CN109554578A - 一种负膨胀记忆合金及其制备方法 - Google Patents

一种负膨胀记忆合金及其制备方法 Download PDF

Info

Publication number
CN109554578A
CN109554578A CN201811571238.4A CN201811571238A CN109554578A CN 109554578 A CN109554578 A CN 109554578A CN 201811571238 A CN201811571238 A CN 201811571238A CN 109554578 A CN109554578 A CN 109554578A
Authority
CN
China
Prior art keywords
memorial alloy
nitinb
sample
negative expansion
ingot casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811571238.4A
Other languages
English (en)
Other versions
CN109554578B (zh
Inventor
杨琴
王英英
葛继强
孙明艳
范啟超
张永皞
陈捷
黄姝珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mechanical Manufacturing Technology of CAEP
Original Assignee
Institute of Mechanical Manufacturing Technology of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mechanical Manufacturing Technology of CAEP filed Critical Institute of Mechanical Manufacturing Technology of CAEP
Priority to CN201811571238.4A priority Critical patent/CN109554578B/zh
Publication of CN109554578A publication Critical patent/CN109554578A/zh
Application granted granted Critical
Publication of CN109554578B publication Critical patent/CN109554578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Abstract

本发明公开了一种负膨胀记忆合金及其制备方法,所述负膨胀记忆合金为NiTiNb记忆合金,所述NiTiNb记忆合金中各元素的原子百分比为:Ni45.5~48.5%、Ti42.5~46.5%、Nb6.5~10.5%,余量为杂质。本发明所述NiTiNb记忆合金能够在290K~430K温度范围内实现负热膨胀,该温度范围覆盖了当前金属构件主要的服役温度区间,有效地解决了传统金属结构件在服役环境中受热膨胀、相互挤压进而失效的问题,提高了传统金属结构件在服役过程中的稳定性及可靠性。

Description

一种负膨胀记忆合金及其制备方法
技术领域
本发明涉及形状记忆合金领域,具体涉及一种负膨胀记忆合金及其制备方法。
背景技术
热膨胀是削弱金属构件在服役过程中尺寸稳定性以及使用寿命的主要因素。目前,工程应用中主要使用橡胶材料来抵消热膨胀,从而达到避免金属构件受热膨胀、相互挤压进而失效的问题。然而,在某些特定的服役环境中(如强辐射条件下),橡胶材料却并不适用。近年来,国内外研究人员针对如何获得负膨胀金属材料做了大量工作,开发了如MnNiGe、MnCoGe等负膨胀合金。遗憾的是,制备工艺复杂、使用温度范围可控性不高以及负膨胀系数小等一系列问题限制了已报道的多种负膨胀金属材料在工程中的普遍应用。本专利报道一种基于NiTiNb记忆合金结构功能一体化抵消热膨胀的方法。
发明内容
本发明的目的在于提供一种负膨胀记忆合金,解决传统金属结构件在服役环境中受热膨胀、相互挤压进而失效的问题。
此外,本发明还提供上述负膨胀记忆合金的制备方法。
本发明通过下述技术方案实现:
一种负膨胀记忆合金,所述负膨胀记忆合金为NiTiNb记忆合金,所述NiTiNb记忆合金中各元素的原子百分比为:Ni45.5~48.5%、Ti42.5~46.5%、Nb6.5~10.5%,余量为杂质。
优选地,所述NiTiNb记忆合金中各元素的原子百分比为:Ni47~47.5%、Ti44~44.1%、Nb8.7~9.3%。
进一步优选,所述NiTiNb记忆合金中各元素的原子百分比为:Ni47%、Ti44%、Nb9%。
本发明所述NiTiNb记忆合金能够在290K~430K温度范围内实现负热膨胀,该温度范围覆盖了当前金属构件主要的服役温度区间,有效地解决了传统金属结构件在服役环境中受热膨胀、相互挤压进而失效的问题,提高了传统金属结构件在服役过程中的稳定性及可靠性。
进一步地,NiTiNb记忆合金的采用以下方法制备:按原子百分比分别称取各个元素块状原材料,依次经过熔炼、热锻、热轧、固溶处理、变形处理获得。
本发明所述NiTiNb记忆合金按照本发明所述原子百分比后依次经过上述处理,使得NiTiNb记忆合金在受热过程中发生不同程度的热缩,从而避免传统金属结构件在服役环境中受热膨胀、相互挤压进而失效的问题。
进一步地,NiTiNb记忆合金的热膨胀系数为-724×10-5K-1~-326×10-5K-1
本发明所述NiTiNb记忆合金具有一使用温度范围可控性强、且负膨胀系数大并可调等显著优点。
一种负膨胀记忆合金的制备方法,包括以下步骤:
1)、按原子百分比Ni45.5~48.5%、Ti42.5~46.5%、Nb6.5~10.5%分别称取块状原材料;
2)、各个块状原材料混合后经过熔炼获得铸锭;
3)、铸锭在900℃~950℃真空均匀化退火4~8小时;
4)、铸锭在800℃~900℃热锻开胚形成热锻样;
5)、热锻样在850~950℃热轧成板材;
6)、板材进行线切割获得不同形状的试样,切割后的试样在700℃~950℃固溶处理1.5~3.5小时后进行空冷或水冷;
7)、经过固溶处理后的试样在-45℃~0℃进行变形处理获得NiTiNb记忆合金。
本发明所述负膨胀记忆合金制备的关键点在于:获得的NiTiNb合金应具有良好的记忆效应,即具有一定初始形状的合金在外力作用下发生变形后,经过适当的热处理,变形后的合金能够恢复为其初始的形状。特别地,为了工程应用的便利性,合金应在高于室温(290K)以上温度范围内加热时恢复其初始形状。
申请人通过长期试验发现:将原子百分比设置为Ni45.5~48.5%、Ti42.5~46.5%、Nb6.5~10.5%,能够满足上述负膨胀记忆合金的性能需求,其中,优选为:Ni47~47.5%、Ti44~44.1%、Nb8.7~9.3%,其中,最佳合金成分为Ni47Ti44Nb9(at.%)。
申请人通过长期试验发现:在制备NiTiNb记忆合金的过程中,各个步骤的参数控制尤为重要,其中,固溶温度对NiTiNb记忆合金的性能影响最大。将铸锭温度设置在900℃~950℃、热锻温度设置在800℃~900℃、热轧温度设置为850~950℃、固溶温度设置为700℃~950℃,能够实现制备的NiTiNb记忆合金具有负膨胀效应。
其中,最佳均匀化、锻造及轧制温度为900℃,最佳固溶温度为850℃,最佳变形温度为-40℃。实际应用中,可通过调整上述参数有效地调节变形后合金恢复初始形状的温度范围以及形状恢复程度,进而达到调控NiTiNb记忆合金使用温度范围、增大负膨胀系数的目的,但不应超出本专利所述合金的制备方法中所限定的范围,否则制备的合金无法展现出负膨胀效应。
进一步地,步骤1)中块状原材料混合后在真空感应炉或真空自耗炉中熔炼3~6次,获得重量为15kg的铸锭;步骤5)中热锻样热轧成厚度为1.5~4.5mm的板材。
进一步地,块状原材料中Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明所述NiTiNb记忆合金能够在290K~430K温度范围内实现负热膨胀,该温度范围覆盖了当前金属构件主要的服役温度区间,有效地解决了传统金属结构件在服役环境中受热膨胀、相互挤压进而失效的问题,提高了传统金属结构件在服役过程中的稳定性及可靠性。
2、通过本发明所述方法制备的NiTiNb记忆合金在受热过程中发生不同程度的热缩,从而避免传统金属结构件在服役环境中受热膨胀、相互挤压进而失效的问题。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1是实施例1对应的厚度相对变化量随温度的变化曲线;
图2是实施例2对应的厚度相对变化量随温度的变化曲线;
图3是实施例3对应的厚度相对变化量随温度的变化曲线;
图4是实施例4对应的厚度相对变化量随温度的变化曲线;
图5是实施例5对应的厚度相对变化量随温度的变化曲线;
图6是对比例1对应的厚度相对变化量随温度的变化曲线;
图7是对比例2对应的厚度相对变化量随温度的变化曲线;
图8是对比例3对应的厚度相对变化量随温度的变化曲线;
图9是对比例4对应的厚度相对变化量随温度的变化曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
一种负热膨胀合金的制备方法,包括以下步骤:
1)按原子百分比Ni47.5%、Ti44.1%、Nb9.3%分别称取块状原材料。其中,Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%;
2)一定配比的原材料在水冷铜坩埚中熔炼4次,获得重量约为15kg的铸锭;
3)铸锭在900℃真空均匀化退火4小时;
4)铸锭在850℃热锻开胚;
5)热锻样在900℃热轧成3.2mm厚的板材;
6)不同形状的试样均从板材上进行线切割获得,切割后的试样在850℃固溶处理2小时后进行空冷;
7)上述固溶处理后试样在-40℃进行变形处理,变形后试样的厚度增加为5.1mm。
在本实施例中,所制备的NiTiNb记忆合金在295~410K温度范围内平均热膨胀系数为-326×10-5K-1
实施例2:
一种负热膨胀合金的制备方法,包括以下步骤:
1)按原子百分比Ni47.2、Ti44.1、Nb9分别称取块状原材料。其中,Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%;
2)一定配比的原材料在水冷铜坩埚中熔炼4次,获得重量约为15kg的铸锭;
3)铸锭在950℃真空均匀化退火6小时;
4)铸锭在900℃热锻开胚;
5)热锻样在900℃热轧成厚4.2mm的板材;
6)不同形状的试样均从板材上进行线切割获得,切割后的试样在850℃固溶处理3小时后进行水冷;
7)上述固溶处理后试样在-35℃进行变形处理,变形后试样的厚度增加为6.2mm。
在本实施例中,所制备的NiTiNb记忆合金在305~425K温度范围内平均热膨胀系数为-433×10-5K-1
实施例3:
一种负热膨胀合金的制备方法,包括以下步骤:
1)按原子百分比Ni47、Ti44、Nb9分别称取块状原材料。其中,Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%;
2)一定配比的原材料在水冷铜坩埚中熔炼4次,获得重量约为15kg的铸锭;
3)铸锭在900℃真空均匀化退火6小时;
4)铸锭在900℃热锻开胚;
5)热锻样在900℃热轧成厚4.2mm的板材;
6)不同形状的试样均从板材上进行线切割获得,切割后的试样在850℃固溶处理3小时后进行水冷;
7)上述固溶处理后试样在-40℃进行变形处理,变形后试样的厚度增加为6.7mm。
在本实施例中,所制备的NiTiNb记忆合金在290~370K温度范围内平均热膨胀系数为-724×10-5K-1
实施例4:
一种负热膨胀合金的制备方法,包括以下步骤:
1)按原子百分比Ni45.5、Ti46.5、Nb10.5分别称取块状原材料。其中,Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%;
2)一定配比的原材料在水冷铜坩埚中熔炼4次,获得重量约为15kg的铸锭;
3)铸锭在900℃真空均匀化退火6小时;
4)铸锭在800℃热锻开胚;
5)热锻样在850℃热轧成厚4.2mm的板材;
6)不同形状的试样均从板材上进行线切割获得,切割后的试样在700℃固溶处理3小时后进行水冷;
7)上述固溶处理后试样在-45℃进行变形处理,变形后试样的厚度增加为6.7mm。
在本实施例中,所制备的NiTiNb记忆合金在320~385K温度范围内平均热膨胀系数为-215×10-5K-1
实施例5:
一种负热膨胀合金的制备方法,包括以下步骤:
1)按原子百分比Ni48.5、Ti42.5、Nb6.5分别称取块状原材料。其中,Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%;
2)一定配比的原材料在水冷铜坩埚中熔炼4次,获得重量约为15kg的铸锭;
3)铸锭在900℃真空均匀化退火6小时;
4)铸锭在900℃热锻开胚;
5)热锻样在950℃热轧成厚4.2mm的板材;
6)不同形状的试样均从板材上进行线切割获得,切割后的试样在950℃固溶处理3小时后进行水冷;
7)上述固溶处理后试样在0℃进行变形处理,变形后试样的厚度增加为6.7mm。
在本实施例中,所制备的NiTiNb记忆合金在325~375K温度范围内平均热膨胀系数为-201×10-5K-1
对比例1:
一种负热膨胀合金的制备方法,包括以下步骤:
1)按原子百分比Ni 40、Ti 48、Nb12分别称取块状原材料;其中,Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%;
2)一定配比的原材料在水冷铜坩埚中熔炼4次,获得重量约为15kg的铸锭;
3)铸锭在950℃真空均匀化退火6小时;
4)铸锭在900℃热锻开胚;
5)热锻样在900℃热轧成厚3.8mm的板材;
6)不同形状的试样均从板材上进行线切割获得,切割后的试样在850℃固溶处理3小时后进行水冷;
7)上述固溶处理后试样在-40℃进行变形处理,变形后试样的厚度增加为5.7mm。
在本对比例中,各个元素的原子百分比均不在本发明所述范围内,所制备的NiTiNb记忆合金不具有明显的负膨胀效应。
对比例2:
本对比例基于对比例1,与对比例1的区别在于:按原子百分比Ni 50、Ti 41、Nb5分别称取块状原材料。
在本对比例中,各个元素的原子百分比均不在本发明所述范围内,所制备的NiTiNb记忆合金不具有明显的负膨胀效应。
对比例3:
一种负热膨胀合金的制备方法,包括以下步骤:
1)按原子百分比Ni46.8、Ti43.7、Nb9.5分别称取块状原材料;其中,Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%;
2)一定配比的原材料在水冷铜坩埚中熔炼4次,获得重量约为15kg的铸锭;
3)铸锭在950℃真空均匀化退火6小时;
4)铸锭在900℃热锻开胚;
5)热锻样在900℃热轧成厚4.3mm的板材;
6)不同形状的试样均从板材上进行线切割获得,切割后的试样在650℃固溶处理3小时后进行水冷;
7)上述固溶处理后试样在-35℃进行变形处理,变形后试样的厚度增加为6.5mm。
在本对比例中,固溶处理温度不在本发明所述范围,其余参数均在本发明所述范围内,所制备的NiTiNb记忆合金不具有明显负膨胀效应。
对比例4:
本对比例基于对比例3,与对比例3的区别在于,固溶温度为1000℃。
在本对比例中,固溶处理温度不在本发明所述范围,其余参数均在本发明所述范围内,所制备的NiTiNb记忆合金不具有明显负膨胀效应。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种负膨胀记忆合金,其特征在于,所述负膨胀记忆合金为NiTiNb记忆合金,所述NiTiNb记忆合金中各元素的原子百分比为:Ni45.5~48.5%、Ti42.5~46.5%、Nb6.5~10.5%,余量为杂质。
2.根据权利要求1所述的一种负膨胀记忆合金,其特征在于,所述NiTiNb记忆合金的采用以下方法制备:按原子百分比分别称取各个元素块状原材料,依次经过熔炼、热锻、热轧、固溶处理、变形处理获得。
3.根据权利要求1所述的一种负膨胀记忆合金,其特征在于,所述NiTiNb记忆合金的热膨胀系数为-724×10-5K-1~-326×10-5K-1
4.一种如权利要求1-3任一项所述负膨胀记忆合金的制备方法,其特征在于,包括以下步骤:
1)、按原子百分比Ni45.5~48.5%、Ti42.5~46.5%、Nb6.5~10.5%分别称取块状原材料;
2)、各个块状原材料混合后经过熔炼获得铸锭;
3)、铸锭在900℃~950℃真空均匀化退火4~8小时;
4)、铸锭在800℃~900℃热锻开胚形成热锻样;
5)、热锻样在850~950℃热轧成板材;
6)、板材进行线切割获得不同形状的试样,切割后的试样在700℃~950℃固溶处理1.5~3.5小时后进行空冷或水冷;
7)、经过固溶处理后的试样在-45℃~0℃进行变形处理获得NiTiNb记忆合金。
5.根据权利要求4所述负膨胀记忆合金的制备方法,其特征在于,步骤1)中块状原材料混合后在真空感应炉或真空自耗炉中熔炼3~6次,获得重量为15kg的铸锭;步骤5)中热锻样热轧成厚度为1.5~4.5mm的板材。
6.根据权利要求4所述负膨胀记忆合金的制备方法,其特征在于,所述块状原材料中Ni和Nb的纯度大于99.9%,Ti的纯度大于99.8%。
CN201811571238.4A 2018-12-21 2018-12-21 一种负膨胀记忆合金及其制备方法 Active CN109554578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811571238.4A CN109554578B (zh) 2018-12-21 2018-12-21 一种负膨胀记忆合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811571238.4A CN109554578B (zh) 2018-12-21 2018-12-21 一种负膨胀记忆合金及其制备方法

Publications (2)

Publication Number Publication Date
CN109554578A true CN109554578A (zh) 2019-04-02
CN109554578B CN109554578B (zh) 2020-07-31

Family

ID=65870798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811571238.4A Active CN109554578B (zh) 2018-12-21 2018-12-21 一种负膨胀记忆合金及其制备方法

Country Status (1)

Country Link
CN (1) CN109554578B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241353A (zh) * 2019-07-24 2019-09-17 中国工程物理研究院机械制造工艺研究所 一种NiTiHfNb高温形状记忆合金及其制备方法
CN111020338A (zh) * 2019-12-16 2020-04-17 四川大学 超低温服役镍钛铌形状记忆合金
CN113463092A (zh) * 2021-07-02 2021-10-01 济宁矿业集团海纳科技机电股份有限公司 一种激光熔覆密封装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513121A (ja) * 1991-06-27 1993-01-22 Furukawa Electric Co Ltd:The 電子回路部材の接続用フアスナー
JPH07252553A (ja) * 1994-03-16 1995-10-03 Furukawa Electric Co Ltd:The Ni−Ti−Nb系形状記憶合金の溶解鋳造方法
CN1528930A (zh) * 2003-10-16 2004-09-15 上海交通大学 微米细晶钛镍-铌形状记忆合金块材制备方法
WO2006126515A1 (ja) * 2005-05-23 2006-11-30 Nec Tokin Corporation Ti-Ni-Nb合金素子
CN101270424A (zh) * 2008-03-25 2008-09-24 厦门大学 一种镍钛铌负热膨胀合金及其制备方法
CN102296224A (zh) * 2010-06-24 2011-12-28 沈阳天贺新材料开发有限公司 宽热滞TiNiNb形状记忆合金记忆环及其制备方法与应用
CN104060145A (zh) * 2014-07-10 2014-09-24 哈尔滨工程大学 一种TiNiNbB形状记忆合金及其制备方法
CN105132749A (zh) * 2015-09-11 2015-12-09 中国工程物理研究院机械制造工艺研究所 一种NiTiNb形状记忆合金及其制备方法
KR20180006861A (ko) * 2016-07-11 2018-01-19 주식회사 강앤박메디컬 TiNiNb 합금 및 이를 이용한 이음부 고정용 열수축링

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513121A (ja) * 1991-06-27 1993-01-22 Furukawa Electric Co Ltd:The 電子回路部材の接続用フアスナー
JPH07252553A (ja) * 1994-03-16 1995-10-03 Furukawa Electric Co Ltd:The Ni−Ti−Nb系形状記憶合金の溶解鋳造方法
CN1528930A (zh) * 2003-10-16 2004-09-15 上海交通大学 微米细晶钛镍-铌形状记忆合金块材制备方法
WO2006126515A1 (ja) * 2005-05-23 2006-11-30 Nec Tokin Corporation Ti-Ni-Nb合金素子
CN101270424A (zh) * 2008-03-25 2008-09-24 厦门大学 一种镍钛铌负热膨胀合金及其制备方法
CN102296224A (zh) * 2010-06-24 2011-12-28 沈阳天贺新材料开发有限公司 宽热滞TiNiNb形状记忆合金记忆环及其制备方法与应用
CN104060145A (zh) * 2014-07-10 2014-09-24 哈尔滨工程大学 一种TiNiNbB形状记忆合金及其制备方法
CN105132749A (zh) * 2015-09-11 2015-12-09 中国工程物理研究院机械制造工艺研究所 一种NiTiNb形状记忆合金及其制备方法
KR20180006861A (ko) * 2016-07-11 2018-01-19 주식회사 강앤박메디컬 TiNiNb 합금 및 이를 이용한 이음부 고정용 열수축링

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241353A (zh) * 2019-07-24 2019-09-17 中国工程物理研究院机械制造工艺研究所 一种NiTiHfNb高温形状记忆合金及其制备方法
CN110241353B (zh) * 2019-07-24 2020-09-29 中国工程物理研究院机械制造工艺研究所 一种NiTiHfNb高温形状记忆合金及其制备方法
CN111020338A (zh) * 2019-12-16 2020-04-17 四川大学 超低温服役镍钛铌形状记忆合金
CN111020338B (zh) * 2019-12-16 2021-07-30 四川大学 超低温服役镍钛铌形状记忆合金
CN113463092A (zh) * 2021-07-02 2021-10-01 济宁矿业集团海纳科技机电股份有限公司 一种激光熔覆密封装置
CN113463092B (zh) * 2021-07-02 2023-12-26 山东大航激光智能装备有限公司 一种激光熔覆密封装置

Also Published As

Publication number Publication date
CN109554578B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN108559872B (zh) 一种TiAl合金及其制备方法
CN109554578A (zh) 一种负膨胀记忆合金及其制备方法
CN108842076B (zh) 一种Ni-Co-Cr-Ti-Ta系高熵共晶合金及其制备方法
JP2009506219A (ja) 鋳塊冶金法による微粒子マイクロアロイニオブ薄板の製造
CN106148762B (zh) 一种低温用ta7‑dt钛合金棒材的制备方法
CN112458336B (zh) 一种具有负热膨胀的钛铌氧合金及其制备方法
CN110205571A (zh) 一种tc18钛合金大尺寸棒材的制备方法
CN101967569B (zh) 一种含钨钛合金的熔炼方法
CN102586647A (zh) 一种含铒高温钛合金及其制备工艺
CN105296800A (zh) 一种TiNiCuNb记忆合金及其制备方法
CN112553501A (zh) 一种具有可调控负热膨胀的钛铌形状记忆合金及其制备方法
CN107234196B (zh) 一种等原子比钛镍合金大型铸锭锻造方法
JP5297855B2 (ja) 銅合金板材およびその製造方法
CN113564397A (zh) 一种中强高韧钛合金中厚板材的短流程制备方法
EP0119438B1 (en) Molybdenum board and process of manufacturing the same
CN107043870B (zh) 一种高Si含量高温钛合金及其制备方法
JP2002371301A (ja) タングステン焼結体およびその製造方法
CN112391558B (zh) 一种强度与塑性匹配良好的近β型钛合金及其制备方法
CN106048305A (zh) 一种综合性能优异的高温钛合金棒材及其制备工艺
KR101265261B1 (ko) 우수한 내식성 및 고강도를 가지는 지르코늄합금의 제조방법
Yu et al. Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment
CN107217163B (zh) 一种tb13钛合金熔炼及开坯锻造方法
CN1322156C (zh) 一种钛三铝基合金及其制备方法
RU2614356C1 (ru) Сплав на основе титана и изделие, выполненное из него
CN101465406A (zh) 高性能多晶织构Fe-Ga基磁致伸缩薄片材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant