CN109524660A - 添加超细钛粉制备含Ti3+钛酸锂的方法 - Google Patents

添加超细钛粉制备含Ti3+钛酸锂的方法 Download PDF

Info

Publication number
CN109524660A
CN109524660A CN201811399472.3A CN201811399472A CN109524660A CN 109524660 A CN109524660 A CN 109524660A CN 201811399472 A CN201811399472 A CN 201811399472A CN 109524660 A CN109524660 A CN 109524660A
Authority
CN
China
Prior art keywords
lithium titanate
titanium powder
ultrafine titanium
purification ultrafine
powder preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811399472.3A
Other languages
English (en)
Inventor
孟伟巍
闫蓓蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Original Assignee
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd filed Critical Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Priority to CN201811399472.3A priority Critical patent/CN109524660A/zh
Publication of CN109524660A publication Critical patent/CN109524660A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于化学电源中锂离子电池负极材料领域,具体涉及添加超细钛粉制备含Ti3+钛酸锂的方法。本发明所要解决的技术问题是提供一种添加超细钛粉制备含Ti3+钛酸锂的方法,包括以下步骤:TiO2、Li2CO3和金属Ti混匀所得混合料在800~850℃焙烧,焙烧结束后即得含Ti3+钛酸锂。本发明添加超细金属钛粉制备钛酸锂的方法,利用金属钛粉掺杂制备钛酸锂,在表面形成Ti3+自掺杂,内部掺杂金属钛粉提高电子导电性。

Description

添加超细钛粉制备含Ti3+钛酸锂的方法
技术领域
本发明属于化学电源中锂离子电池负极材料领域,具体涉及添加超细钛粉制备含Ti3+钛酸锂的方法。
背景技术
钛酸锂材料作为一种新型的锂离子负极材料,由于其自身所具有的诸多优势在20世纪90年代后期受到了广泛关注,例如基于“稳定的晶型结构”在锂离子嵌入、脱出过程中保持稳定的晶胞结构,晶格常数基本不变,晶胞体积变换率<10%,使其具有良好的循环性能;基于其独特的三维锂离子扩散通道,使其具有宽泛的工作温度,良好的安全性能等。在钛酸锂电池良好的商业化发展形势下,如何提高其电化学性能同时简化生产过程,应该值得深入研究。该材料制备方法较多,但不同合成方法制备出的钛酸锂材料,物相结构、微观形貌、晶粒尺寸有着较大的差异性,从而对其电化学性能产生较大的影响。
现有通常使用还原性气体,利用其在高温条件下的还原反应过程,制备表面自掺杂Ti3+的钛酸锂材料。该方法主要的缺陷在于:1、制备过程安全性较低,还原性气体通常使用氮气+氢气,或者氮气+氨气的混合气体;2、制备时间较长,气体还原反应时间通常14-24h;3、Ti3+含量不可控制。
发明内容
本发明所要解决的技术问题是提供一种添加超细钛粉制备含Ti3+钛酸锂的方法。该方法包括以下步骤:TiO2、Li2CO3和金属Ti混匀所得混合料在800~850℃焙烧,焙烧结束后即得含Ti3+钛酸锂。
具体的,上述添加超细钛粉制备含Ti3+钛酸锂的方法中,所述TiO2中Ti与Li2CO3中Li摩尔比为5:4.05。
具体的,上述添加超细钛粉制备含Ti3+钛酸锂的方法中,所述金属Ti的添加量为TiO2和Li2CO3总质量的3~5%。
具体的,上述添加超细钛粉制备含Ti3+钛酸锂的方法中,所述金属Ti的粒度小于5微米。采用水漂法得到。
具体的,上述添加超细钛粉制备含Ti3+钛酸锂的方法中,所述TiO2的粒度分布是:Dm=500nm,纯度大于99%。
具体的,上述添加超细钛粉制备含Ti3+钛酸锂的方法中,所述焙烧气氛为氩气。
具体的,上述添加超细钛粉制备含Ti3+钛酸锂的方法中,所述焙烧的时间为4~6h。
本发明添加超细金属钛粉制备钛酸锂的方法,利用金属钛粉掺杂制备钛酸锂,在表面形成Ti3+自掺杂,内部掺杂金属钛粉提高电子导电性,钛酸锂颗粒之间形成体相金属掺杂,以提升钛酸锂材料的电化学性能,而且制取工艺简单,有利于工业规模生产。
附图说明
图1、Li4Ti5O12样品的XPS谱图;其中,a)本发明Ti2p XPS,b)O1s XPS;
图2、Li4Ti5O12材料的充放电曲线图;其中,a)纯相Li4Ti5O12材料的充放电曲线,b)本发明添加Ti的Li4Ti5O12材料的充放电曲线。
具体实施方式
本发明在高温固相法制备钛酸锂材料过程中引入超细金属Ti粉,利用其具有的还原性能和掺杂导电剂的双重功效,制备出具有Ti3+表面修饰和体相掺杂的电极材料。纳米金属Ti粉在制备过程中起到双重作用:一方面纳米金属Ti粉具有强还原性,会将晶胞中的16d位置的Ti4+还原为Ti3+,另一方面没有完全反应的纳米金属Ti粉作为体相导电剂掺杂到钛酸锂材料中,共同增强材料的电化学性能。
本发明添加超细钛粉制备含Ti3+钛酸锂的方法,包括以下步骤:TiO2、Li2CO3和金属Ti混匀所得混合料在800~850℃焙烧,焙烧结束后即得含Ti3+钛酸锂。
实施例1
以TiO2作为钛源、Li2CO3作为锂源,超细金属Ti作为掺杂剂,将13.03g TiO2与4.88g Li2CO3(按照摩尔比Ti﹕Li=5﹕4.05)放入玛瑙研钵混合,按照3%的比例加入超细金属Ti粉,牛角药匙混合均匀,放入石英坩埚中,放置于管式炉中,在Ar气氛下,850℃烧结6h,得到深蓝色钛酸锂(Li4Ti5O12)粉末。
实施例2
以TiO2作为钛源、Li2CO3作为锂源,超细金属Ti作为掺杂剂,将13.03g TiO2与4.88g Li2CO3(按照摩尔比Ti﹕Li=5﹕4.05)放入玛瑙研钵混合,按照5%的比例加入超细金属Ti粉,牛角药匙混合均匀,放入石英坩埚中,放置于管式炉中,在Ar气氛下,850℃烧结4h,得到深蓝色钛酸锂(Li4Ti5O12)粉末。

Claims (7)

1.添加超细钛粉制备含Ti3+钛酸锂的方法,其特征在于:包括以下步骤:TiO2、Li2CO3和金属Ti混匀所得混合料在800~850℃焙烧,焙烧结束后即得含Ti3+钛酸锂。
2.根据权利要求1所述的添加超细钛粉制备含Ti3+钛酸锂的方法,其特征在于:所述TiO2中Ti与Li2CO3中Li摩尔比为5:4.05。
3.根据权利要求1或2所述的添加超细钛粉制备含Ti3+钛酸锂的方法,其特征在于:所述金属Ti的添加量为TiO2和Li2CO3总质量的3~5%。
4.根据权利要求1所述的添加超细钛粉制备含Ti3+钛酸锂的方法,其特征在于:所述金属Ti的粒度小于5微米。
5.根据权利要求1所述的添加超细钛粉制备含Ti3+钛酸锂的方法,其特征在于:所述TiO2的粒度分布是:Dm=500nm,纯度大于99%。
6.根据权利要求1~5任一项所述的添加超细钛粉制备含Ti3+钛酸锂的方法,其特征在于:所述焙烧气氛为氩气。
7.根据权利要求1~6任一项所述的添加超细钛粉制备含Ti3+钛酸锂的方法,其特征在于:所述焙烧的时间为4~6h。
CN201811399472.3A 2018-11-22 2018-11-22 添加超细钛粉制备含Ti3+钛酸锂的方法 Pending CN109524660A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811399472.3A CN109524660A (zh) 2018-11-22 2018-11-22 添加超细钛粉制备含Ti3+钛酸锂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811399472.3A CN109524660A (zh) 2018-11-22 2018-11-22 添加超细钛粉制备含Ti3+钛酸锂的方法

Publications (1)

Publication Number Publication Date
CN109524660A true CN109524660A (zh) 2019-03-26

Family

ID=65778801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811399472.3A Pending CN109524660A (zh) 2018-11-22 2018-11-22 添加超细钛粉制备含Ti3+钛酸锂的方法

Country Status (1)

Country Link
CN (1) CN109524660A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291842A (zh) * 2021-11-17 2022-04-08 攀钢集团研究院有限公司 一种Ti3+自掺杂钛酸锂材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847717A (zh) * 2010-05-27 2010-09-29 合肥工业大学 一种锂离子电池用钛酸锂复合负极材料的制备方法
KR101312271B1 (ko) * 2011-03-25 2013-09-25 삼성에스디아이 주식회사 티탄산리튬, 티탄산리튬을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
CN105406046A (zh) * 2015-12-21 2016-03-16 深圳市金润能源材料有限公司 钛酸锂负极材料及其制备方法
CN108365206A (zh) * 2018-03-19 2018-08-03 福建翔丰华新能源材料有限公司 一种制备NiO包覆钛酸锂复合负极材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847717A (zh) * 2010-05-27 2010-09-29 合肥工业大学 一种锂离子电池用钛酸锂复合负极材料的制备方法
KR101312271B1 (ko) * 2011-03-25 2013-09-25 삼성에스디아이 주식회사 티탄산리튬, 티탄산리튬을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
CN105406046A (zh) * 2015-12-21 2016-03-16 深圳市金润能源材料有限公司 钛酸锂负极材料及其制备方法
CN108365206A (zh) * 2018-03-19 2018-08-03 福建翔丰华新能源材料有限公司 一种制备NiO包覆钛酸锂复合负极材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEIWEI MENG ET AL: "Titanium-modified Li4Ti5O12 with a synergistic effect of surface modifying, bulk doping, and size reducing", 《IONICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291842A (zh) * 2021-11-17 2022-04-08 攀钢集团研究院有限公司 一种Ti3+自掺杂钛酸锂材料及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. Hydrothermal Synthesis of Unique Hollow Hexagonal Prismatic Pencils of Co3V2O8⋅ n H2O: A New Anode Material for Lithium‐Ion Batteries
Zhang et al. Advances in new cathode material LiFePO4 for lithium-ion batteries
Wang et al. Synthesis and manipulation of single-crystalline lithium nickel manganese cobalt oxide cathodes: a review of growth mechanism
Yi et al. Carbon-coated LiMn1-xFexPO4 (0≤ x≤ 0.5) nanocomposites as high-performance cathode materials for Li-ion battery
CN102556941B (zh) 一种四氧化三钴纳米线阵列、其制备方法以及作为锂离子电池负极的用途
CN110098394B (zh) 氮、硼共掺杂碳量子点包覆镍钴铝酸锂电池正极材料及制备方法
EP4044288A1 (en) Positive electrode material, preparation method therefor, and use thereof
CN104332614B (zh) 一种核壳结构锂离子电池正极复合材料及其制备方法
CN108258223A (zh) 一种多级结构的球形n掺杂c包覆金属氧化物负极材料的制备方法
CN103066275A (zh) 一种球形高电压镍锰酸锂正极材料的制备方法
Shi et al. Core–shell structured Li [(Ni0. 8Co0. 1Mn0. 1) 0.7 (Ni0. 45Co0. 1Mn0. 45) 0.3] O2 cathode material for high-energy lithium ion batteries
CN110085858A (zh) 一种铌-磷共掺杂高镍三元正极材料及其制备方法和应用
CN109713297A (zh) 一种一次颗粒定向排列的高镍正极材料及其制备方法
CN105428649A (zh) 一种纳米碳包覆氟磷酸亚铁钠及水热法的制备方法
Miao et al. Synthesis and application of single-atom catalysts in sulfur cathode for high-performance lithium–sulfur batteries
CN108767216A (zh) 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法
CN1971981A (zh) 用于锂离子电池正极的高充放电倍率的磷酸铁锂材料及其制备方法
Ko et al. Electrochemical properties of nano-sized Li3V2 (PO4) 3/C composite powders prepared by spray pyrolysis from spray solution with chelating agent
CN106159237B (zh) 一种钒基硼酸盐负极材料及其制备方法
CN105161712A (zh) 一种镍锰酸锂正极材料、其制备方法和用途
Kamali et al. Green molten salt modification of cobalt oxide for lithium ion battery anode application
CN101284658B (zh) 一种锂离子电池复合磷酸盐型正极材料及其制备方法
CN109524660A (zh) 添加超细钛粉制备含Ti3+钛酸锂的方法
CN104868113B (zh) 一种金属氧化物锂离子电池负极材料的制备方法
Zhou et al. Perspective on the Preparation Methods of Single Crystalline High Nickel Oxide Cathode Materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190326

WD01 Invention patent application deemed withdrawn after publication