晶体质量,提升LED的抗 静电能力和抗老化能力。
此外,所述AlInN层具有孔状结构的表面,能够提高LED的出光效率,即进一步提升LED的发光效率。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (26)

  1. 一种GaN基LED外延结构,其特征在于,包括:
    衬底;
    非掺杂外延层,位于所述衬底上,且所述非掺杂外延层包括周期层叠的AlInN层和GaN层;
    第一类型外延层,位于所述非掺杂外延层上;
    量子阱层,位于所述第一类型外延层上;以及
    第二类型外延层,位于所述量子阱层上;
    其中,所述第一类型为P型导电类型和N型导电类型中的一种,所述第二类型为P型导电类型和N型导电类型中的另一种。
  2. 如权利要求1所述的GaN基LED外延结构,其特征在于,所述非掺杂外延层包括至少一个Al 1-xIn xN/GaN/Al 1-yIn yN/GaN的周期结构层,其中,0<x≤y<1。
  3. 如权利要求2所述的GaN基LED外延结构,其特征在于,所述非掺杂外延层包括两个以上的所述周期结构层。
  4. 如权利要求3所述的GaN基LED外延结构,其特征在于,所有的所述周期结构层的In组分x相同,或至少部分所述周期结构层的In组分x不同;所有的所述周期结构层的In组分y相同,或至少部分所述周期结构层的In组分y不同。
  5. 如权利要求4所述的GaN基LED外延结构,其特征在于,所述周期结构层的In组分x呈渐变式变化;所述周期结构层的In组分y呈渐变式变化。
  6. 如权利要求5所述的GaN基LED外延结构,其特征在于,所述周期结构层的In组分x呈递增或递减变化;所述周期结构层的In组分y呈递增或递减变化。
  7. 如权利要求2所述的GaN基LED外延结构,其特征在于,In组分x在0.06~0.18之间,In组分y在0.18~0.30之间。
  8. 如权利要求1所述的GaN基LED外延结构,其特征在于,所述AlInN 层具有粗糙表面。
  9. 如权利要求8所述的GaN基LED外延结构,其特征在于,所述AlInN层的粗糙表面为孔状结构。
  10. 如权利要求1所述的GaN基LED外延结构,,其特征在于,所述非掺杂外延层的厚度为2.0μm~4.0μm。
  11. 如权利要求1所述的GaN基LED外延结构,其特征在于,所述AlInN层的厚度在20nm~50nm之间,所述GaN层的厚度在40nm~100nm之间。
  12. 一种GaN基LED外延结构的制备方法,其特征在于,所述制备方法包括:
    提供一衬底;
    在所述衬底上生长非掺杂外延层,所述非掺杂外延层包括周期层叠的AlInN层和GaN层;
    在所述非掺杂外延层上生长第一类型外延层;
    在所述第一类型外延层上生长量子阱层;以及
    在所述量子阱层上生长第二类型外延层;
    其中,所述第一类型为P型导电类型和N型导电类型中的一种,所述第二类型为P型导电类型和N型导电类型中的另一种。
  13. 如权利要求12所述的制备方法,其特征在于,所述非掺杂外延层包括至少一个Al 1-xIn xN/GaN/Al 1-yIn yN/GaN的周期结构层,其中,0<x≤y<1。
  14. 如权利要求13所述的制备方法,其特征在于,所述非掺杂外延层包括两个以上的所述周期结构层。
  15. 如权利要求14所述的制备方法,其特征在于,所有的所述周期结构层的In组分x相同,或至少部分所述周期结构层的In组分x不同;所有的所述周期结构层中的In组分y相同,或至少部分所述周期结构层中的In组分y不同。
  16. 如权利要求15所述的制备方法,其特征在于,所述周期结构层的In组分x呈渐变式变化;所述周期结构层的In组分y呈渐变式变化。
  17. 如权利要求16所述的制备方法,其特征在于,所述周期结构层的In 组分x呈递增或递减变化;所述周期结构层的In组分y呈递增或递减变化。
  18. 如权利要求13所述的制备方法,其特征在于,In组分x在0.06~0.18之间,In组分y在0.18~0.30之间。
  19. 如权利要求12所述的制备方法,其特征在于,所述AlInN层具有粗糙表面。
  20. 如权利要求19所述的制备方法,其特征在于,所述AlInN层的粗糙表面为孔状结构。
  21. 如权利要求12所述的制备方法,其特征在于,所述非掺杂外延层的生长温度在650摄氏度~1200摄氏度之间。
  22. 如权利要求21所述的制备方法,其特征在于,所述AlInN层的生长温度在650摄氏度~950摄氏度之间。
  23. 如权利要求12所述的制备方法,其特征在于,所述非掺杂外延层的生长压力在50Torr~600Torr之间。
  24. 如权利要求12所述的制备方法,其特征在于,在生长所述非掺杂外延层时,所用的V族源和III族源的流量摩尔比在2000~8000,其中,所用的三甲基铟和三甲基铝的流量摩尔比在2~8之间。
  25. 如权利要求12所述的制备方法,其特征在于,所述非掺杂外延层的厚度为2.0μm~4.0μm。
  26. 如权利要求12所述的制备方法,其特征在于,所述AlInN层的厚度在20nm~50nm之间,所述GaN层的厚度在40nm~100nm之间。
PCT/CN2019/072458 2018-02-01 2019-01-21 一种GaN基LED外延结构及其制备方法 WO2019149095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810103442.7A CN108321266A (zh) 2018-02-01 2018-02-01 一种GaN基LED外延结构及其制备方法
CN201810103442.7 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019149095A1 true WO2019149095A1 (zh) 2019-08-08

Family

ID=62888763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072458 WO2019149095A1 (zh) 2018-02-01 2019-01-21 一种GaN基LED外延结构及其制备方法

Country Status (2)

Country Link
CN (1) CN108321266A (zh)
WO (1) WO2019149095A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701139A (zh) * 2020-12-29 2021-04-23 武汉大学 一种集成结构Micro-LED显示器及其制备方法
CN117637944A (zh) * 2024-01-25 2024-03-01 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法、led芯片

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321266A (zh) * 2018-02-01 2018-07-24 映瑞光电科技(上海)有限公司 一种GaN基LED外延结构及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043394A1 (en) * 2004-09-01 2006-03-02 Liang-Wen Wu Gallium-nitride based light emitting diode structure
WO2014003402A1 (en) * 2012-06-28 2014-01-03 Seoul Viosys Co., Ltd. Near uv light emitting device
CN103594601A (zh) * 2013-10-22 2014-02-19 溧阳市东大技术转移中心有限公司 一种发光二极管结构
CN103904177A (zh) * 2014-02-28 2014-07-02 华灿光电(苏州)有限公司 发光二极管外延片及其制造方法
CN104600163A (zh) * 2013-10-30 2015-05-06 山东浪潮华光光电子股份有限公司 一种有p型超晶格的led外延结构及其制备方法
CN105140356A (zh) * 2015-09-01 2015-12-09 山东浪潮华光光电子股份有限公司 一种Al组分渐变式N型LED结构及其制备方法
CN108321266A (zh) * 2018-02-01 2018-07-24 映瑞光电科技(上海)有限公司 一种GaN基LED外延结构及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656288B (zh) * 2005-07-06 2013-06-12 Lg伊诺特有限公司 氮化物半导体led
CN101859830A (zh) * 2009-04-07 2010-10-13 璨扬投资有限公司 发光二极管芯片
US20120126201A1 (en) * 2010-11-23 2012-05-24 Heng Liu Gallium nitride led devices with pitted layers and methods for making thereof
CN102270718B (zh) * 2011-07-25 2013-04-10 映瑞光电科技(上海)有限公司 一种氮化物led结构及其制备方法
US9252329B2 (en) * 2011-10-04 2016-02-02 Palo Alto Research Center Incorporated Ultraviolet light emitting devices having compressively strained light emitting layer for enhanced light extraction
CN102856359B (zh) * 2012-09-28 2015-11-25 苏州晶湛半导体有限公司 半导体外延结构及其生长方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043394A1 (en) * 2004-09-01 2006-03-02 Liang-Wen Wu Gallium-nitride based light emitting diode structure
WO2014003402A1 (en) * 2012-06-28 2014-01-03 Seoul Viosys Co., Ltd. Near uv light emitting device
CN103594601A (zh) * 2013-10-22 2014-02-19 溧阳市东大技术转移中心有限公司 一种发光二极管结构
CN104600163A (zh) * 2013-10-30 2015-05-06 山东浪潮华光光电子股份有限公司 一种有p型超晶格的led外延结构及其制备方法
CN103904177A (zh) * 2014-02-28 2014-07-02 华灿光电(苏州)有限公司 发光二极管外延片及其制造方法
CN105140356A (zh) * 2015-09-01 2015-12-09 山东浪潮华光光电子股份有限公司 一种Al组分渐变式N型LED结构及其制备方法
CN108321266A (zh) * 2018-02-01 2018-07-24 映瑞光电科技(上海)有限公司 一种GaN基LED外延结构及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701139A (zh) * 2020-12-29 2021-04-23 武汉大学 一种集成结构Micro-LED显示器及其制备方法
CN117637944A (zh) * 2024-01-25 2024-03-01 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法、led芯片
CN117637944B (zh) * 2024-01-25 2024-04-02 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法、led芯片

Also Published As

Publication number Publication date
CN108321266A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
CN103681985B (zh) 一种发光二极管的外延片及其制作方法
CN106784216B (zh) 一种GaN基发光二极管的外延片及其生长方法
CN110112273B (zh) 一种深紫外led外延结构及其制备方法和深紫外led
CN106098871B (zh) 一种发光二极管外延片的制备方法
CN106711295B (zh) 一种GaN基发光二极管外延片的生长方法
CN114883462B (zh) 发光二极管外延片及其制备方法
CN106653971B (zh) 一种GaN基发光二极管的外延片及其生长方法
WO2019015217A1 (zh) 一种深紫外led
WO2019149095A1 (zh) 一种GaN基LED外延结构及其制备方法
CN116072780B (zh) 发光二极管外延片及其制备方法、发光二极管
CN116314496B (zh) 一种高光效发光二极管外延片及其制备方法、led
CN114927601B (zh) 一种发光二极管及其制备方法
CN114883460A (zh) 发光二极管外延片及其制备方法
CN106848017B (zh) 一种GaN基发光二极管的外延片及其生长方法
CN116364825A (zh) 复合缓冲层及其制备方法、外延片及发光二极管
CN106229397B (zh) 一种发光二极管外延片的生长方法
CN116598396A (zh) 发光二极管外延片及其制备方法、led
CN109671817B (zh) 一种发光二极管外延片及其制备方法
CN112366256B (zh) 发光二极管外延片及其制造方法
CN106711296B (zh) 一种绿光发光二极管的外延片及其生长方法
CN116565097A (zh) 一种发光二极管外延片及其制备方法
CN116435424A (zh) 一种辐射复合效率高的发光二极管外延片及其制备方法
CN116487493A (zh) 发光二极管外延片及其制备方法、led芯片
CN116387426A (zh) 一种发光二极管外延片及制备方法
CN106206869B (zh) 一种GaN基发光二极管外延片的生长方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747425

Country of ref document: EP

Kind code of ref document: A1