RU2686898C1 - Способ изготовления гидрида магния для химического генератора водорода - Google Patents
Способ изготовления гидрида магния для химического генератора водорода Download PDFInfo
- Publication number
- RU2686898C1 RU2686898C1 RU2018119959A RU2018119959A RU2686898C1 RU 2686898 C1 RU2686898 C1 RU 2686898C1 RU 2018119959 A RU2018119959 A RU 2018119959A RU 2018119959 A RU2018119959 A RU 2018119959A RU 2686898 C1 RU2686898 C1 RU 2686898C1
- Authority
- RU
- Russia
- Prior art keywords
- magnesium
- hydrogen
- pressure
- temperature
- activation
- Prior art date
Links
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 56
- 239000001257 hydrogen Substances 0.000 title claims abstract description 56
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000000126 substance Substances 0.000 title claims abstract description 25
- 229910012375 magnesium hydride Inorganic materials 0.000 title claims abstract description 20
- 238000004137 mechanical activation Methods 0.000 claims abstract description 22
- 230000004913 activation Effects 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 238000000227 grinding Methods 0.000 claims abstract description 8
- 238000010521 absorption reaction Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 239000011777 magnesium Substances 0.000 claims description 58
- 229910052749 magnesium Inorganic materials 0.000 claims description 57
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229910052987 metal hydride Inorganic materials 0.000 abstract description 8
- 150000004681 metal hydrides Chemical class 0.000 abstract description 8
- 239000000446 fuel Substances 0.000 abstract description 7
- 239000003054 catalyst Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 26
- 239000002994 raw material Substances 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 239000000843 powder Substances 0.000 description 11
- 150000004678 hydrides Chemical class 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002680 magnesium Chemical class 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- -1 magnesium — magnesium hydride Chemical compound 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/04—Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J7/00—Apparatus for generating gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/065—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Изобретение может быть использовано в водородной энергетике. Способ изготовления гидрида магния для химического генератора водорода включает механическую активацию металлического магния путем измельчения с поглощением механической энергии от 5 до 10 кДж/г. Далее проводят химическую активацию металлического магния путем нагрева до температуры 350-400°С при давлении 0,2-1,0 мбар. Выдерживают активированный металлический магний в среде водорода при температуре 350-400°С и давлении 15-20 бар в течение 30-90 мин. Затем активированный металлический магний выдерживают в среде водорода при температуре 350-400°С и давлении 25-35 бар в течение 120-150 мин. Изобретение позволяет отказаться от применения сложного и дорогостоящего технологического оборудования и дорогих катализаторов, добиться сокращения трудоемкости технологического процесса и снижения энергозатрат при производстве металлогидридного топлива для химического генератора водорода. 7 з.п. ф-лы, 1 ил., 2 пр.
Description
Область техники
Изобретение относится к области водородной энергетики, в частности, к способу получения порошкового гидрида магния путем прямого гидрирования измельченного металлического магния.
Уровень техники
Расширение спектра и увеличение количества устройств с автономным питанием определяет возрастающую потребность в энергообеспечении таких устройств. В этих условиях значительное внимание уделяется водородным топливным элементам как альтернативе аккумуляторным батареям. Одной из причин, сдерживающих распространение энергосистем на водородных топливных элементах, является проблема эффективного и безопасного хранения и транспортировки водорода.
Известно три основных способа хранения водорода: в виде сжатого газа в сосудах высокого давления, с использованием криогенных систем и с использованием гидридов металлов, неметаллов и органических веществ. Металлогидридный способ является наиболее безопасным и позволяет достигать высоких значений объемной и гравиметрической плотности хранения водорода. Среди металлогидридных материалов перспективным материалом для хранения и транспортировки водорода является гидрид магния благодаря высокому гравиметрическому содержанию водорода в гидридном материале, которое составляет порядка 7,6% по массе, и сравнительно низкой стоимости прекурсора – металлического магния. Тем не менее, использование гидрида магния в качестве обратимого абсорбционного накопителя водорода проблематично из-за высокой температуры (более 300°С), необходимой для десорбции водорода из гидрида магния с приемлемой скоростью.
С другой стороны, гидрид магния возможно использовать в гидролизных химических генераторах водорода, где водород образуется в результате протекания химической реакции между H2O и MgH2. Иными словами, гидрид магния используется в качестве расходуемого металлогидридного топлива для образования водорода в химическом генераторе водорода. В этом случае гидрид магния должен иметь низкую стоимость производства, что требует использования простой и энергоэффективной технологии производства металлогидридного топлива. Вместе с тем, известные способы гидрирования магния отличаются высокими энергозатратами и длительностью технологического процесса, скорость которого низка вследствие наличия слоя гидроксида магния Mg(OH)2 и оксида магния MgO на поверхности частиц магния, препятствующих взаимодействию магния с водородом, низкой скорости абсорбции водорода магнием и низкой скоростью диффузии водорода в магнии. Для повышения скорости гидрирования магния применяются различные подходы, связанные с повышением давления водорода и температуры в процессе гидрирования, с предварительной механической активацией магния или с введением каталитических добавок в магний.
Известен способ, описанный в RU2527959C1, получения порошков гидрида магния в плазме высокочастотной дуги. Плазмохимический способ позволяет получить порошок гидрида магния высокой чистоты. Недостатком способа является сложность технической реализации, требующая вакуумной плазмохимической установки, и высокие энергозатраты процесса. Эти недостатки определяют низкую производительность и высокую стоимость продукта.
Из патента US6680042B1 известен способ гидрирования магния, включающий в себя механохимическую обработку магния при температуре 300°С и давлении водорода 1–4 бар в присутствии графита или ванадия в качестве катализатора. Полное гидрирование достигается менее чем за 1 час. Недостаток данного способа заключается в высокой технической сложности его реализации, поскольку требует применения уникального и дорогостоящего оборудования, позволяющего проводить механохимическую обработку магния при температуре 300°С и избыточном давлении водорода до 4 бар.
В патенте US5198207 описан способ гидрирования магниевого порошка с добавкой гидрида магния в количестве более 1,2% по массе путем постоянного перемешивания при температуре более 250°С и давлении водорода от 5 до 50 бар. Недостатками данного способа являются длительность процесса, доходящая до 7 часов, и сложность его технической реализации, заключающаяся в обеспечении постоянного перемешивания компонентов при повышенной температуре и высоком давлении водорода в реакторе.
В патентных заявках JP2008044832A и JP2009099534A и в непатентном документе [1] предложен способ гидрирования магния, в котором предварительную активацию процесса гидрирования выполняют путем нескольких циклов сорбции-десорбции водорода магнием, варьируя температуру в реакторе. Недостатком данного способа является проблематичность быстрого снижения температуры порошка в реакторе из-за низкой теплопроводности порошка гидрида магния, что приводит к значительной длительности процесса полного гидрирования.
Известен способ гидрирования магния или титана, описанный в патенте RU2333150C1. Способ заключается в механической активации магниевого порошка в атмосфере водорода в присутствии наноразмерного кристаллического катализатора. Катализатор представляет собой порошок никеля, железа или кобальта с размером частиц 5–10 нм, частицы которого покрыты слоем углерода толщиной 0,5–2,0 нм. Гидрирование активированного магния проводят при давлении от 5 до 10 бар и температуре 300°С, степень гидрирования достигает 94%, а длительность процесса составляет 2–4 ч. Недостаток данного способа заключается в использования дорогостоящего нанокристаллического катализатора, существенно увеличивающего стоимость металлогидридного топлива.
Таким образом, в уровне техники не реализован простой технологический процесс гидрирования магния, который позволил бы отказаться от применения сложного и дорогостоящего технологического оборудования и дорогих расходных материалов (в частности, катализаторов), добиться сокращения трудоемкости технологического процесса и снижения энергозатрат при производстве металлогидридного топлива для химического генератора водорода.
Раскрытие изобретения
Целью изобретения является реализация технологического процесса гидрирования магния с устранением или, по меньшей мере, с уменьшением недостатков, присущих уровню техники, и обеспечение гидрида магния для химического генератора водорода с использованием этого технологического процесса.
Эта цель достигнута в способе изготовления гидрида магния для химического генератора водорода, включающем в себя механическую активацию металлического магния путем измельчения с поглощением механической энергии от 5 до 10 кДж/г; химическую активацию металлического магния путем нагрева до температуры 350–400°С при давлении 0,2–1,0 мбар; выдерживание активированного металлического магния в среде водорода при температуре 350–400°С и давлении 15–20 бар в течение 30–90 мин; выдерживание активированного металлического магния в среде водорода при температуре 350–400°С и давлении 25–35 бар в течение 120–150 мин.
При этом механическая активация может выполняться при комнатной температуре в воздушной среде при атмосферном давлении, в химически инертной среде при давлении 1–5 бар или в среде водорода при давлении 1–5 бар. Механическая активация может выполняться с добавлением терморасширенного графита в количестве 1–10% по массе.
Химическая активация металлического магния может выполняться в разреженной химически инертной среде или в разреженной в среде водорода.
Цель изобретения достигнута в гидриде магния для химического генератора водорода, изготовленном указанным выше способом.
Краткое описание чертежей
На фиг. 1 представлен внешний вид измельченного металлического магния после механической активации.
Осуществление изобретения
В качестве сырья для изготовления может использоваться металлический магний в виде стружки, опилок, порошка и т.п. Размер частиц магния в сырье предпочтительно не должен превышать 1 мм. Механическая активация магниевого сырья, как предварительная стадия производства, проводится при комнатной температуре с использованием шаровой, вибрационной, аттриторной или планетарной мельницы, молотковой дробилки, фрезерного измельчителя, шредера или другого измельчительного оборудования, которое характеризуется удельной механической энергией более 50 Вт/л. Выбор такого измельчительного оборудования может зависеть от вида и состояния магниевого сырья.
Авторы изобретения опытным путем установили, что доза поглощенной механической энергии, достаточной для приемлемой активации магниевого сырья, составляет от 5 до 10 кДж/г. На фиг. 1 приведен пример магниевого сырья после активации в планетарной мельнице; форма частиц магния – лепестковая, средний размер (длина, ширина) частиц составляет приблизительно 150 мкм, толщина 1–5 мкм.
Обработку магниевого сырья в шаровой, вибрационной, аттриторной или планетарной мельнице и т.п. проводят в инертной атмосфере или в атмосфере водорода при давлении газовой среды 1–5 бар. Обработку магниевого сырья в молотковой дробилке, фрезерном измельчителе, шредере и т.п. можно проводить в воздушной среде при атмосферном давлении. Температура среды во время механической активации магниевого сырья может быть в диапазоне от –20°С до 100°С, в целях упрощения технологического процесса предпочтительно выполнять такую активацию при температуре, обычной для производственных помещений.
При обработке магниевого сырья в шаровой, вибрационной, аттриторной или планетарной мельнице допускается вводить в магниевое сырье терморасширенный графит в количестве 1–10% по массе, который препятствует слипанию частиц магния и, таким образом, способствует активации сырья. Эксперименты авторов изобретения показали, что при использовании для механической активации магниевого сырья планетарной мельницы предпочтительным является диапазон значений концентрации терморасширенного графита 1,3–3,3% по массе. По завершении предварительной стадии активированное магниевое сырье помещается в реакционную камеру для гидрирования.
Длительность механической активации зависит от вида и режима работы технологического оборудования. Длительность механической активации в планетарной мельнице составляет приблизительно 60 мин.
Механическая активация может выполняться в несколько стадий и может включать в себя обработку магниевого сырья на нескольких видах измельчительного оборудования.
После механической активации магниевого сырья выполняется его химическая активация, в ходе которой магниевое сырье подвергается нагреванию в реакционной камере до температуры 350–400°С при остаточном давлении среды от 0,2 до 1,0 мбар. При нагревании магниевого сырья до температуры приблизительно 350°С и более в условиях разрежения происходит разложение гидроксида магния с образованием оксида магния и воды [2], причем слой оксида магния оказывается весьма рыхлым и проницаемым для газов [3], за счет чего достигается дестабилизация пассивирующей пленки на поверхности частиц порошка. Химическая активация может выполняться в разреженной химически инертной среде или в разреженной среде водорода. Длительность нагревания зависит от характеристик технологического оборудования. В экспериментах авторов изобретения температура 350–400°С достигалась приблизительно за 100 мин при массе сырья порядка 100 г.
После химической активации магниевого сырья выполняется его гидрирование в две стадии. На первой стадии гидрирования в реакционную камеру, разогретую до 350–400°С, подается водород под давлением от приблизительно 15 бар до приблизительно 20 бар. Сырье выдерживается в этих условиях в течение 30–90 мин, в зависимости от размера частиц магниевого сырья и степени его активации. За это время на поверхности частиц магния формируются зародыши гидридной фазы. Температурный диапазон первой стадии гидрирования определяется диаграммой фазового равновесия магний-водород [4]. Оптимальный диапазон давления был определен авторами изобретения экспериментально. В частности, при давлении водорода 15–20 бар скорость образования зародышей гидридной фазы ниже, а размер зародышей больше, чем при проведении процесса гидрирования в условиях повышенного избыточного давления водорода [5].
Вторая стадия гидрирования проводится при температуре в реакционной камере 350–400°С и давлении водорода от 25 до 35 бар в течение 120–150 мин, в зависимости от размера частиц магниевого сырья и степени его активации. В ходе второй фазы происходит формирование объемной гидридной фазы практически на всю глубину частиц металлического магния. Температурный диапазон второй стадии гидрирования по существу совпадает с температурным диапазоном первой стадии гидрирования, а давление сдвинуто в сторону увеличения в соответствии с диаграммой фазового равновесия магний – гидрид магния [6].
Таким образом, общая длительность технологического процесса согласно изобретению вполне приемлема – 310–400 мин, в том числе общее время гидрирования – 150–240 мин, а степень конверсии металлического магния в гидрид магния составляет 94–99%. При этом технологический процесс реализован без применения чрезмерно сложного и дорогостоящего оборудования, к квалификации персонала не предъявляется чрезмерных требований. Отличительной особенностью заявленного способа является то, что стадии химической активации магниевого сырья, формирования зародышей гидридной фазы (первая фаза гидрирования) и полного гидрирования (вторая фаза гидрирования) проводят в одном цикле на одном технологическом оборудовании, без дополнительного механического воздействия на магниевое сырье и без применения высокого давления водорода.
Пример 1
Навеска магниевого порошка массой 100 г с размером частиц менее 1 мм механически активируется в планетарной мельнице в течение 60 минут, при этом отношение массы порошка к массе размольных тел составляет 1:10, доза поглощенной механической энергии составляет 5 кДж/г, обработка проводится при избыточном давлении водорода 1 бар. После механической активации магниевый порошок загружается в реакционную камеру, нагревается до температуры 350°С и вакуумируется до остаточного давления 1,0 мбар. Далее в реакционной камере создается давление водорода 15 бар и порошок выдерживается при температуре 350°С в течение 30 минут. После выдержки при давлении 15 бар давление водорода в реакционной камере поднимается до значения 25 бар и проводится полное гидрирование магниевого порошка при температуре 350°С в течение 150 минут. В результате процесса степень конверсии металлического магния в гидрид магния составляет 94%.
Пример 2
Навеска магниевого порошка массой 100 г с размером частиц менее 1 мм механически активируется в планетарной мельнице в течение 60 минут, при этом отношение массы порошка к массе размольных тел составляет 1:20, доза поглощенной механической энергии составляет 10 кДж/г, обработка проводится при избыточном давлении водорода 1 бар. После механической активации магниевый порошок загружается в реакционную камеру, нагревается до температуры 400°С и вакуумируется до остаточного давления 0,2 мбар. Далее в реакционной камере создается давление водорода 20 бар и порошок выдерживается при температуре 400°С в течение 90 минут. После выдержки при давлении 20 бар давление водорода в реакционной камере поднимается до значения 35 бар и проводится полное гидрирование магниевого порошка при температуре 400°С в течение 120 минут. В результате процесса степень конверсии металлического магния в гидрид магния составляет 99%.
Список непатентной литературы
1. Hiroshi Uesugi, Takashi Sugiyama, Isao Nakatsugawa. Production of hydrogen storage material MgH2 and its applications. Journal of Japan Institute of Light Metals 60(11): 615-618 January 2010 DOI: 10.2464/jilm.60.615
2. S. Behij et al. Magnesium salts as compounds of the preparation of magnesium oxide from Tunisian natural brines. Chemical Industry & Chemical Engineering Quarterly, 2013, 19(2), 263−271 DOI: 10.2298/CICEQ111207060B
3. Corrosion of magnesium alloys. Ed. G-L. Song. Woodhead Publishing, 2011
4. M. Felderhoff, B. Bogdanovic. High temperature metal hydrides as heat storage materials for solar and related applications. International Journal of Molecular Sciences. 2009, 10, 325–344 DOI: 10.3390/ijms10010325
5. R.V. Lukashev, S.N. Klyamkin, B.P. Tarasov. Preparation and properties of hydrogen-storage composites in the MgH2-C system. Inorganic Materials, July 2006, Volume 42, Issue 7, 726–732 DOI: 10.1134/S0020168506070077
6. P. de Rango, P. Marty, D. Fruchart. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration. Applied Physics A, 122:126, 08 February 2016, DOI: 10.1007/s00339-016-9646-1
Claims (12)
1. Способ изготовления гидрида магния для химического генератора водорода, включающий в себя:
- механическую активацию металлического магния путем измельчения с поглощением механической энергии от 5 до 10 кДж/г;
- химическую активацию металлического магния путем нагрева до температуры 350-400°С при давлении 0,2-1,0 мбар;
- выдерживание активированного металлического магния в среде водорода при температуре 350-400°С и давлении 15-20 бар в течение 30-90 мин;
- выдерживание активированного металлического магния в среде водорода при температуре 350-400°С и давлении 25-35 бар в течение 120-150 мин.
2. Способ по п. 1, в котором механическую активацию выполняют в воздушной среде при атмосферном давлении.
3. Способ по п. 1, в котором механическую активацию выполняют в химически инертной среде при давлении 1-5 бар.
4. Способ по п. 1, в котором механическую активацию выполняют в среде водорода при давлении 1-5 бар.
5. Способ по п. 1, в котором механическую активацию выполняют при комнатной температуре.
6. Способ по п. 1, в котором механическую активацию выполняют с добавлением терморасширенного графита в количестве 1-10% по массе.
7. Способ по п. 1, в котором химическую активацию металлического магния выполняют в разреженной химически инертной среде.
8. Способ по п. 1, в котором химическую активацию металлического магния выполняют в разреженной среде водорода.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018119959A RU2686898C1 (ru) | 2018-05-30 | 2018-05-30 | Способ изготовления гидрида магния для химического генератора водорода |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018119959A RU2686898C1 (ru) | 2018-05-30 | 2018-05-30 | Способ изготовления гидрида магния для химического генератора водорода |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2686898C1 true RU2686898C1 (ru) | 2019-05-06 |
Family
ID=66430428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018119959A RU2686898C1 (ru) | 2018-05-30 | 2018-05-30 | Способ изготовления гидрида магния для химического генератора водорода |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2686898C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112723310A (zh) * | 2020-12-30 | 2021-04-30 | 榆林学院 | 一种氢化镁的制备方法 |
CN115490202A (zh) * | 2022-08-31 | 2022-12-20 | 榆林学院 | 一种新型镁基复合储氢材料及其间歇式高效催化机械化学氢化方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0111923A2 (de) * | 1982-12-22 | 1984-06-27 | Studiengesellschaft Kohle mbH | Verfahren zur Abtrennung und Reinigung von Wasserstoff |
CN101003360A (zh) * | 2007-01-23 | 2007-07-25 | 太原理工大学 | 一种镁基储氢材料的制备方法 |
RU2333150C1 (ru) * | 2007-02-21 | 2008-09-10 | Институт физики металлов УрО РАН | Способ гидрирования материала накопителя водорода - магния или титана |
RU2359901C1 (ru) * | 2007-12-10 | 2009-06-27 | Институт физики металлов УрО РАН | Способ гидрирования материала накопителя водорода - магния |
RU2435829C2 (ru) * | 2006-04-07 | 2011-12-10 | Акцо Нобель Н.В. | Безопасные для окружающей среды нефть/водные деэмульгаторы |
US8758643B2 (en) * | 2009-03-05 | 2014-06-24 | Bio Coke Lab. Co. Ltd | Method of producing magnesium-based hydrides |
-
2018
- 2018-05-30 RU RU2018119959A patent/RU2686898C1/ru active IP Right Revival
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0111923A2 (de) * | 1982-12-22 | 1984-06-27 | Studiengesellschaft Kohle mbH | Verfahren zur Abtrennung und Reinigung von Wasserstoff |
RU2435829C2 (ru) * | 2006-04-07 | 2011-12-10 | Акцо Нобель Н.В. | Безопасные для окружающей среды нефть/водные деэмульгаторы |
CN101003360A (zh) * | 2007-01-23 | 2007-07-25 | 太原理工大学 | 一种镁基储氢材料的制备方法 |
RU2333150C1 (ru) * | 2007-02-21 | 2008-09-10 | Институт физики металлов УрО РАН | Способ гидрирования материала накопителя водорода - магния или титана |
RU2359901C1 (ru) * | 2007-12-10 | 2009-06-27 | Институт физики металлов УрО РАН | Способ гидрирования материала накопителя водорода - магния |
US8758643B2 (en) * | 2009-03-05 | 2014-06-24 | Bio Coke Lab. Co. Ltd | Method of producing magnesium-based hydrides |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112723310A (zh) * | 2020-12-30 | 2021-04-30 | 榆林学院 | 一种氢化镁的制备方法 |
CN112723310B (zh) * | 2020-12-30 | 2023-09-08 | 榆林学院 | 一种氢化镁的制备方法 |
CN115490202A (zh) * | 2022-08-31 | 2022-12-20 | 榆林学院 | 一种新型镁基复合储氢材料及其间歇式高效催化机械化学氢化方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kajiwara et al. | Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube | |
US20060034756A1 (en) | Method for generating hydrogen gas utilizing activated aluminum fine particles | |
Meisner et al. | Enhancing low pressure hydrogen storage in sodium alanates | |
Ianni et al. | Synthesis of NaAlH4/Al composites and their applications in hydrogen storage | |
Yap et al. | A study on the effects of K 2 ZrF 6 as an additive on the microstructure and hydrogen storage properties of MgH 2 | |
El-Eskandarany et al. | Bulk nanocomposite MgH2/10 wt%(8 Nb2O5/2 Ni) solid-hydrogen storage system for fuel cell applications | |
Ismail et al. | Desorption behaviours of lithium alanate with metal oxide nanopowder additives | |
RU2686898C1 (ru) | Способ изготовления гидрида магния для химического генератора водорода | |
CA2384359A1 (en) | Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell | |
Li et al. | Investigation on structure and hydrogen storage performance of as-milled and cast Mg90Al10 alloys | |
El-Eskandarany et al. | Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/10 wt% TiMn2 binary system | |
Zhang et al. | Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage | |
Congwen et al. | Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism | |
Qi et al. | Hydrogen storage thermodynamics and kinetics of the as-cast and milled Ce-Mg-Ni-based alloy | |
CN114293086B (zh) | 一种储氢高熵合金及其制备方法 | |
CN112723310B (zh) | 一种氢化镁的制备方法 | |
Hsu et al. | Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4 | |
Xu et al. | High efficiency Al-based multicomponent composites for low-temperature hydrogen production and its hydrolysis mechanism | |
Wagner et al. | Enhancing the Combustion of Magnesium Nanoparticles via Low-Temperature Plasma-Induced Hydrogenation | |
El-Eskandarany et al. | Performance and fuel cell applications of reacted ball-milled MgH 2/5.3 wt% TiH 2 nanocomposite powders | |
Kojima et al. | Hydrogen adsorption and desorption by potassium-doped superactivated carbon | |
CN115947306B (zh) | 一种镁基原料生产氢化镁的方法 | |
CN113184814A (zh) | 硼碳氮化物纳米片及其制备方法和应用 | |
Wu et al. | Light-activated hydrolysis properties of Mg-based materials | |
RU2333150C1 (ru) | Способ гидрирования материала накопителя водорода - магния или титана |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200531 |
|
NF4A | Reinstatement of patent |
Effective date: 20210304 |