CN109545888A - 一种提高多晶硅太阳能电池光电转换效率的方法 - Google Patents

一种提高多晶硅太阳能电池光电转换效率的方法 Download PDF

Info

Publication number
CN109545888A
CN109545888A CN201811319435.7A CN201811319435A CN109545888A CN 109545888 A CN109545888 A CN 109545888A CN 201811319435 A CN201811319435 A CN 201811319435A CN 109545888 A CN109545888 A CN 109545888A
Authority
CN
China
Prior art keywords
phase
solar cell
energy storage
storage material
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811319435.7A
Other languages
English (en)
Inventor
李巧会
钟凡
卢金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201811319435.7A priority Critical patent/CN109545888A/zh
Publication of CN109545888A publication Critical patent/CN109545888A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0525Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells including means to utilise heat energy directly associated with the PV cell, e.g. integrated Seebeck elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种提高多晶硅太阳能电池光电转换效率的方法,包括以下步骤,在具有PN结的多晶硅基片上进行刻蚀,得到周期性结构的刻蚀坑,刻蚀坑穿过PN结,形成周期性结构的孔洞;在孔洞中填充相变储能材料;将填充相变储能材料的多晶硅基片与透明导电玻璃组装成太阳能电池。多晶硅基片(6)使用HF水溶液或等离子体刻蚀,孔洞深度10~100μm,孔径5~20μm,相变储能材料(3)为相变温度25~40℃石蜡、月桂酸–葵酸二元复合材料或分子量2000以上多元醇中的一种。本发明优点:制备工艺简便、经济合理、电池温度恒定、提高电池的光电转换效率。

Description

一种提高多晶硅太阳能电池光电转换效率的方法
技术领域
本发明涉及新能源技术领域,特别是涉及一种提高多晶硅太阳能电池光电转换效率的方法。
背景技术
商业化太阳能电池主要是单晶硅和多晶硅太阳能电池,单晶硅太阳能电池光电转换效率最高,为28%左右;多晶硅太阳能电池的光电转换效率为20%左右。在晶体硅太阳能电池中,单晶硅型太阳能电池市场占有率约为43%,多晶硅太阳能电池市场占有率为54%,且呈现持续增长趋势。
白天太阳光光照强度发生变化时,太阳能电池光电转换效率随之变化。光照强度越高,太阳光在多晶硅中产生的载流子浓度越大,光电流相应增大。除了光照强度,温度对多晶硅太阳能电池的光电转换效率影响比较大,温度上升1 ℃,光电转换效率降低0.45%(C.J.Ho,et al.Thermal and electrical performances of a water-surface floatingPV integrated with double water-saturated MEPCM layers, Applied ThermalEngineering,2016,94:122-132.),因此,保持温度恒定对于多晶硅太阳能电池性能至关重要。
相变储能材料包括无机类、有机类和混合类,其用途十分广泛。相变储能材料可以与光催化结合起来,采用原位沉淀法合成以正二十烷核和氧化锌壳层为基础的多功能微胶囊,微胶囊具有清晰地核壳结构,微胶囊相变性能由合成物中正二十烷与Zn(CH3COO)22H2O的质量比决定,不仅具有优良的相变储能特性,而且具备较高光催化活性,可应用于环保和医疗方面(F.N.Li,et al. Fabrication of multifunctional microcapsulescontaining n-eicosane core and zinc oxide shell for low-temperature energystorage,photocatalysis and antibiosis,Energy Conversion and Management,2016,106:873-885)。
相变储能材料还可以与超级电容器结合起来,纳米片状MnO2|SiO2相变微胶囊可用于超级电容器的热管理。采用模板定向自组装方法,在SiO2表面制备介孔纳米片状MnO2层,所得到的微胶囊具有较高相变焓、较好的包覆效果以及有效的热调节能力,这些微胶囊在工作温度高于45℃时比传统的MnO2|SiO2固体颗粒具有更高的比容量。由于MnO2层的介电特性,在45℃下获得312.3F/g 的高比容量,电流密度为1.0A/m2,而且在1000次充放电循环后,具有长期循环稳定性(Q.Xu,et al.Smart design and construction of nanoflake-like MnO2/SiO2 hierarchical microcapsules containing phase change material forin-situ thermal management of supercapacitors,Energy Conversion andManagement,2018,164: 311-328)。
目前的多晶硅太阳能电池存在以下两个方面不足之处:一是随着日间光照强度变化,太阳能电池温度随之变化,影响光电转换效率;二是太阳光入射多晶硅基片时,光强度随透射深度增大持续衰减,导致PN结附近的电子–空穴对密度远低于基片表面,从而限制了多晶硅太阳能电池的光电流和光电转换效率。
发明内容
为了解决上述技术问题,本发明提供了一种提高多晶硅太阳能电池光电转换效率的方法,通过填充的相变储能材料吸收/释放热量,确保多晶硅太阳能电池工作时温度恒定,使其光电转换效率不受周围环境的负面影响,从而提升电池的光电转换性能。
请参阅图1,本发明采用如下技术方案:一种提高多晶硅太阳能电池光电转换效率的方法,多晶硅太阳能电池结构包括上下两层透明导电玻璃以及填充相变储能材料的多晶硅基片,基片N区、基片P区与透明导电玻璃联结,上下两层透明导电玻璃之间通过导线连接一个外部负载,其方法包括以下步骤:
1)在具有PN结的多晶硅基片上进行刻蚀,得到周期性结构的刻蚀坑,刻蚀坑穿过PN结,形成周期性结构的孔洞;
2)在孔洞中填充相变储能材料;
3)将填充相变储能材料的多晶硅基片与透明导电玻璃组装成太阳能电池。
优选地,所述多晶硅基片使用HF水溶液或等离子体刻蚀,孔洞深度10~100 μm,孔径5~20μm。
优选地,所述相变储能材料为相变温度25~40℃石蜡、月桂酸–葵酸二元复合材料或分子量2000以上多元醇中的一种。
优选地,所述相变储能材料的填充方法是真空浸渗。
本发明具有的优点:(1)本发明将相变储能材料填充在孔洞中,周期性孔洞增加太阳光到达PN结的光强度,提高电子–空穴对密度,获得较大的光电流。 (2)选用液态相变储能材料,相变温度在30℃左右,把相变储能材料填充在周期性结构孔洞中,环境温度升高时,相变储能材料吸收热量,维持电池温度恒定;环境温度降低时,通过释放热量,保持电池温度恒定,从而提高电池的光电转换效率。综上所述,本发明制备工艺简便、经济合理,适合规模化工业生产,对于提升多晶硅太阳能电池光电转换效率具有重要的现实意义。
附图说明
图1是本发明一种提高多晶硅太阳能电池光电转换效率的方法中填充相变储能材料的多晶硅电池结构示意图。
附图标记说明:1、基片N区2、基片P区3、相变储能材料4、透明导电玻璃5、PN结6、多晶硅基片7、外部负载。
具体实施方式
下面结合附图对本发明的优选实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
实施例1
将贴上掩模保护膜的多晶硅基片(6)浸泡在HF溶液中刻蚀,使没有被抗蚀剂掩蔽的那一部分多晶硅基片(6)表面与HF溶液发生化学反应而被除去。刻蚀深度在50μm左右,宽度在15μm左右。多晶硅太阳能电池结构包括上下两层透明导电玻璃(4)以及填充相变储能材料(3)的多晶硅基片(6),两者组合封装成多晶硅太阳能电池。通过太阳光模拟器测试结果表明,电池光电转换效率提高了3%。
实施例2
将贴上掩模保护膜的多晶硅基片放在等离子体中刻蚀,利用气压为10~ 1000帕的特定气体(或混合气体)的辉光放电,产生能与多晶硅基片(6)发生离子化学反应的分子或分子基团,生成的反应产物是挥发性的。它在低气压的真空室中被抽走,从而实现刻蚀,刻蚀深度在80μm左右,宽度在10μm左右。多晶硅太阳能电池结构包括上下两层透明导电玻璃(4)以及填充相变储能材料 (3)的多晶硅基片(6),两者组合封装成多晶硅太阳能电池。通过太阳光模拟器测试结果表明,发现光电转换效率提高了4%。
实施例3
相变储能材料(3)用月桂酸|葵酸二元复合材料填充孔洞,将贴上掩模保护膜的多晶硅基片(6)浸泡HF溶液中,使没有被抗蚀剂掩蔽的那一部分多晶硅基片(6)表面与HF溶液发生化学反应而被除去,刻蚀深度在50μm左右,宽度在15μm左右。多晶硅太阳能电池结构包括上下两层透明导电玻璃(4)以及填充相变储能材料(3)的多晶硅基片(6),两者组合封装成多晶硅太阳能电池。通过太阳光模拟器测试结果表明,发现光电转换效率提高了2.5%。
不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (4)

1.一种提高多晶硅太阳能电池光电转换效率的方法,其特征在于,多晶硅太阳能电池结构包括上下两层透明导电玻璃(4)以及填充相变储能材料(3)的多晶硅基片(6),基片N区(1)、基片P区(2)与透明导电玻璃(4)联结,上下两层透明导电玻璃(4)之间通过导线连接一个外部负载(7),其方法包括以下步骤:
1)在具有PN结(5)的多晶硅基片(6)上进行刻蚀,得到周期性结构的刻蚀坑,刻蚀坑穿过PN结(5),形成周期性结构的孔洞;
2)在孔洞中填充相变储能材料(3);
3)将填充相变储能材料(3)的多晶硅基片(6)与透明导电玻璃(4)组装成太阳能电池。
2.根据权利要求1所述的提高多晶硅太阳能电池光电转换效率的方法,其特征在于,所述多晶硅基片(6)使用HF水溶液或等离子体刻蚀,孔洞深度10~100μm,孔径5~20μm。
3.根据权利要求1所述的提高多晶硅太阳能电池光电转换效率的方法,其特征在于,所述相变储能材料(3)为相变温度25~40℃石蜡、月桂酸–葵酸二元复合材料或分子量2000以上多元醇中的一种。
4.根据权利要求1所述的提高多晶硅太阳能电池光电转换效率的方法,其特征在于,所述相变储能材料(3)的填充方法是真空浸渗。
CN201811319435.7A 2018-11-07 2018-11-07 一种提高多晶硅太阳能电池光电转换效率的方法 Pending CN109545888A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811319435.7A CN109545888A (zh) 2018-11-07 2018-11-07 一种提高多晶硅太阳能电池光电转换效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811319435.7A CN109545888A (zh) 2018-11-07 2018-11-07 一种提高多晶硅太阳能电池光电转换效率的方法

Publications (1)

Publication Number Publication Date
CN109545888A true CN109545888A (zh) 2019-03-29

Family

ID=65845016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811319435.7A Pending CN109545888A (zh) 2018-11-07 2018-11-07 一种提高多晶硅太阳能电池光电转换效率的方法

Country Status (1)

Country Link
CN (1) CN109545888A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106611A (ja) * 1993-09-29 1995-04-21 Tonen Corp Bsf型太陽電池の製造方法
CN101882652A (zh) * 2010-06-29 2010-11-10 上海大学 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺
CN102709397A (zh) * 2012-06-14 2012-10-03 上海旭能新能源科技有限公司 利用相变储能材料提高光电转换效率的方法
CN103059632A (zh) * 2011-10-21 2013-04-24 比亚迪股份有限公司 一种隔热涂料用添加剂及其制备方法、含有该添加剂的水性涂料
CN203080790U (zh) * 2012-12-19 2013-07-24 天津市华鑫吊装运输有限公司 一种新型太阳能建材板
CN104746170A (zh) * 2015-02-13 2015-07-01 南京航空航天大学 一种自动调温聚酯复合纤维及其制备方法
CN105895721A (zh) * 2016-04-29 2016-08-24 晶澳太阳能有限公司 一种双面太阳能电池组件
CN207338405U (zh) * 2017-11-15 2018-05-08 安徽环锐新材料科技有限公司 控温型太阳能电池背板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106611A (ja) * 1993-09-29 1995-04-21 Tonen Corp Bsf型太陽電池の製造方法
CN101882652A (zh) * 2010-06-29 2010-11-10 上海大学 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺
CN103059632A (zh) * 2011-10-21 2013-04-24 比亚迪股份有限公司 一种隔热涂料用添加剂及其制备方法、含有该添加剂的水性涂料
CN102709397A (zh) * 2012-06-14 2012-10-03 上海旭能新能源科技有限公司 利用相变储能材料提高光电转换效率的方法
CN203080790U (zh) * 2012-12-19 2013-07-24 天津市华鑫吊装运输有限公司 一种新型太阳能建材板
CN104746170A (zh) * 2015-02-13 2015-07-01 南京航空航天大学 一种自动调温聚酯复合纤维及其制备方法
CN105895721A (zh) * 2016-04-29 2016-08-24 晶澳太阳能有限公司 一种双面太阳能电池组件
CN207338405U (zh) * 2017-11-15 2018-05-08 安徽环锐新材料科技有限公司 控温型太阳能电池背板

Similar Documents

Publication Publication Date Title
Luo et al. Highly efficient core–shell CuInS 2–Mn doped CdS quantum dot sensitized solar cells
Kalyanasundaram et al. Themed issue: nanomaterials for energy conversion and storage
CN102148332B (zh) 半导体纳米线基有机/无机复合太阳能电池的制备方法
Uthirakumar Fabrication of ZnO based dye sensitized solar cells
CN104538192A (zh) 一种多孔结构有机/无机杂化钙钛矿电池及其制备方法
CN103227227A (zh) 基于碳纳米管和放电回路的光供能采集器
CN106299139B (zh) 一种离子掺杂的钙钛矿太阳能电池及其制造方法
CN102176472A (zh) 一种体效应太阳能电池材料及其制备方法
CN101262024A (zh) 硅纳米线/非晶硅异质结太阳能电池
CN202996862U (zh) 一种背板及光伏组件
CN102487105A (zh) 一种制备立体结构高效太阳能电池的方法
CN104966763A (zh) 一种提高钙钛矿太阳能电池效率的方法
CN105957723B (zh) 一种化学气相沉积法制备硒化钴超级电容器材料的方法
CN103151175A (zh) 硫化镉量子点敏化分枝状二氧化钛纳米棒阵列电极及其制备方法和用途
CN103779102A (zh) 低温原位构建BiOI/Bi2S3异质结薄膜及柔性光电化学太阳能电池器件
CN105244168B (zh) 一种具有多级结构的ZnO纳米片薄膜的制备方法及其制得的薄膜
CN107482193B (zh) 一种镍纳米颗粒及硅镍纳米物质共同修饰的硅纳米线复合材料及制备方法
CN109545888A (zh) 一种提高多晶硅太阳能电池光电转换效率的方法
CN109467128B (zh) 一种海胆状三氧化钨电极材料的制备方法及其应用
CN105742587B (zh) 一种锂硫电池正极用硫/二氧化硅凝胶三维复合材料的制备方法
CN104362197A (zh) 一种立体采光式全固态太阳能电池及其制备方法
CN107633951A (zh) 一种利用四氯化钛水解制备同质阻挡层/骨架结构的方法及其应用
CN103840034A (zh) 稀土硒化物量子点太阳能电池的制备及其应用
CN105244171A (zh) 一种原位合成ZnO纳米片光阳极膜及其制备方法
CN114400263B (zh) 一种基板负载卤化氧铋/硫化铋纳米片异质结器件的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190329