CN109467710B - 二维金属卟啉基cof材料以及薄膜制备方法和应用 - Google Patents

二维金属卟啉基cof材料以及薄膜制备方法和应用 Download PDF

Info

Publication number
CN109467710B
CN109467710B CN201811281585.3A CN201811281585A CN109467710B CN 109467710 B CN109467710 B CN 109467710B CN 201811281585 A CN201811281585 A CN 201811281585A CN 109467710 B CN109467710 B CN 109467710B
Authority
CN
China
Prior art keywords
cof
dhnda
cup
film
porphyrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811281585.3A
Other languages
English (en)
Other versions
CN109467710A (zh
Inventor
侯玉霞
李英
曲黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Institute of Science and Technology
Original Assignee
Henan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Science and Technology filed Critical Henan Institute of Science and Technology
Priority to CN201811281585.3A priority Critical patent/CN109467710B/zh
Publication of CN109467710A publication Critical patent/CN109467710A/zh
Application granted granted Critical
Publication of CN109467710B publication Critical patent/CN109467710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二维金属卟啉基COF材料以及薄膜制备方法和应用,属于无机化学技术领域。在高压釜中,将四氨基苯基卟啉铜与2,6‑二羟基‑1,5‑二醛基萘通过胺醛缩合,过滤即可得到CuP‑DHNDA‑COF。本方法具有操作简单、产率高、易于规模化生产等优点,将材料CuP‑DHNDA‑COF作为光催化剂用来降解染料亚甲基蓝,展现出了很好的光催化降解有机污染物的能力,在染料废水处理方面具有潜在应用。

Description

二维金属卟啉基COF材料以及薄膜制备方法和应用
技术领域
本发明涉及一种卟啉衍生的无机材料,具体涉及二维金属卟啉基COF材料以及薄膜制备方法和应用,属于无机化学技术领域。
背景技术
近年来,随着工业化程度的深入发展,环境问题特别是工业排放的废水成为目前亟待解决的环境问题之一。每年工厂排放的有机污染物尤其是有机染料达到100000多种,7×105吨,这些燃料通常具有高毒性、好的稳定性且难以生物降解,成为当今全球性的环境问题之一。这些有机污染物一旦释放到生态系统会引起一系列问题,比如堵塞污水处理管道、影响水生生物等,因此,有效的降低水中有机染料的浓度对环境及人体健康是迫在眉睫的问题。
目前,工业上主要通过物理手段比如吸附、膜分离等方法进行有机染料的分离,但是这些方法往往成本高且不能从根本上使有机染料变成毒性小的甚至无毒的物质。与物理方法相比高级氧化法比如芬顿反应、光催化、超声分解、臭氧化等方法由于高效、简单、可持续性等优点逐渐用于水中有机污染物的处理。太阳光是一种取之不竭、绿色环保的能源,因此以太阳光为能源进行光催化降解有机污染物受到科研工作者的青睐;目前用于光催化降解的物质主要是无机半导体材料、MOF、CMP等材料,尤其以无机半导体材料如TiO2,ZnO,Fe2O3,CdS,GaP以及ZnS研究的比较多,但是这类材料在光照条件下不稳定,容易分解、聚集而失活,从而限制了这类材料的实际应用。尽管许多MOF材料被用于光催化剂,但是不稳定、降解效率低等因素也限制了这类材料的应用。
与无机半导体材料和MOF相比,共价有机框架化合物(COFs)拥有精确的结构、高的热和化学稳定性、结构功能可设计性等优点,在光催化领域应该具有很好的潜力。
COFs是一类含有C、H、N、O、B等轻质元素,通过可逆共价键链接的具有精确结构且长程有序的晶态多孔材料。由于具有质轻、稳定、较高比表面积、容易功能化等诸多特点,从而在吸附分离、催化、光电、能源等领域被广泛研究,并表现出了优异的应用前景,从而受到材料学家和化学家的广泛关注与研究。
卟啉是一类具有大π共轭体系的平面刚性分子,广泛存在与自然界如叶绿素、血红素、细胞色素P-250等,由于其特有的稳定性和结构可设计性而表现出优异的光、电、磁等性能,因此在仿生化学、非线性光学、生物传感、光电器件、催化等领域具有潜在的应用前景。其中备受关注的是将卟啉类化合物用作光敏剂模拟叶绿素,来充分利用丰富、绿色,廉价的太阳光,并在光催化反应、光催化降解及光伏电池等领域具有潜在的应用前景。近年来报道的卟啉分子作为光催化剂降解有机染料的报道中,卟啉分子不容易回收,且大多数卟啉在水中溶解度都很差,从而限制了卟啉体系的实际应用。目前,解决上述问题的重要途径之一就是实现均相催化剂的多相化,如将金属卟啉负载在沸石、纳米材料、碳材料、分子筛等材料上,但存在催化活性中心分布不均匀、负载量少等问题。近年来也有将金属卟啉引入MOF、CMP、PPN等框架材料中用作非均相催化剂,并表现出了良好的催化性能,但是由于MOF材料往往稳定性差,CMP等有机聚合物存在结构不明确等缺点,限制了这些材料作为非均相催化剂的推广。而COFs材料具有精确拓扑结构和较好的稳定性,就目前的研究水平看,将卟啉作为构筑模块引入COFs材料是实现均相催化剂多相化的更有效手段。目前,卟啉基COF材料的研究主要集中在吸附和光电性能的研究,而针对其光催化性能的研究很少。而针对卟啉COF在光催化降解有机染料方面的研究还未见报道。
发明内容
为了克服上述缺陷,本发明的目的在于提供一种新型大的刚性共轭结构的金属卟啉基COF材料的制备方法和在光催化降解有机染料方面的应用以及其薄膜的制备方法及在光控开关方面的应用。
本发明以四氨基苯基卟啉铜为构筑基元与2,6-二羟基-1,5-二醛基萘通过胺醛缩合反应合成了一例金属卟啉基COF材料CuP-DHNDA-COF,并采用红外光谱、扫描电镜、透射电镜、热重分析、PXRD及氮气吸脱附实验对其结构及性能作了一系列表征;然后将材料CuP-DHNDA-COF作为光催化剂用来降解染料亚甲基蓝,并展现出了很好的光催化降解有机污染物的能力,在染料废水处理方面具有潜在应用。
本发明的技术方案是:以5,10,15,20-四-(4-氨基苯基)卟啉铜(CuTAPP)为构筑基元与2,6-二羟基-1,5-二醛基萘通过胺醛缩合反应合成具有大的共轭结构的卟啉COF材料CuP-DHNDA-COF;将材料CuP-DHNDA-COF作为光催化剂在可见光照射下进行有机染料亚甲基蓝的降解;将ITO导电玻璃进行氨基化处理,然后采用逐层反应的方法在其表面生长CuP-DHNDA-COF薄膜;测定可见光照射下薄膜产生的光电流情况。
本发明的具体步骤:
CuP-DHNDA-COF材料的制备:将5,10,15,20-四-(4-氨基苯基)卟啉铜和2,6-二羟基-1,5-二醛基萘按摩尔比1:2分散在体积比为5:5:1的邻二氯苯:正丁醇:36%醋酸的混合溶液中,室温超声;然后混合溶液加入高压釜中,120℃反应,冷却至室温,离心分离,干燥即得CuP-DHNDA-COF。
进一步地,在上述技术方案中,离心分离后,依次N,N-二甲基甲酰胺、四氢呋喃、丙酮洗涤除去未反应的原料和杂质。
光催化降解亚甲基蓝:将材料CuP-DHNDA-COF分散在10mg/L的亚甲基蓝水溶液中,暗反应0.5h后,用氙灯光源照射反应液,每间隔15分钟测一下溶液的吸光度,当照射60分钟,亚甲基蓝吸光度几乎为零,降解效率达到100%,而卟啉铜单体对亚甲基蓝没有降解能力,与没有形成氢键大π共轭结构的卟啉COF相比,催化降解性能提升了20倍。
CuP-DHNDA-COF薄膜的制备:将ITO玻璃进行氨基化处理后,先与2,6-二羟基-1,5-二醛基萘溶液反应,再与5,10,15,20-四-(4-氨基苯基)卟啉铜反应,如此循环多次后,形成致密平滑的膜。
进一步地,在上述技术方案中,具体操作为:将ITO玻璃进行氨基化处理后,先与2,6-二羟基-1,5-二醛基萘反应,然后取出洗净,放入5,10,15,20-四-(4-氨基苯基)卟啉铜溶液中接着反应,随后取出洗净,再放入之前的2,6-二羟基-1,5-二醛基萘溶液中,如此重复多次,取出洗净,晾干,测SEM发现形成了致密的膜。
进一步地,在上述技术方案中,优选重复次数在40-60次,反应温度为室温。
光电流测定:将上述制备好的长有致密CuP-DHNDA-COF薄膜的ITO玻璃用夹子夹住放入装有电解质溶液的石英电解池中,用氙灯光源距离10cm照射,每照射20s用遮光板将光源遮住,如此反复十多次,该薄膜产生的光电流没有衰减。并且手电筒比较弱的光也能让此材料产生光电流。此实验还将CuP-DHNDA-COF粉末直接旋涂在ITO玻璃上测试,测得的光电流很弱。说明这种一层一层生长的薄膜致密,结构规整,有助于电子的传输。
本发明有益效果:
用含氨基具有刚性大环结构5,10,15,20-四-(4-氨基苯基)卟啉铜和2,6-二羟基-1,5-二醛基萘通过胺醛缩合反应合成了COF晶形材料CuP-DHNDA-COF;该材料中由于萘环上的羟基与亚胺键形成分子内氢键,使整个结构更稳定。该材料因为含有具有光敏作用的铜卟啉,且具有长程有序的晶形及结构规整的孔结构,较大的比表面积和好的稳定性,因此对有机染料亚甲基蓝具有很好的光催化降解作用,降解效率达到100%,与没有形成氢键大π共轭结构的卟啉COF相比,催化降解性能提升了20倍。另外,本发明中采用的层层反应成膜的技术,生成了一种致密多孔结构有序的膜,在光照条件下,产生很强的光电流,无光时光电流为零,因此是一种很好的光控开关。
附图说明:
图1为本实施例1得到CuP-DHNDA-COF材料FT-IR光谱图。
图2为本实施例1得到CuP-DHNDA-COF材料固态核磁共振碳谱图。
图3为本实施例1得到CuP-DHNDA-COF材料粉末XRD谱图。
图4为本实施例1得到CuP-DHNDA-COF材料热重分析谱图。
图5为本实施例1得到CuP-DHNDA-COF材料扫描电镜图。
图6为本实施例1得到CuP-DHNDA-COF材料TEM图。
图7为本实施例1得到CuP-DHNDA-COF材料氮气吸脱附曲线。
图8为本实施例2中加入催化剂CuP-DHNDA-COF光照60分钟亚甲基蓝的紫外可见光谱图。
图9为本实施例3中得到CuP-DHNDA-COF薄膜与粉末XRD图。
图10为本实施例3中得到CuP-DHNDA-COF薄膜在光照下产生光电流图。
具体实施方式
实施例1
CuP-DHNDA-COF的制备:
将5,10,15,20-四-(4-氨基苯基)卟啉铜(CuTAPP)(88.2mg,0.12mmol)、2,6-二羟基-1,5-二醛基萘(58.6mg,0.24mmol)、0.6mL36%醋酸,二氯苯(3mL)、正丁醇(3mL)加到一个具有聚四氟乙烯内衬的高压釜中,超声分散20min后,将高压釜密封放入烘箱,120℃反应3d。然后自然冷却至室温,离心,再依次用N,N-二甲基甲酰胺、四氢呋喃、丙酮洗涤,洗去没有反应的前驱体及低聚物。然后80℃真空干燥12h,得到116.2mg紫色固体(理论产量为138.2mg),产率84.1%。
如图1所示,产物CuP-DHNDA-COF在1586cm-1处有强吸收,为形成的亚胺键C=N的伸缩振动峰,同时原料中醛基C=O(1658cm-1)和氨基N-H(3289cm-1)处峰值强烈衰减,证明成功合成了目标产物CuP-DHNDA-COF材料。
如图2所示,在157ppm处为新生成的亚胺键中碳的信号峰,进一步证明CuTAPP和DHNDA通过氨醛缩合反应形成了亚胺键链接的COF材料。
如图3所示,在4.1和7.7处出现了两个强的峰,表明合成的材料是一个长程有序的结构。
如图4所示,材料一直加热到330℃仍很稳定,表明合成的材料具有很好的热稳定性能。
如图5所示,目标产物CuP-DHNDA-COF为聚集的棒状颗粒。
如图6所示,目标产物CuP-DHNDA-COF为片状结构堆积而成,这与材料的微观结构相吻合。
如图7所示,目标产物CuP-DHNDA-COF的BET表面积为560m2g-1,表明合成的材料为比表面积比较大的多孔材料。
实施例2
光降解亚甲基蓝实验:为了进一步探究合成CuP-DHNDA-COF材料性能,设计了系列实验验证其催化降解亚甲基蓝的效率。
取10mg催化剂(CuP-DHNDA-COF),向其中加入20mg(10mg/L)的亚甲基蓝水溶液,将混合液放进超声波清洗仪使催化剂完全分散于亚甲基蓝水溶液中。按照上述操作,准备六只加入上述反应液的试管,编号1,2,3,4,5,6。1号试管中加入亚甲基蓝水溶液和催化剂后测定其紫外可见吸光度值,2-6号试管置于黑暗条件反应1小时,离心分离后测定2号的紫外可见吸光度值。可见光照射反应15分钟后测3号试管吸光度,可见光照射反应30分钟、45分钟、60分钟后分别测4号、5号、6号试管中溶液的吸光度。
为了对比,进行了不加催化剂时光照MB溶液的平行实验,分别测定不同光照时间的吸光度值。如图8所示,加入催化剂CuP-DHNDA-COF后,亚甲基蓝的降解量随光照时间的增加而增加。光照时间为60分钟时,亚甲基蓝基本完全降解。而未加入催化剂,同样条件下光照60分钟,亚甲基蓝基本不降解,证明了亚甲基蓝的降解是由于催化剂CuP-DHNDA-COF的存在促进了亚甲基蓝的降解。同时在相同条件下试验了卟啉铜单体及没有形成氢键的大π共轭结构的卟啉COF材料对亚甲基蓝的光降解能力,卟啉铜单体对亚甲基蓝几乎没有降解能力,并且,CuP-DHNDA-COF材料与无氢键大π共轭结构的卟啉COF相比,催化降解性能提升了20倍。加入催化剂CuP-DHNDA-COF光照30分钟后,85%亚甲基蓝被降解,60分钟后亚甲基蓝降解完全,说明催化剂CuP-DHNDA-COF在可见光照射下对亚甲基蓝具有很好的光催化降解性能。
实施例3
CuP-DHNDA-COF薄膜的制备:将ITO玻璃进行氨基化处理后,先与2,6-二羟基-1,5-二醛基萘反应,然后取出洗净,放入5,10,15,20-四-(4-氨基苯基)卟啉铜溶液中接着反应,随后取出洗净,再放入之前的2,6-二羟基-1,5-二醛基萘溶液中,如此重复50次,取出洗净,晾干,测SEM发现形成了致密的膜。
如图9所示,CuP-DHNDA-COF薄膜和粉末的XRD具有相似的形状,出峰位置一致,表明合成的CuP-DHNDA-COF薄膜具有和粉末一样的框架结构。
实施例4
CuP-DHNDA-COF薄膜光电流的测试:将长有CuP-DHNDA-COF薄膜的ITO玻璃放到石英电解池中,将氙灯光源距离ITO玻璃10cm,通过开关键控制光照,每次照射50s,间隔20s,如此反复15次。
如图10所示,制备的CuP-DHNDA-COF薄膜在光照下产生1020nA的光电流,遮住光时电流为0,因此该材料可以做光开关或者传感器。
以上实施例描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (6)

1.一种亚胺键连接的二维金属卟啉基COF材料CuP-DHNDA-COF,其特征在于:萘环中的羟基与亚胺键中的氮形成分子内氢键,从而形成一个大的超共轭平面二维结构,该材料为晶形多孔材料,结构如下:
Figure 402828DEST_PATH_IMAGE001
2.如权利要求1所述卟啉基COF材料CuP-DHNDA-COF的制备方法,其特征在于:将5,10,15,20-四-(4-氨基苯基)卟啉铜和2,6-二羟基-1,5-二醛基萘按摩尔比1:2分散在体积比为5:5:1的邻二氯苯:正丁醇:36%醋酸的混合溶液中,室温超声;然后混合溶液加入高压釜中,120℃反应,冷却至室温,离心分离,干燥后得到CuP-DHNDA-COF。
3.根据权利要求2所述制备方法,其特征在于:离心分离后依次加入N,N-二甲基甲酰胺、四氢呋喃、丙酮洗涤除去未反应的原料和杂质。
4.一种通过权利要求1所述亚胺键连接的二维金属卟啉基COF材料CuP-DHNDA-COF制备薄膜的方法,其特征在于:将ITO玻璃进行氨基化处理后,先与2,6-二羟基-1,5-二醛基萘溶液反应,再与5,10,15,20-四-(4-氨基苯基)卟啉铜反应,如此循环多次后,形成致密平滑的膜。
5.根据权利要求4所述的薄膜,其特征在于:循环次数在40-60次,反应温度选自室温。
6.根据权利要求4所述的薄膜,其特征在于:采用该薄膜,在光照条件下产生强光电流,无光照时光电流消失。
CN201811281585.3A 2018-10-31 2018-10-31 二维金属卟啉基cof材料以及薄膜制备方法和应用 Active CN109467710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811281585.3A CN109467710B (zh) 2018-10-31 2018-10-31 二维金属卟啉基cof材料以及薄膜制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811281585.3A CN109467710B (zh) 2018-10-31 2018-10-31 二维金属卟啉基cof材料以及薄膜制备方法和应用

Publications (2)

Publication Number Publication Date
CN109467710A CN109467710A (zh) 2019-03-15
CN109467710B true CN109467710B (zh) 2021-05-07

Family

ID=65666551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811281585.3A Active CN109467710B (zh) 2018-10-31 2018-10-31 二维金属卟啉基cof材料以及薄膜制备方法和应用

Country Status (1)

Country Link
CN (1) CN109467710B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227544B (zh) * 2019-06-25 2022-04-15 河南科技学院 蜂巢结构卟啉COP与g-C3N4复合材料的合成及在光催化降解染料方面的应用
CN110669229B (zh) * 2019-11-12 2021-07-02 中北大学 基于动态亚胺大环的超分子聚合物及其制备方法
CN110975843B (zh) * 2019-12-17 2021-08-13 中国科学技术大学 一种共价有机框架基重金属离子吸附分离膜的制备方法及其应用
CN113019459B (zh) * 2021-03-25 2021-12-28 福州大学 一种二氧化钛卟啉基共价有机框架复合材料及其制备方法和应用
CN114308132B (zh) * 2021-12-09 2022-12-13 江南大学 一种质子化的CdS-COF-366-M复合光催化剂及其制备方法
CN115672396B (zh) * 2022-10-26 2024-03-08 西安工程大学 一种玻璃基卟啉膜光催化剂的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205393A (ja) * 2003-12-26 2005-08-04 Toyota Motor Corp ポルフィリン系電極触媒
CN105597828B (zh) * 2015-12-28 2017-12-26 上海应用技术学院 一种氧化石墨烯/卟啉复合物光催化剂的制备方法
CN107433205B (zh) * 2016-05-25 2020-02-21 中国科学院大连化学物理研究所 共价有机框架负载钴催化剂及其制备和应用
CN106927535B (zh) * 2017-03-16 2020-06-05 南京师范大学 基于稳定卟啉金属有机骨架材料的光催化降解酚类污染物的方法
CN107986383A (zh) * 2017-12-07 2018-05-04 天津工业大学 一种卟啉功能化膜光催化降解有机染料的方法

Also Published As

Publication number Publication date
CN109467710A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN109467710B (zh) 二维金属卟啉基cof材料以及薄膜制备方法和应用
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Song et al. Facile synthesis a novel core–shell amino functionalized MIL-125 (Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light
CN112604713B (zh) 还原六价铬的具有哒嗪结构的亚胺型共价有机框架光催化剂、制备方法及其应用
CN111151302B (zh) 一种共价有机框架材料掺杂棒状硫化镉复合光催化剂的制备方法
Niu et al. Solid-solid reaction synthesis of covalent organic framework as a stable and highly active photo-catalyst for degradation of sulfathiazole in industrial wastewater
Du et al. Metal free benzothiadiazole-diketopyrrolopyrrole-based conjugated polymer/g-C3N4 photocatalyst for enhanced sterilization and degradation in visible to near-infrared region
CN111822055A (zh) 一种BiOBr/COF复合光催化剂的制备方法及应用
Yang et al. Enhanced photocatalytic hydrogen peroxide production activity of imine-linked covalent organic frameworks via modification with functional groups
CN113457710A (zh) PDI/g-C3N4/Bi2WO6复合光催化剂及制备方法和应用
Wu et al. Synthesis of functional conjugated microporous polymer/TiO 2 nanocomposites and the mechanism of the photocatalytic degradation of organic pollutants
Zhang et al. Synthesis of visible‐light‐driven g‐C3N4/PPy/Ag ternary photocatalyst with improved photocatalytic performance
Zhang et al. 2D/2D Covalent triazine-based heterostructure membrane for highly enhanced photoactivity and anti-fouling ability
Lan et al. Facile fabrication of triphenylamine-based conjugated porous polymers and their application in organic degradation under visible light
Xu et al. The integration of Triazine-based porous organic polymer with bio-waste poplar catkin as water-floatable photocatalyst
Li et al. Modifying the bridging N atoms of polymeric carbon nitride to achieve highly enhanced photocatalytic hydrogen evolution
Deng et al. Enhanced photocatalytic Cr (VI) reduction performance by novel PDI/COFs composite
Rong et al. 2-Methoxyethoxy functionalized triazine-cored conjugated polymers featuring hydrophilicity for enhanced visible-light photocatalytic degradation of antibiotic
Yang et al. Direct Z-scheme WO 3/covalent organic framework (COF) heterostructure for enhanced photocatalytic hydrogen peroxide production in water
CN114853113A (zh) 一种利用三噻吩基共价有机骨架光催化剂降解水体中抗生素的方法
Yi et al. Enhanced hydrophilicity and promoted charge transfer in covalent triazine frameworks/sepiolite complexed via hydrogen bonding for visible-light driven degradation of antibiotics
Chen et al. A highly photosensitive covalent organic framework with pyrene skeleton as metal-free catalyst for arylboronic acid hydroxylation
CN115025783B (zh) 一种多铌氧簇/zif-67衍生物复合材料的合成方法及应用
CN112574372B (zh) 席夫碱网络聚合物光催化剂及其制备方法和应用
CN115463687A (zh) 苯并三噻吩基共价有机框架催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant