CN105597828B - 一种氧化石墨烯/卟啉复合物光催化剂的制备方法 - Google Patents

一种氧化石墨烯/卟啉复合物光催化剂的制备方法 Download PDF

Info

Publication number
CN105597828B
CN105597828B CN201510999182.2A CN201510999182A CN105597828B CN 105597828 B CN105597828 B CN 105597828B CN 201510999182 A CN201510999182 A CN 201510999182A CN 105597828 B CN105597828 B CN 105597828B
Authority
CN
China
Prior art keywords
graphene oxide
porphyrin
preparation
metal ion
porphyrin compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510999182.2A
Other languages
English (en)
Other versions
CN105597828A (zh
Inventor
李向清
葛日月
秦利霞
康诗钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201510999182.2A priority Critical patent/CN105597828B/zh
Publication of CN105597828A publication Critical patent/CN105597828A/zh
Application granted granted Critical
Publication of CN105597828B publication Critical patent/CN105597828B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/13Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化技术领域,具体为一种氧化石墨烯/卟啉复合物光催化剂的制备方法。本发明方法的具体步骤如下:(1)将氧化石墨烯于水中分散,得到氧化石墨烯分散液;再向其中加入可溶性金属盐,之后离心分离,取下层沉淀,干燥、研磨,得到粉末状的金属离子掺杂的氧化石墨烯;(2)将金属离子掺杂的氧化石墨烯分散在水中,加入溶有卟啉化合物的四氢呋喃溶液,离心,取下层沉淀,干燥即得氧化石墨烯/卟啉复合材料。本发明反应条件温和,操作简单,成本低廉;其将金属离子作为卟啉/氧化石墨烯的界面连接剂,促进光生电子在氧化石墨烯和卟啉间的快速传递,进而抑制复合材料快速的电子‑空穴复合,从而提高催化剂的催化性能。

Description

一种氧化石墨烯/卟啉复合物光催化剂的制备方法
技术领域
本发明涉及光催化技术领域,具体的说,涉及一种氧化石墨烯/卟啉复合物光催化剂的制备方法。
背景技术
由于化石燃料的短缺和环境污染问题已经出现在人们的面前,开发一种新能源是现如今人们关注的重点问题。通过光催化利用太阳能生产清洁的氢气是其中一个重要方式。然而,由于对光的弱吸收能力,电子-空穴的快速复合和低稳定性的束缚,目前研究材料的光转换效率仍然很低。
氧化石墨烯(GO)具有优异的结构特性,如大的比表面积,高的电子和热导率。此外,丰富的含氧官能团,如环氧,羟基和羧基,使得GO更容易被进一步改性。CN201310473878公开了光催化剂氧化石墨烯掺杂二氧化钛纳米纤维及其制备方法,将二氧化钛凝胶纤维按照5℃/min的速度进行升温至600℃,维持炉温3h,然后随炉冷却至室温20~25℃制得二氧化钛纳米纤维,然后将所述二氧化钛纳米纤维均匀分散在乙醇中,并向其中加入氧化石墨烯,继续分散至少2h,即可制得氧化石墨烯掺杂二氧化钛纳米纤维。该催化剂具有较好的光催化性能,适合应用在有机物的光解,污水处理等多方面,但是对于电子-空穴的快速复合没有提出更好的解决办法。中国专利(公开号:104028309 A)公开了一种卟啉敏化的二氧化钛纳米线/还原氧化石墨烯复合材料,首先制备二氧化钛纳米线和还原氧化石墨烯,然后用电泳沉积法将还原氧化石墨烯沉积在二氧化钛纳米线上,最后用卟啉敏化二氧化钛/还原氧化石墨烯复合材料,得到复合型光催化剂。该复合型光催化剂主要利用染料敏化的原理,对亚甲基蓝等有机污染物有较好的催化降解作用,但是对光生电子-空穴对的快速复合也没有提出更好的解决办法。CN201410621933涉及一种银/氧化石墨烯/氮化碳复合光催化材料及其制备方法。利用银的高电导性可以加速光生电子对的分离,延长活性组分的寿命,提高了复合光催化材料的催化活性,但是所用的银价格较贵,限制了产品的推广应用。
卟啉具有特殊的大环共轭结构,其特殊的结构和热稳定性在催化领域已被广泛关注。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种新型的氧化石墨烯/卟啉复合物光催化剂的制备方法。以金属离子作为界面连接剂,卟啉作为光的捕获体,氧化石墨烯作为电子传递的受体,通过配位作用和静电作用,制备了一种新型的氧化石墨烯/卟啉复合物光催化剂。其方法工艺简单,反应条件温和、成本低廉,所得催化剂催化活性高。
为了提高光生电子的转移效率,抑制光生电子-空穴的快速复合,本发明通过加入金属离子改变氧化石墨烯和卟啉之间的界面连接模式,进而提高氧化石墨烯和卟啉之间电子转移效率和复合光催化剂的制氢活性。
本发明提供了一种氧化石墨烯/卟啉复合物光催化剂的制备方法,具体步骤如下:
(1)将氧化石墨烯(GO)于水中分散,得到氧化石墨烯分散液;再向其中加入可溶性金属盐,之后离心分离,取下层沉淀,干燥后研磨,得到粉末状的金属离子掺杂的氧化石墨烯(GO-M);
(2)将金属离子掺杂的氧化石墨烯(GO-M)分散在水中,加入溶有卟啉化合物的四氢呋喃溶液,离心,取下层沉淀,干燥即得氧化石墨烯/卟啉(GO-M-P)复合材料。
本发明中,可溶性金属盐选自可溶性的钾盐、钙盐、锌盐、铜盐、钴盐或者铬盐中的一种或几种。本发明中的可溶是指金属离子对应的金属盐溶于水,如对钾盐来说,可以是KCl、K2SO4,KNO3,K2CO3等,对于钙盐来说,可以是CaCl2,Ca(NO3)2等,而CaCO3因为不溶于水,所以不适合。
本发明中,氧化石墨烯与可溶性金属盐的质量比为8:1~20:1,其中优选的质量比为9:1~15:1。
本发明中,氧化石墨烯分散液中,氧化石墨烯的质量比浓度在6%-10%之间。
本发明中,氧化石墨烯与卟啉化合物的质量比为90:10~98:2,其中优选的质量比为93:7~97:3。
本发明中,卟啉化合物选自(5,15-二苯基)-10,20-二(4-吡啶基)卟啉,(5,15-二苯基)-10,20-二(4-羟基苯基)卟啉或(5,15-二苯基)-10,20-二(4-羧基苯基)卟啉中的一种或几种。
本发明中,在含有卟啉化合物的四氢化喃溶液中,卟啉化合物的质量百分比浓度在3%-8%之间。
本发明的有益效果在于:本发明反应条件温和,操作简单,成本低廉;其将金属离子作为界面连接剂,促进光生电子在GO和卟啉间的快速传递,进而抑制复合材料快速的电子-空穴复合,从而提高催化剂的催化性能。
具体实施方式
下面结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1
取8g氧化石墨烯加入到100g去离子水中,得到氧化石墨烯水分散液。然后加入1g六水氯化铬搅拌1h后离心。将离心得到的下层沉淀放入真空烘箱中45℃干燥6h后取出并研磨成粉末状。将掺杂铬离子的氧化石墨烯分散在100g去离子水中,加入5g含4%(wt%)(5,15-二苯基)-10,20-二(4-吡啶基)卟啉的四氢呋喃溶液,搅拌2h后,离心并在45℃真空烘箱中干燥即得氧化石墨烯/卟啉复合物(GO-Cr-P)光催化剂。
实施例2
取20g氧化石墨烯加入到200g去离子水中,得到氧化石墨烯分散液。然后加入1g醋酸钴搅拌2h后离心。将离心得到的下层沉淀放入真空烘箱中45℃干燥6h后取出并研磨成粉末状。将掺杂钴离子的氧化石墨烯分散在250g去离子水中,加入50g含4%(wt%)(5,15-二苯基)-10,20-二(4-吡啶基)卟啉的四氢呋喃溶液,搅拌2h后,离心并在45℃真空烘箱中干燥即得氧化石墨烯/卟啉复合物(GO-Co-P)光催化剂。
实施例3
取10g氧化石墨烯加入100g去离子水中,得到氧化石墨烯分散液。然后加入0.3g氯化钾和0.4g醋酸锌搅拌2h后离心。将离心得到的下层沉淀放入真空烘箱中45℃干燥6h后取出并研磨成粉末状。将掺杂钾离子和锌离子的氧化石墨烯分散在150g去离子水中,加入15g含4%(wt%)(5,15-二苯基)-10,20-二(4-羧基苯基)卟啉的四氢呋喃溶液,搅拌2h后,离心并在45℃真空烘箱中干燥即得氧化石墨烯/卟啉复合物(GO-K-Zn-P)光催化剂。
实施例4
取8g氧化石墨烯加入到100g去离子水中,得到氧化石墨烯水分散液。然后加入1g六水氯化铬搅拌1h后离心。将离心得到的下层沉淀放入真空烘箱中45℃干燥6h后取出并研磨成粉末状。将掺杂铬离子的氧化石墨烯分散在100g去离子水中,加入5g含4%(wt%)(5,15-二苯基)-10,20-二(4-羟基苯基)卟啉的四氢呋喃溶液,搅拌2h后,离心并在45℃真空烘箱中干燥即得氧化石墨烯/卟啉复合物(GO-Cr-P)光催化剂。
比较例1
取8g氧化石墨烯加入100g去离子水中,加入5g含4%(wt%)(5,15-二苯基)-10,20-二(4-吡啶基)卟啉的四氢呋喃溶液,搅拌2h后,离心并在45℃真空烘箱中干燥即得氧化石墨烯/卟啉复合物(GO-P)光催化剂。
界面电阻测试
以实施例4得到的GO-Cr-P复合材料、比较例1得到的GO-P材料,以及以实施例4的工艺条件制备的其他复合材料(区别仅在于,制备过程中将六水氯化铬分别用其他不同可溶性盐代替)作为样品,将涂有样品的FTO导电玻璃作为工作电极,铂丝作为对电极,Ag/AgCl电极作为参比电极,含有0.1mol L-1 KCl的0.01mol L-1 K3Fe(CN)6/K4Fe(CN)6(1:1)的水溶液为电解质。在室温条件下利用电化学工作站测试。界面电阻测试结果如表1所示。
表1各种复合物的界面电阻
复合物 GO-P GO-Co-P GO-Cr-P GO-Cu-P GO-Ca-P GO-Zn-P GO-Zn-K-P
电阻(Ω) 112 54 56 64 69 73 65
光催化性能测试
分别将10mg的样品与6mL三乙醇胺和54mL去离子水放在光解水反应器皿中,300W氙灯作为光源,使用氮气(99.99%)作为载气,抽真空,使用在线气相色谱仪分析。性能测试结果如表2所示。
表2氧化石墨烯/卟啉复合物光催化制氢性能
结果表明:金属离子的引入由于减小了卟啉和氧化石墨烯之间的界面电阻,提高了卟啉光电子的转移效率,从而明显提高卟啉/氧化石墨烯复合催化剂的光催化性能。由于不同金属离子,相同类型的卟啉或相同金属离子,不同类型的卟啉之间的配位键强度不同,因此导致金属在作为界面桥连剂时对卟啉光生电子的转移也存在差别。在我们所研究的卟啉分子中(5,15-二苯基)-10,20-二(4-吡啶基)卟啉的活性较高,钴离子作为界面桥连剂界面电子电阻最小。

Claims (8)

1.一种氧化石墨烯/卟啉复合物光催化剂的制备方法,其特征在于,具体步骤如下:
(1)将氧化石墨烯于水中分散,得到氧化石墨烯分散液;再向其中加入可溶性金属盐,之后离心分离,取下层沉淀,干燥、研磨,得到粉末状的金属离子掺杂的氧化石墨烯;所述可溶性金属盐选自可溶性的钾盐、钙盐、锌盐、铜盐、钴盐或者铬盐中的一种或几种;
(2)将金属离子掺杂的氧化石墨烯分散在水中,加入溶有卟啉化合物的四氢呋喃溶液,离心,取下层沉淀,干燥即得金属离子桥连的氧化石墨烯/卟啉复合材料。
2.根据权利要求1所述的制备方法,其特征在于,氧化石墨烯与可溶性金属盐的质量比为8:1~20:1。
3.根据权利要求2所述的制备方法,其特征在于,氧化石墨烯与可溶性金属盐的质量比为9:1~15:1。
4.根据权利要求1所述的制备方法,其特征在于,氧化石墨烯分散液中,氧化石墨烯的质量比浓度在6%-10%之间。
5.根据权利要求1所述的制备方法,其特征在于,氧化石墨烯与卟啉化合物的质量比为90:10~98:2。
6.根据权利要求1所述的制备方法,其特征在于,氧化石墨烯与卟啉化合物的质量比为93:7~97:3。
7.根据权利要求5或6所述的制备方法,其特征在于,所述卟啉化合物选自(5,15-二苯基)-10,20-二(4-吡啶基)卟啉,(5,15-二苯基)-10,20-二(4-羟基苯基)卟啉或(5,15-二苯基)-10,20-二(4-羧基苯基)卟啉中的一种或几种。
8.根据权利要求1所述的制备方法,其特征在于,在含有卟啉化合物的四氢化喃溶液中,卟啉化合物的质量百分比浓度在3%-8%之间。
CN201510999182.2A 2015-12-28 2015-12-28 一种氧化石墨烯/卟啉复合物光催化剂的制备方法 Expired - Fee Related CN105597828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510999182.2A CN105597828B (zh) 2015-12-28 2015-12-28 一种氧化石墨烯/卟啉复合物光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510999182.2A CN105597828B (zh) 2015-12-28 2015-12-28 一种氧化石墨烯/卟啉复合物光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN105597828A CN105597828A (zh) 2016-05-25
CN105597828B true CN105597828B (zh) 2017-12-26

Family

ID=55978494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510999182.2A Expired - Fee Related CN105597828B (zh) 2015-12-28 2015-12-28 一种氧化石墨烯/卟啉复合物光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN105597828B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097318A (zh) * 2017-12-12 2018-06-01 广西大学 氧化石墨烯固载四(4-羟基苯基)锰卟啉催化材料的制备方法及催化应用
CN108620135A (zh) * 2018-05-17 2018-10-09 西北师范大学 一种二硫化钼复合材料的制备方法
CN109613098A (zh) * 2018-07-13 2019-04-12 湖北民族学院 一种可见光下自清洁电化学传感器的制备方法及应用
CN109467710B (zh) * 2018-10-31 2021-05-07 河南科技学院 二维金属卟啉基cof材料以及薄膜制备方法和应用
CN110804384A (zh) * 2019-11-21 2020-02-18 安徽新大陆特种涂料有限责任公司 一种防腐蚀性能较好的水性聚氨酯涂料制备方法
CN111392717B (zh) * 2020-03-25 2021-08-06 浙江墨原新材料有限公司 一种浓缩氧化石墨烯溶液及导热膜的制备方法
CN111644203A (zh) * 2020-06-10 2020-09-11 青岛品泰新材料技术有限责任公司 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用
CN112221541B (zh) * 2020-09-27 2022-07-05 东北师范大学 一种多酸-卟啉杂化材料及其制备方法和应用
CN113244962B (zh) * 2021-05-24 2022-11-01 常州大学 一种产生单线态氧的锆卟啉基mof-石墨烯复合光催化剂的制备方法及应用
CN113694963B (zh) * 2021-09-27 2023-09-29 江南大学 钴嵌入富氮多孔碳材料/自组装纳米卟啉复合光催化剂及其制备方法和应用
CN117363055B (zh) * 2023-10-16 2024-06-04 甘肃省交通规划勘察设计院股份有限公司 一种卟啉改性石墨烯及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773855A (zh) * 2010-01-19 2010-07-14 华南理工大学 大环化合物修饰石墨烯的氧还原催化剂及其制备方法
CN102498239A (zh) * 2009-08-04 2012-06-13 金泰克斯公司 用于电化学传感器中的阴极材料和相关的装置、以及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498239A (zh) * 2009-08-04 2012-06-13 金泰克斯公司 用于电化学传感器中的阴极材料和相关的装置、以及其制造方法
CN101773855A (zh) * 2010-01-19 2010-07-14 华南理工大学 大环化合物修饰石墨烯的氧还原催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"负载于多壁碳纳米管上卟啉锡的可见光催化活性";严亚,等;《无机化学学报》;20101031;第26卷(第10期);第1.1-1.4节 *

Also Published As

Publication number Publication date
CN105597828A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN105597828B (zh) 一种氧化石墨烯/卟啉复合物光催化剂的制备方法
Li et al. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance
Sun et al. Eosin Y-sensitized partially oxidized Ti 3 C 2 MXene for photocatalytic hydrogen evolution
Nahyoon et al. Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate
Miao et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight
Chhabra et al. Reduced graphene oxide supported MnO2 nanorods as recyclable and efficient adsorptive photocatalysts for pollutants removal
Liang et al. Photocatalytic reduction of uranium (VI) under visible light with 2D/1D Ti3C2/CdS
Jiang et al. Assembling polyoxo-titanium clusters and CdS nanoparticles to a porous matrix for efficient and tunable H2-evolution activities with visible light
Liu et al. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/gC 3 N 4 with highly enhanced photocatalytic activity under simulated sunlight
Li et al. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production
Hou et al. Synergistic conversion and removal of total Cr from aqueous solution by photocatalysis and capacitive deionization
Wang et al. Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance
Li et al. Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction
Zhou et al. Role of graphene on the band structure and interfacial interaction of Bi 2 WO 6/graphene composites with enhanced photocatalytic oxidation of NO
Shen et al. Enhanced visible light photocatalytic activity in SnO2@ g-C3N4 core-shell structures
Zhao et al. Study on the photocatalysis mechanism of the Z-scheme cobalt oxide nanocubes/carbon nitride nanosheets heterojunction photocatalyst with high photocatalytic performances
Mu et al. Metal-organic framework-derived rodlike AgCl/Ag/In2O3: A plasmonic Z-scheme visible light photocatalyst
Ge et al. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer
Luo et al. Cu-MOF assisted synthesis of CuS/CdS (H)/CdS (C): Enhanced photocatalytic hydrogen production under visible light
Rabé et al. Enhanced Rhodamine B and coking wastewater degradation and simultaneous electricity generation via anodic g-C3N4/Fe0 (1%)/TiO2 and cathodic WO3 in photocatalytic fuel cell system under visible light irradiation
CN108714431A (zh) 一种纳米纤维素增强复合光催化剂及其制备方法和应用
Zhou et al. Boosting photoelectron transport in Zn0. 5Cd0. 5S/Sn3O4 heterostructure through close interface contact for enhancing photocatalytic H2 generation and degradation of tetracycline hydrochloride
Zhang et al. Construction of Pt-decorated g-C3N4/Bi2WO6 Z-scheme composite with superior solar photocatalytic activity toward rhodamine B degradation
Wang et al. Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency
Yan et al. Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171226

Termination date: 20201228