CN1094895C - 从金属氢化物中诱导脱氢的方法 - Google Patents

从金属氢化物中诱导脱氢的方法 Download PDF

Info

Publication number
CN1094895C
CN1094895C CN97195773A CN97195773A CN1094895C CN 1094895 C CN1094895 C CN 1094895C CN 97195773 A CN97195773 A CN 97195773A CN 97195773 A CN97195773 A CN 97195773A CN 1094895 C CN1094895 C CN 1094895C
Authority
CN
China
Prior art keywords
energy
desorption
metal hydride
hydrogen
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97195773A
Other languages
English (en)
Other versions
CN1222894A (zh
Inventor
A·扎鲁斯卡
L·扎鲁斯基
J·斯特罗姆-奥尔森
R·舒尔茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McGill University
Original Assignee
McGill University
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McGill University, Hydro Quebec filed Critical McGill University
Publication of CN1222894A publication Critical patent/CN1222894A/zh
Application granted granted Critical
Publication of CN1094895C publication Critical patent/CN1094895C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/24Hydrides containing at least two metals; Addition complexes thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

公开了一种通过向金属氢化物施加足够的能量利用吸热反应诱导氢气脱附使氢气从金属氢化物中诱导脱附的方法。所施加的能量是非热的能量,选自由机械能、超声能、微波能、电能、化学能和辐射能组成的组中。

Description

从金属氢化物中诱导脱氢的方法
本发明涉及从含有氢的金属氢化物中诱导脱氢的方法,其中,使用非热能的能源诱导这样的脱氢反应。
金属氢化物是氢气的储存和输送的潜在的理想候选材料。作为氢气的载体,它们提供了高的氢气储存容量(例如在Mg2H2中最高可达7.6wt.%)和充分的安全性。氢气释放的吸热反应提供了所说的安全性,这排除了自发的(爆炸)或不可控制的反应。
金属氢化物的优点是,它们可以在室温下处理和储存而没有任何气氛或压力上的要求。这使得他们在经济上是优选的,因为消除了用液氢或活性炭所必需的低温设备。
金属氢化物也是非常稳定的。所以从安全性和经济性方面的观点来看是有利的。但是,由于它们的稳定性,大多数的金属氢化物要求较高温度以引发脱附。
具有高稳定性的金属氢化物的实例是MgH2或Mg2NiH4。它们表现出优异的储氢潜力,具有大的储氢容量(对于MgH2为7.65wt%,对于Mg2NiH4为3.6wt%),低的材料成本并容易处理。然而,氢气从这些氢化物中按照合理的动力学进行的脱附要求加热到高温:对于MgH2为350~400℃,对于Mg2NiH4为330~360℃。
对于许多用途来说,加热到这样的温度是不利的。实际上,它增加了氢气回收的技术问题并降低了设备的有效程度。
为了解决这个问题,已经提出了降低高温金属氢化物的稳定性。通过使所说的金属氢化物与其它元素合金化可能做到这一点。但是,稳定性的降低是以降低总的储氢容量为代价的。
本发明的目的是提供一种促进氢气从高温金属氢化物中脱附的可供选择的方法。
更具体地,本发明的基础是发现了不采用常规的热源,而可以利用非热能源来引发氢气的释放,从而诱导氢气的脱附。
本说明书和权利要求书中所用的术语“非热能源”不一定必须排除产生热量的能源,如通过焦耳效应产生热量的电能。事实上,这个术语只用于排除“常规的”热源,如燃气的或燃油的燃烧器,热量在其中产生热量并主要通过对流传递到金属氢化物上。
根据本发明可以用于从金属氢化物中释放氢气的非热能源的实例包括:
1.微波能,
2.电能,
3.化学能,
4.机械能,
5.超声能,和
6.辐射能。
因此,如下文所广泛要求的,本发明涉及一种诱导氢气从金属氢化物中脱附的方法,其中,向所说的金属氢化物施加足够的能量以通过吸热反应诱导氢气的脱附。这种方法的特点在于所施加的能量选自由机械能、超声能、微波能、电能、化学能和辐射能组成的组中。这种方法的特点还在于所选择的能量直接施加到所说的金属氢化物上。
在阅读了下面的非限制性说明和实施例后将会更好地理解本发明及其优点。
如上所述,本发明的基础是发现了不使用到目前为止所用的热源,可以利用非热能源来诱导氢气从金属氢化物中的脱附。
因此,不是使用热能提高氢化物的环境温度来诱导氢气从氢化物中脱附的吸热反应,而是从内部或局部范围内向氢化物提供能量。
这种能量可以直接作用在金属氢化物上。
根据所选的能源,有两种向氢化物施加能量的方法。第一种由通过内部加热氢化物(或加热介质)来诱导所说的脱附过程组成。在利用微波能、通过化学反应产生热量的化学能或通过焦耳效应产生热量的电能时,做到了这一点。另一种方法由在氢化物中引入并积聚能量以产生脱附的过程组成,例如,通过机械能(以应变和缺陷的形式)或通过辐射能。在这种特定情况下,脱附比用热激活氢化物时更容易。此外,在机械的或辐射预处理后,脱附温度明显降低。
下面将更详细地解释上述的每种方法和可以使用的候选能源。
1.微波能
根据本发明,微波能可以直接作用在氢化物上或与所说的氢化物相互混合的合适的介质上,使得在没有加热整个体系的情况下,在可控制的条件下,进行氢气的局部释放。这种方法提供了高效率的脱附,由于在氢化物中的键的微波激活,所说的脱附在比常规加热条件下更低的温度下进行。
所说的脱附可以以两种方式进行。第一种包括用微波获得全部氢气含量的释放。另一种方法为用微波处理到刚好开始脱附过程,然后可用常规加热在比用常规方式加热时低的温度下和以更容易得多的方式继续进行所说的脱附过程。
2.电能
诱导氢气脱附的另一种方法在于通过埋在氢化物中的电阻加热氢化物。流入电阻的电流能通过焦耳效应转变为热。在压实的粉末材料中通过电流局部产生的热量特别高,在粉末颗粒之间在电流通路上电阻非常高的地方有热点。在极端的情况下,在所说的热点处可能发生粉末的焊接。所以,应该合适地调整电流参数来避免烧结。取决于所说的过程的特定条件,可以直接加热氢化物,或者利用电流载体介质进行加热。
3.化学能
另一种诱导氢气脱附的方法包括把金属氢化物的细颗粒与适量的物质混合,该物质在要求的温度范围内(例如50-100℃)在放热条件下自发分解,或者与一种相互之间发生放热反应产生大量热量的物质的混合物混合。
4.机械能
诱导氢气从金属氢化物中脱附的另一种方法包括通过球磨对金属氢化物粉末(这是金属氢化物的常见的形式)施加机械能。已经很好地确定了球磨能够产生足够的机械能形成各种化合物(氮化物、硼化物)或合金(机械合金化)。在本发明中,可以用球磨分解金属氢化物并释放氢气,或者在氢化物中积聚大量的应变和缺陷以进一步促进热激活脱附。机械处理的金属氢化物的脱附温度可以降低100~200℃,这对实际应用具有重要的意义。
5.超声能
诱导氢气脱附的另一种方法在于对金属氢化物施加超声能。通过使用例如水或醇等液体作为能量载体介质,有可能通过声空化现象产生冲击波和局部加热,在1微秒内形成高达5000°K温度的热点(在极高强度的超声波源的情况下)。
因此,已经成功地用于从挥发性有机金属化合物热合成无定形金属或纳米尺度的催化剂的声化学方法可能用于氢气从金属氢化物中的脱附。把氢化物粉末浸在作为能量载体的液体介质中,经过调整了强度的超声波作用,在通过声空化产生的热点处分解并释放氢气,而体系的总温度没有明显升高。它提供了一种容易而且有效的氢气脱附方法。
6.辐射能
也可以用高强度光源、离子源、激光等产生的辐射能诱导氢气从金属氢化物中脱附。
根据本发明的方法有许多实际用途。已提出的能源中的一些,如微波和电能不会影响金属氢化物的组织和氢气的吸附/脱附的可逆性。因此,它可以用于在可再充氢气的储存罐中引发氢气的脱附,以启动以氢气为燃料的发动机或交通工具。在这方面,可以参考以本申请人的名义在1996年1月19日提交的美国专利申请流水号No.08/,该专利申请在本文中引作参考。
其它能源,如化学能和机械能影响金属氢化物的组织。在这样的情况下,根据本发明的方法可以用于在一次性的储氢罐中诱导氢气脱附(用于露营或类似的用途)。
另外的能源,如微波和辐射能是相当昂贵的并需要大量设备。在这种情况下,根据本发明的方法可以用在发电系统或电源中,其中需要快速提供大量的氢气。
图1是表示在微波单元中以1分钟的时间间隔加热的Mg的氢化物粉末的X射线衍射谱的变化的曲线(实线表示在加热之前的衍射,虚线表示在加热之后的衍射);
图2是如下制备的Mg基氢化物的微分扫描热量测定(DSC)曲线(a)所制备的Mg基氢化物,(b)、(c)和(d)分别是球磨2、7和9分钟之后的Mg基氢化物的曲线。
实施例1-微波能
在一个微波单元中加热一种Mg基氢化物粉末。在连续加热1分钟的时间间隔后测定试样。该系列的试样的X射线衍射表明氢化物的反射从衍射谱中不断消失,金属反射谱增加,这表明了金属氢化物的分解(图1)。
该试验还表明非常短的加热时间(少于1分钟)不能释放出大量的氢气,但是,引起脱附温度的明显降低,如DSC测量所示。
实施例2-化学能
把所说的Mg基氢化物粉末与少量氢化铝锂(LiAlH4)粉末混合。加入适量的水(湿气)产生快速的放热反应,反应式如下:
该反应释放了大量的热量(109±4.2kJ/mol H2),导致氢气从Mg基氢化物中的脱附。
实施例3-机械能
把一种Mg基氢化物在脱附之前进行机械预处理。在其制备后的状态下,在加热速率为40K/min的连续加热情况下用微分扫描量热法(DSC)测量时,这种Mg基氢化物表现出等于约400℃的高脱附温度(见图2,曲线a)。在一个SPEX磨中球磨由于机械能以应变和缺陷的方式积聚导致了脱附温度的降低。曲线b、c和d分别代表所说的氢化物球磨2、7、9分钟的效果。在最后一种情况下,脱附温度降低了200℃(见图2)。
实施例4-超声能
把一种Mg基氢化物粉末放在一个超声波水浴中。装有氢化物的容器通过毛细管与超声波装置外面的水浴相连。在超声波处理过程中,在所说的水浴中,在毛细管的端部出现大量气泡,表明氢气从氢化物中释放出来。在超声波处理之后的氢化物的X射线衍射和DSC测量都表明发生了氢气的脱附。

Claims (13)

1.一种诱导氢气从金属氢化物中脱附的方法,其中,向所说的金属氢化物施加足够的能量通过吸热反应诱导氢气的脱附,其特征在于:
所施加的能量选自由机械能、超声能、微波能、电能和化学能组成的组中;
所说的能量直接施加在所说的金属氢化物上。
2.根据权利要求1的方法,其特征在于所选择的能量是微波能。
3.根据权利要求2的方法,其特征在于所说的微波能只用于诱导氢气脱附,所诱导的氢气脱附随后通过加热完成。
4.根据权利要求2的方法,其特征在于所说的微波能是获得要求的脱附所用的唯一的能源。
5.根据权利要求1的方法,其特征在于所选择的能量是电能。
6.根据权利要求5的方法,其特征在于所说的电能是获得要求的脱附所用的唯一的能源。
7.根据权利要求1的方法,其特征在于所选择的能量是化学能,并且所说的化学能通过向金属氢化物中引入相互之间发生放热化学反应从而产生热量的化学物质直接施加到所说的金属氢化物上。
8.根据权利要求7的方法,其特征在于所说的化学能是获得要求的脱附所用的唯一的能源。
9.根据权利要求1的方法,其特征在于所选择的能量是超声能。
10.根据权利要求9的方法,其特征在于所说的超声能是获得要求的脱附所用的唯一能源。
11.根据权利要求10的方法,其特征在于所说的金属氢化物在施加超声能之前浸在一个超声波水浴中。
12.根据权利要求1的方法,其特征在于所选择的能量是机械能,所说的机械能通过使金属氢化物经过高能机械研磨施加到所说的金属氢化物上。
13.根据权利要求12的方法,其特征在于所说的机械能只用于诱导氢气脱附,所诱导的氢气脱附随后通过加热完成。
CN97195773A 1996-05-13 1997-05-13 从金属氢化物中诱导脱氢的方法 Expired - Fee Related CN1094895C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/645,352 US5882623A (en) 1996-05-13 1996-05-13 Method for inducing hydrogen desorption from a metal hydride
US08/645,352 1996-05-13

Publications (2)

Publication Number Publication Date
CN1222894A CN1222894A (zh) 1999-07-14
CN1094895C true CN1094895C (zh) 2002-11-27

Family

ID=24588664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97195773A Expired - Fee Related CN1094895C (zh) 1996-05-13 1997-05-13 从金属氢化物中诱导脱氢的方法

Country Status (7)

Country Link
US (2) US5882623A (zh)
EP (2) EP1382566A1 (zh)
JP (1) JP2000515107A (zh)
CN (1) CN1094895C (zh)
CA (1) CA2254858C (zh)
DE (1) DE69723977T2 (zh)
WO (1) WO1997043206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359322C (zh) * 2005-05-12 2008-01-02 复旦大学 超声场气体脱附方法及其调控单元

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963475A1 (en) 1997-02-28 1999-12-15 Shaw Industries, Inc. Carpet, carpet backings and methods
US7338698B1 (en) 1997-02-28 2008-03-04 Columbia Insurance Company Homogeneously branched ethylene polymer carpet, carpet backing and method for making same
US20030211280A1 (en) * 1997-02-28 2003-11-13 Shaw Industries, Inc. Carpet, carpet backings and methods
CA2218271A1 (en) * 1997-10-10 1999-04-10 Mcgill University Method of fabrication of complex alkali mental hydrides
CA2217095A1 (fr) 1997-10-22 1999-04-22 Hydro-Quebec Nanocomposites a interfaces activees prepares par broyage mecanique d'hydrures de magnesium et usage de ceux-ci pour le stockage d'hydrogene
AU9425498A (en) * 1998-10-07 2000-04-26 Mcgill University Lithium-based hydrogen storage compositions
CA2301252A1 (en) 2000-03-17 2001-09-17 Hydro-Quebec Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations
EP1290345A1 (en) * 2000-04-13 2003-03-12 Sun Microsystems, Inc. Electro-desorption compressor
JP4802360B2 (ja) * 2000-10-30 2011-10-26 トヨタ自動車株式会社 水素ガス生成装置
US6680042B1 (en) * 2000-11-07 2004-01-20 Hydro-Quebec Method of rapidly carrying out a hydrogenation of a hydrogen storage material
US6672048B2 (en) * 2001-07-10 2004-01-06 Duncan Johnstone Rotary impeller driven turbine
US6680043B2 (en) * 2001-11-29 2004-01-20 General Motors Corporation Process for enhancing the kinetics of hydrogenation/dehydrogenation of MAIH4 and MBH4 metal hydrides for reversible hydrogen storage
US20030234172A1 (en) * 2002-06-25 2003-12-25 Arthur Alan R. Method of facilitating a chemical reaction by applying radio frequency energy
US7387712B2 (en) * 2002-10-17 2008-06-17 Carnegie Mellon University Catalytic process for the treatment of organic compounds
US7157401B2 (en) * 2002-10-17 2007-01-02 Carnegie Mellon University Catalyst for the treatment of organic compounds
US20040074760A1 (en) * 2002-10-17 2004-04-22 Carnegie Mellon University Production of biofuels
US7044932B2 (en) * 2002-10-18 2006-05-16 Medtronic, Inc. Implantable drug pump access template
WO2004094306A1 (ja) * 2003-04-21 2004-11-04 Techno Network Shikoku Co. Ltd. 水素発生装置および水素発生方法
US20040241507A1 (en) * 2003-05-30 2004-12-02 Schubert Peter J. Method and apparatus for storage of elemental hydrogen
US7115246B2 (en) * 2003-09-30 2006-10-03 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
US20070014683A1 (en) * 2003-09-30 2007-01-18 General Electric Company Hydrogen storage composition, and associated article and method
US7115245B2 (en) * 2003-09-30 2006-10-03 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
US7029517B2 (en) * 2003-11-06 2006-04-18 General Electric Company Devices and methods for hydrogen storage and generation
US7175826B2 (en) * 2003-12-29 2007-02-13 General Electric Company Compositions and methods for hydrogen storage and recovery
EP1670578A2 (en) * 2003-09-30 2006-06-21 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
WO2005044454A2 (de) * 2003-11-05 2005-05-19 Future Camp Gmbh Speichersystem zum speichern eines mediums sowie verfahren zum beladen/entladen eines speichersystems mit einem speichermedium
US20050274065A1 (en) * 2004-06-15 2005-12-15 Carnegie Mellon University Methods for producing biodiesel
US7445937B2 (en) * 2004-06-29 2008-11-04 General Electric Company Methods for synthesis and evaluation of hydrogen storage compositions
DE102005019108B4 (de) * 2005-04-25 2008-11-06 Gkss-Forschungszentrum Geesthacht Gmbh Verwendung von Diamantpulver zur Herstellung von Metallhydriden
GB0515136D0 (en) * 2005-07-23 2005-08-31 Qinetiq Nanomaterials Ltd Hydrogen storage composition
US7837976B2 (en) * 2005-07-29 2010-11-23 Brookhaven Science Associates, Llc Activated aluminum hydride hydrogen storage compositions and uses thereof
US7901661B2 (en) * 2005-12-21 2011-03-08 The Penn State Research Foundation Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures
US7951349B2 (en) * 2006-05-08 2011-05-31 The California Institute Of Technology Method and system for storing and generating hydrogen
WO2008076076A1 (en) * 2006-12-20 2008-06-26 Agency For Science, Technology And Research Process for releasing hydrogen gas
US8052848B2 (en) 2007-06-26 2011-11-08 The Penn State Research Foundation Ultrasonic and microwave methods for enhancing the rate of a chemical reaction and apparatus for such methods
CN101519186B (zh) * 2007-07-27 2012-01-04 通用汽车环球科技运作公司 金属氢化物的活化
US7700069B2 (en) * 2007-07-27 2010-04-20 Gm Global Technology Operations, Inc. Activation of metal hydrides
DE102008034666B4 (de) * 2008-07-22 2021-02-25 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur Aktivierung von Metallhydridpartikeln oder von Partikeln von Metallen, die Metallhydridvorläufer sind
US8679224B2 (en) * 2011-08-31 2014-03-25 Babcock & Wilcox Technical Services Y-12, Llc Hydrogen, lithium, and lithium hydride production
CN103264159B (zh) * 2013-05-29 2014-12-31 上海大学 一种实现MgH2微波下循环快速放氢的方法
ES2581064B1 (es) * 2015-02-27 2017-06-08 Universidad De Valladolid Material y procedimiento para el almacenamiento y regulación de la liberación de hidrógeno en estado sólido
CN112999996A (zh) * 2021-02-19 2021-06-22 长春大学 一种可储氢产热设备
CN112981534A (zh) * 2021-03-12 2021-06-18 郑州中南杰特超硬材料有限公司 一种高品级立方氮化硼的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1568374A (en) * 1976-12-07 1980-05-29 Atomic Energy Authority Uk Hydrogen from a hydride material
GB2164637A (en) * 1984-09-21 1986-03-26 Gen Electric Metallic hydride hydrogen storage for balloon inflation
CN1120744A (zh) * 1995-07-21 1996-04-17 洪国治 氢气储存方法及氢化物电极材料之化学组成法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676071A (en) * 1970-04-22 1972-07-11 Olin Corp Process for controlled production of hydrogen gas by the catalyzed and controlled decomposition of zirconium hydride and titanium hydride
US4300946A (en) * 1979-05-17 1981-11-17 Billings Energy Corporation Granulating and activating metal to form metal hydride
US4304593A (en) * 1979-11-14 1981-12-08 Allied Chemical Corporation Embrittling of glass alloys by hydrogen charging
US4292265A (en) * 1980-01-21 1981-09-29 The United States Of America As Represented By The United States Department Of Energy Method for preparing porous metal hydride compacts
US4383606A (en) * 1980-12-19 1983-05-17 Johnson Matthey, Inc. Hydrogen storage system
US4490348A (en) * 1982-02-12 1984-12-25 Iwatani Sangyo Kabushiki Kaisha Method for effecting hydrogen sorption and dissociation on an adsorbent metal
US5360461A (en) * 1993-08-23 1994-11-01 United Technologies Corporation Polymeric storage bed for hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1568374A (en) * 1976-12-07 1980-05-29 Atomic Energy Authority Uk Hydrogen from a hydride material
GB2164637A (en) * 1984-09-21 1986-03-26 Gen Electric Metallic hydride hydrogen storage for balloon inflation
CN1120744A (zh) * 1995-07-21 1996-04-17 洪国治 氢气储存方法及氢化物电极材料之化学组成法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359322C (zh) * 2005-05-12 2008-01-02 复旦大学 超声场气体脱附方法及其调控单元

Also Published As

Publication number Publication date
EP0902754B1 (en) 2003-08-06
WO1997043206A1 (en) 1997-11-20
EP0902754A1 (en) 1999-03-24
DE69723977T2 (de) 2004-07-29
EP1382566A1 (en) 2004-01-21
JP2000515107A (ja) 2000-11-14
CA2254858A1 (en) 1997-11-20
US5882623A (en) 1999-03-16
DE69723977D1 (de) 2003-09-11
US6080381A (en) 2000-06-27
CA2254858C (en) 2002-07-30
CN1222894A (zh) 1999-07-14

Similar Documents

Publication Publication Date Title
CN1094895C (zh) 从金属氢化物中诱导脱氢的方法
KR100365080B1 (ko) 중합체성수소저장층
US7790013B2 (en) Storing and transporting energy
US20100135899A1 (en) Process for releasing hydrogen gas
CA2384359A1 (en) Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
US11192784B2 (en) Methods and systems for making metal hydride slurries
Sun et al. Light‐Activated Hydrogen Storage in Mg, LiH and NaAlH4
US4537761A (en) Hydrogen storage system
RU2686898C1 (ru) Способ изготовления гидрида магния для химического генератора водорода
Wagner et al. Enhancing the Combustion of Magnesium Nanoparticles via Low-Temperature Plasma-Induced Hydrogenation
AU2014223195B2 (en) Methods and systems for making metal hydride slurries
Imamura et al. Preparation and hydriding properties of magnesium-containing hydrogen storage materials chemically deposited from a homogeneous phase
JP2007512213A (ja) 水素吸蔵組成物及びその製造方法
Imamura et al. Hydriding properties of Mg-based hydrogen storage materials prepared chemically from a homogeneous phase
CN116902911B (zh) 一种碳纤维支撑的MgH2复合材料及其制备方法
WO1999056870A1 (fr) Matiere et procede d'occlusion de gaz
CN117899884B (zh) 用于增强复合储氢材料性能的催化剂及其制备方法和应用
CN116534794A (zh) 用于产生氢的铝复合物及其制备方法
SIMBARA et al. Comparison of the LiBH4 Material Synthesis Method and its Application as a Hydrogen Energy Storage
Tarasov Hydrogen sorbents based on fullerenes
Kojima Nano-composite Materials for hydrogen storage
Kojima et al. Hydrogen Absorption and Desorption by Magnesium-Based Nano-Composite Materials
JPS6125642B2 (zh)
JP2004168980A (ja) 燃料再生供給装置および水素循環方法
JP2014128759A (ja) 水素生成反応触媒、水素生成反応触媒の製造方法、水素生成装置及び水素の生成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MC GILL UNIV.

Free format text: FORMER OWNER: HYDRO-QUEBEC; MC GILL UNIV.

Effective date: 20031107

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20031107

Patentee after: Mc Gill Univ.

Patentee before: Hydro Quebec

Patentee before: Mc Gill Univ.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021127