CN109524490B - ZnO/GaN异质结纳米线光开关及其制备方法 - Google Patents

ZnO/GaN异质结纳米线光开关及其制备方法 Download PDF

Info

Publication number
CN109524490B
CN109524490B CN201811065138.4A CN201811065138A CN109524490B CN 109524490 B CN109524490 B CN 109524490B CN 201811065138 A CN201811065138 A CN 201811065138A CN 109524490 B CN109524490 B CN 109524490B
Authority
CN
China
Prior art keywords
nanowire
zno
gan
heterojunction
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811065138.4A
Other languages
English (en)
Other versions
CN109524490A (zh
Inventor
刘志强
程成
伊晓燕
张勇
王军喜
李晋闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201811065138.4A priority Critical patent/CN109524490B/zh
Publication of CN109524490A publication Critical patent/CN109524490A/zh
Application granted granted Critical
Publication of CN109524490B publication Critical patent/CN109524490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Light Receiving Elements (AREA)

Abstract

本公开提供一种ZnO/GaN异质结纳米线光开关及其制备方法,该ZnO/GaN异质结纳米线光开关包括:硅衬底、二氧化硅绝缘层以及ZnO/GaN异质结纳米线;二氧化硅绝缘层生长于硅衬底上;ZnO/GaN异质结纳米线设置于二氧化硅绝缘层上,沿其长度方向分为:ZnO纳米线和GaN纳米线,ZnO纳米线远离异质结界面的一端设置有源电极,异质结界面处设置有漏电极;GaN纳米线靠近异质结界面的一端与漏电极连接,另一端设置有栅电极。本公开提供的ZnO/GaN异质结纳米线光开关及其制备方法利用ZnO纳米线优良的光敏效应,采用GaN纳米线发出的紫外光激发ZnO纳米线,调节ZnO纳米线光电导,实现栅极对源漏电流大小的有效控制,达到制作异质结纳米线光开关的目的。

Description

ZnO/GaN异质结纳米线光开关及其制备方法
技术领域
本公开涉及纳米线光开关器件制备技术领域,尤其涉及一种ZnO/GaN异质结纳米线光开关及其制备方法。
背景技术
一维纳米材料是目前纳米材料研究中最活跃的领域之一。在各种一维纳米结构中,ZnO由于其独特的光学特性,在激光、场发射、光电子器件等领域有着巨大潜在应用前景。其敏感的紫外感光特性配合低维材料晶体质量好,比表面积大的特点使其低维结构如ZnO纳米线、纳米带等被广泛应用于紫外探测器领域。与此同时,近年来基于GaN纳米线LED也逐渐成为研究热点,与传统GaN薄膜LED相比,纳米线由于其天然一维结构而具有更高的光提取效率。另外,对纳米线LED研究的一个重要目的是作为纳米光源应用到光通讯领域,例如作为光芯片上的集成光源,实现单芯片上的光互联。
在实现本公开的过程中,本申请发明人提出了一种ZnO/GaN异质结纳米线光开关及其制备方法,利用ZnO纳米线优良的光敏效应,采用GaN纳米线发出的紫外光激发ZnO纳米线,调节ZnO纳米线光电导实现开关。具有结构简单、抗电磁干扰等特点,作为纳米线探测器、LED结合的全新应用,为未来纳米光学器件的设计与单芯片光集成提供了新的思路。
公开内容
(一)要解决的技术问题
基于上述技术问题,本公开提供一种ZnO/GaN异质结纳米线光开关及其制备方法,以缓解现有技术中的纳米线光开关结构复杂、易受电磁干扰的技术问题。
(二)技术方案
根据本公开的一个方面,提供一种ZnO/GaN异质结纳米线光开关,包括:硅衬底;二氧化硅绝缘层,生长于所述硅衬底上;ZnO/GaN异质结纳米线,设置于所述二氧化硅绝缘层上,沿其长度方向分为:ZnO纳米线,其远离异质结界面的一端设置有源电极,异质结界面处设置有漏电极;GaN纳米线,其靠近异质结界面的一端与所述漏电极连接,另一端设置有栅电极。
在本公开的一些实施例中,其中:所述ZnO/GaN异质结纳米线的长度介于6.2μm至7.3μm之间;所述ZnO/GaN异质结纳米线的直径介于200nm至400nm之间;所述ZnO纳米线的长度介于2.7μm至3.1μm之间;所述GaN纳米线的长度介于3.5μm至4.2μm之间;所述二氧化硅绝缘层的厚度介于260nm至320nm之间。
在本公开的一些实施例中,所述源电极、所述漏电极和所述栅电极的材质包含:Ti和Au。
根据本公开的另一个方面,还提供一种ZnO/GaN异质结纳米线光开关的制备方法,包括:步骤A:制备ZnO/GaN异质结纳米线;步骤B:在一硅衬底表面生长二氧化硅绝缘层;步骤C:将步骤A得到的ZnO/GaN异质结纳米线转移至二氧化硅绝缘层的表面上;步骤D:在ZnO纳米线远离异质结界面的一端设置源电极,在异质结界面上设置漏电极,在GaN纳米线远离异质结界面的一端设置栅电极;步骤E:在高纯N2氛围下进行退火,得到如上述权利要求1至3中任一项所述的异质结纳米线光开关。
在本公开的一些实施例中,所述步骤A包括:步骤A1:在GaN/蓝宝石外延片上生长ZnO纳米线;步骤A2:在所述步骤A1得到的基材上刻蚀形成ZnO/GaN异质结纳米线;步骤A3:在高纯N2氛围下,对步骤A2得到的基材进行退火;步骤A4:从步骤A3得到的基材表面剥离ZnO/GaN异质结纳米线。
在本公开的一些实施例中,其中:所述步骤A1中,所述ZnO纳米线通过水热法垂直生长于所述GaN/蓝宝石外延片中的GaN平面上;所述步骤A2中,利用垂直于所述GaN平面的所述ZnO纳米线为掩膜,采用电感耦合等离子体刻蚀的方法刻蚀GaN层,刻蚀深度达到蓝宝石表面,形成ZnO/GaN异质结纳米线;所述步骤A3中,退火的温度介于600℃至700℃之间,退火的时间介于20至35分钟之间,待炉内温度降至室温时取出;所述步骤A4中,采用激光剥离工艺,将所述蓝宝石表面上刻蚀形成的ZnO/GaN异质结纳米线完整剥离。
在本公开的一些实施例中,所述ZnO纳米线利用硝酸锌、六次甲基四胺混合溶液直接在所述GaN平面上生长。
在本公开的一些实施例中,在GaN/蓝宝石外延片上生长ZnO纳米线的反应温度介于90至96℃之间,反应时间介于120至180分钟之间。
在本公开的一些实施例中,所述步骤D中,采用电子束曝光工艺形成电极图形。
在本公开的一些实施例中,所述步骤E中,退火的温度介于400℃至500℃之间,退火的时间介于3至8分钟之间,待炉内温度降至室温时取出。
(三)有益效果
从上述技术方案可以看出,本公开提供的ZnO/GaN异质结纳米线光开关及其制备方法具有以下有益效果的其中之一或一部分:
(1)水热法工艺简单成本低,产量高重复性好,且生长的纳米线晶体质量较高,适用于纳米线器件制作;
(2)利用ZnO纳米线优良的光敏效应,采用GaN纳米线发出的紫外光激发ZnO纳米线,调节ZnO纳米线光电导,实现栅极对源漏电流大小的有效控制,达到制作异质结纳米线光开关的目的;
(3)本公开提供的ZnO/GaN异质结纳米线光开关及其制备方法具有栅极构造简单、不存在寄生电容、低栅极制造成本和方便集成的优点。
附图说明
图1为本公开实施例提供的ZnO/GaN异质结纳米线光开关的结构示意图。
图2为本公开实施例提供的ZnO/GaN异质结纳米线光开关的制备方法的步骤示意图。
图3至图7为本公开实施例提供的ZnO/GaN异质结纳米线光开关的制备方法的流程示意图。
【附图中本公开实施例主要元件符号说明】
10-硅衬底;
20-二氧化硅绝缘层;
30-ZnO/GaN异质结纳米线;
31-ZnO纳米线;32-GaN纳米线;
40-源电极;
50-漏电极;
60-栅电极;
70-GaN/蓝宝石外延片;
71-GaN层;
72-蓝宝石层。
具体实施方式
本公开实施例提供的ZnO/GaN异质结纳米线光开关及其制备方法利用ZnO纳米线优良的光敏效应,采用GaN纳米线发出的紫外光激发ZnO纳米线,调节ZnO纳米线光电导,实现栅极对源漏电流大小的有效控制,达到制作异质结纳米线光开关的目的。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
根据本公开的一个方面,提供一种ZnO/GaN异质结纳米线光开关,如图1所示,包括:硅衬底10、二氧化硅绝缘层20以及ZnO/GaN异质结纳米线30;二氧化硅绝缘层20生长于硅衬底10上;ZnO/GaN异质结纳米线30设置于二氧化硅绝缘层20上,ZnO/GaN异质结纳米线30沿其长度方向分为:ZnO纳米线31和GaN纳米线32,GaN纳米线32沿其长度方向分为:p-GaN部分(靠近异质结界面)、量子阱部分和n-GaN部分(远离异质结界面);ZnO纳米线31远离异质结界面的一端设置有源电极40,其异质结界面处设置有漏电极50;GaN纳米线32靠近异质结界面的一端与漏电极50连接,另一端设置有栅电极60。光吸收使半导体材料中形成非平衡载流子,而载流子浓度的增大使样品电导率增大,这种由光照引起的半导体电导率增加的现象称为光电导效应。光电导效应已被广泛应于光探测器,光敏电阻等领域。与其他半导体材料如SiC、InP相比,ZnO材料对光辐照尤其是紫外光辐照反应尤其敏感,当光照射到ZnO材料时,如果光子的能量大于ZnO纳米结构的禁带宽度,则ZnO会吸收光子的能量,从而产生电子—空穴对,引起载流子数量的增加,表现为材料电导率增加。利用ZnO纳米线31优良的光敏效应,采用GaN纳米线32紫外光源激发ZnO纳米线31,利用其产生的光场将调节ZnO光电导,实现栅极对源漏电流大小的有效控制,达到制作异质结纳米线光开关的目的。
本公开实施例提供的ZnO/GaN异质结纳米线光开关及其制备方法具有栅极构造简单、不存在寄生电容、低栅极制造成本和方便集成的优点。
在本公开的一些实施例中,源电极40、漏电极50之间施加恒定电压,漏电极50接地,改变栅电极60电压实现GaN纳米线32LED的发光与熄灭,所产生的紫外光将调制ZnO纳米线31的光电导,使流过ZnO纳米线31的电流产生跃变,以反映器件的开启与关断,即栅电极60电压实现对ZnO纳米线31沟道的开关调制。显然,当栅电极60上施加足够大的负电压信号以至超过GaN纳米线32LED开启电压时,带有量子阱结构的GaN纳米线32LED正向导通,其发出的紫外光部分被ZnO纳米线31吸收,光吸收使ZnO纳米线31材料中形成光生载流子,载流子浓度的增大使ZnO纳米线31电导率增大,监测得流过ZnO纳米线31的电流增大,即源漏电流增大,此时ZnO纳米线31沟道处于开启状态。此时若关断栅电极60电压信号或施加正电压电信号,GaN纳米线32LED处于零偏或反向截止状态没有发光,则ZnO纳米线31材料中不能形成光生载流子,载流子浓度减小,ZnO纳米线31电导率恢复到无激发状态,监测得流过ZnO纳米线31的电流逐渐减最终稳定,此时ZnO纳米线31沟道处于关断状态。
在本公开的一些实施例中,其中:ZnO/GaN异质结纳米线30的长度介于6.2μm至7.3μm之间;ZnO/GaN异质结纳米线30的直径介于200nm至400nm之间;ZnO纳米线31的长度介于2.7μm至3.1μm之间;GaN纳米线32的长度介于3.5μm至4.2μm之间;二氧化硅绝缘层20的厚度介于260nm至320nm之间。
在本公开的一些实施例中,源电极40、漏电极50和栅电极60的材质包含:Ti(钛)和Au(金)。
根据本公开的另一个方面,还提供一种ZnO/GaN异质结纳米线光开关的制备方法,如图2所示,包括:步骤A:如图3至图5所示,制备ZnO/GaN异质结纳米线30;步骤B:如图6所示,在一硅衬底10表面生长二氧化硅绝缘层20;步骤C:如图7所示,将步骤A得到的ZnO/GaN异质结纳米线30转移至二氧化硅绝缘层20的表面上;步骤D:在ZnO纳米线31远离异质结界面的一端设置源电极40,在异质结界面上设置漏电极50,在GaN纳米线32远离异质结界面的一端设置栅电极60;步骤E:在高纯N2氛围下进行退火,得到本公开实施例提供的异质结纳米线光开关。
在本公开的一些实施例中,步骤A包括:步骤A1:如图3所示,在GaN/蓝宝石外延片70上生长ZnO纳米线;步骤A2:如图4所示,在步骤A1得到的基材上刻蚀形成ZnO/GaN异质结纳米线30;步骤A3:在高纯N2氛围下,对步骤A2得到的基材进行退火;步骤A4:如图5所示,从步骤A3得到的基材表面剥离ZnO/GaN异质结纳米线。
在本公开的一些实施例中,步骤A1中,ZnO纳米线31通过水热法垂直生长于GaN/蓝宝石外延片70中的GaN平面上,水热法工艺简单成本低,产量高重复性好,且生长的纳米线晶体质量较高,适用于纳米线器件制作。
在本公开的一些实施例中,步骤A2中,利用垂直于GaN平面的ZnO纳米线31为掩膜,采用电感耦合等离子体刻蚀的方法刻蚀GaN层,刻蚀深度达到蓝宝石表面,形成ZnO/GaN异质结纳米线30。
在本公开的一些实施例中,步骤A3中,退火的温度介于600℃至700℃之间,退火的时间介于20至35分钟之间,待炉内温度降至室温时取出,通过退火能够减少刻蚀过程中纳米线产生的损伤。
在本公开的一些实施例中,步骤A4中,采用激光剥离工艺,将蓝宝石表面上刻蚀形成的ZnO/GaN异质结纳米线30完整剥离。
在本公开的一些实施例中,ZnO纳米线31利用硝酸锌、六次甲基四胺混合溶液直接在所述GaN平面上生长。
在本公开的一些实施例中,在GaN/蓝宝石外延片上生长ZnO纳米线的反应温度介于90至96℃之间,反应时间介于120至180分钟之间。
在本公开的一些实施例中,步骤D中,采用电子束曝光工艺形成电极图形。
在本公开的一些实施例中,步骤E中,退火的温度介于400℃至500℃之间,退火的时间介于3至8分钟之间,待炉内温度降至室温时取出,此时Ti/Au电极与异质结纳米线之间基本实现欧姆接触,完成制备。
在本公开的一些实施例中,对于二氧化硅/硅绝缘衬底(即硅衬底10和二氧化硅绝缘层20),先采用等离子体增强化学气相沉积技术,在硅衬底10正面生长一层二氧化硅绝缘层20起到绝缘作用。然后采用聚焦离子束设备的机械探针,将激光剥离后散落的ZnO/GaN异质结纳米线30转移至此二氧化硅/硅绝缘衬底上,以进行后续电极制备。
依据以上描述,本领域技术人员应当对本公开实施例提供的ZnO/GaN异质结纳米线光开关及其制备方法有了清楚的认识。
综上所述,本公开提供的ZnO/GaN异质结纳米线光开关及其制备方法利用ZnO纳米线优良的光敏效应,采用GaN纳米线发出的紫外光激发ZnO纳米线,调节ZnO纳米线光电导,实现栅极对源漏电流大小的有效控制,达到制作异质结纳米线光开关的目的。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
类似地,应当理解,为了精简本公开并帮助理解各个公开方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如前面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

1.一种ZnO/GaN异质结纳米线光开关,包括:
硅衬底;
二氧化硅绝缘层,生长于所述硅衬底上;
ZnO/GaN异质结纳米线,设置于所述二氧化硅绝缘层上,沿其长度方向分为:
ZnO纳米线,其远离异质结界面的一端设置有源电极,异质结界面处设置有漏电极;
GaN纳米线,其靠近异质结界面的一端与所述漏电极连接,另一端设置有栅电极;所述GaN纳米线用于发出紫外光,并激发所述ZnO纳米线,以调节所述ZnO纳米线光电导。
2.根据权利要求1所述的ZnO/GaN异质结纳米线光开关,其中:
所述ZnO/GaN异质结纳米线的长度介于6.2μm至7.3μm之间;
所述ZnO/GaN异质结纳米线的直径介于200nm至400nm之间;
所述ZnO纳米线的长度介于2.7μm至3.1μm之间;
所述GaN纳米线的长度介于3.5μm至4.2μm之间;
所述二氧化硅绝缘层的厚度介于260nm至320nm之间。
3.根据权利要求1所述的ZnO/GaN异质结纳米线光开关,所述源电极、所述漏电极和所述栅电极的材质包含:Ti和Au。
4.一种ZnO/GaN异质结纳米线光开关的制备方法,包括:
步骤A:制备ZnO/GaN异质结纳米线;
步骤B:在一硅衬底表面生长二氧化硅绝缘层;
步骤C:将步骤A得到的ZnO/GaN异质结纳米线转移至二氧化硅绝缘层的表面上;
步骤D:在ZnO纳米线远离异质结界面的一端设置源电极,在异质结界面上设置漏电极,在GaN纳米线远离异质结界面的一端设置栅电极;所述GaN纳米线用于发出紫外光,并激发所述ZnO纳米线,以调节所述ZnO纳米线光电导;
步骤E:在高纯N2氛围下进行退火,得到如上述权利要求1至3中任一项所述的异质结纳米线光开关。
5.根据权利要求4所述的ZnO/GaN异质结纳米线光开关的制备方法,所述步骤A包括:
步骤A1:在GaN/蓝宝石外延片上生长ZnO纳米线;
步骤A2:在所述步骤A1得到的基材上刻蚀形成ZnO/GaN异质结纳米线;
步骤A3:在高纯N2氛围下,对步骤A2得到的基材进行退火;
步骤A4:从步骤A3得到的基材表面剥离ZnO/GaN异质结纳米线。
6.根据权利要求5所述的ZnO/GaN异质结纳米线光开关的制备方法,其中:
所述步骤A1中,所述ZnO纳米线通过水热法垂直生长于所述GaN/蓝宝石外延片中的GaN平面上;
所述步骤A2中,利用垂直于所述GaN平面的所述ZnO纳米线为掩膜,采用电感耦合等离子体刻蚀的方法刻蚀GaN层,刻蚀深度达到蓝宝石表面,形成ZnO/GaN异质结纳米线;
所述步骤A3中,退火的温度介于600℃至700℃之间,退火的时间介于20至35分钟之间,待炉内温度降至室温时取出;
所述步骤A4中,采用激光剥离工艺,将所述蓝宝石表面上刻蚀形成的ZnO/GaN异质结纳米线完整剥离。
7.根据权利要求6所述的ZnO/GaN异质结纳米线光开关的制备方法,所述ZnO纳米线利用硝酸锌、六次甲基四胺混合溶液直接在所述GaN平面上生长。
8.根据权利要求6所述的ZnO/GaN异质结纳米线光开关的制备方法,在GaN/蓝宝石外延片上生长ZnO纳米线的反应温度介于90至96℃之间,反应时间介于120至180分钟之间。
9.根据权利要求4所述的ZnO/GaN异质结纳米线光开关的制备方法,所述步骤D中,采用电子束曝光工艺形成电极图形。
10.根据权利要求4所述的ZnO/GaN异质结纳米线光开关的制备方法,所述步骤E中,退火的温度介于400℃至500℃之间,退火的时间介于3至8分钟之间,待炉内温度降至室温时取出。
CN201811065138.4A 2018-09-12 2018-09-12 ZnO/GaN异质结纳米线光开关及其制备方法 Active CN109524490B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811065138.4A CN109524490B (zh) 2018-09-12 2018-09-12 ZnO/GaN异质结纳米线光开关及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811065138.4A CN109524490B (zh) 2018-09-12 2018-09-12 ZnO/GaN异质结纳米线光开关及其制备方法

Publications (2)

Publication Number Publication Date
CN109524490A CN109524490A (zh) 2019-03-26
CN109524490B true CN109524490B (zh) 2020-07-17

Family

ID=65771271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811065138.4A Active CN109524490B (zh) 2018-09-12 2018-09-12 ZnO/GaN异质结纳米线光开关及其制备方法

Country Status (1)

Country Link
CN (1) CN109524490B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086227A (ja) * 2004-09-14 2006-03-30 Osaka Univ 光スイッチ
CN100428500C (zh) * 2006-01-13 2008-10-22 清华大学 基于一维半导体纳米结构的光电传感器及其制作方法
JP5060740B2 (ja) * 2006-05-26 2012-10-31 シャープ株式会社 集積回路装置およびその製造方法、ならびに表示装置
CN102417176A (zh) * 2011-09-06 2012-04-18 天津大学 基于三维网络形貌的石墨烯-碳纳米管复合薄膜的制备方法
CN107248536B (zh) * 2017-05-05 2019-01-29 东南大学 基于量子阱结构的光开关器件

Also Published As

Publication number Publication date
CN109524490A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
US9202975B2 (en) Light emitting diode including graphene layer
JP5567553B2 (ja) 窒化ガリウム材料加工及びその関連するデバイス構造体
US9190565B2 (en) Light emitting diode
CN103681996B (zh) 一种紫外发光二极管及其制备方法
JP6219506B2 (ja) ナノワイヤデバイスの活性領域の平坦化および規定のための絶縁層
JP2014530504A (ja) ナノワイヤサイズ光電構造及びそれを製造する方法
CN110808320B (zh) 深紫外led结构及其制作方法
US20140306256A1 (en) Light emitting diode
KR101373398B1 (ko) 고효율 발광다이오드 제조방법
CN110165028B (zh) 基于局域表面等离激元增强的mis结构紫外led及其制备方法
CN101807648B (zh) 引入式粗化氮极性面氮化镓基发光二极管及其制作方法
CN109524490B (zh) ZnO/GaN异质结纳米线光开关及其制备方法
CN105845714B (zh) 一种基于桥接生长的纳米线器件及其制备方法
Polyakov et al. III‐Nitride Nanowires as Building Blocks for Advanced Light Emitting Diodes
CN110600990A (zh) 一种基于柔性衬底的GaN基激光器与HEMT的器件转移制备方法
TW201511334A (zh) 具有經減低漏電之奈米線發光二極體結構及其製造方法
CN113471340A (zh) 一种基于局域表面等离激元耦合增强的MIS结构的超快micro-LED及其制备方法
JP2007043016A (ja) 結晶シリコン素子、およびその製造方法
KR102624061B1 (ko) Iii-v족 화합물반도체 기반의 전자소자 또는 광소자의 제조방법
KR101158078B1 (ko) 발광 다이오드 및 그 제조 방법
CN109494277A (zh) 一种长波红外探测器及其制作方法
JP2007043006A (ja) 結晶シリコン素子、およびその製造方法
KR20160010419A (ko) 무결점 단결정 박막 층
CN111816729B (zh) LED/ZnO纳米线阵列集成的光电晶体管芯片及制备方法
JPH0897398A (ja) 量子効果装置及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant