CN111644203A - 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用 - Google Patents

一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用 Download PDF

Info

Publication number
CN111644203A
CN111644203A CN202010521344.2A CN202010521344A CN111644203A CN 111644203 A CN111644203 A CN 111644203A CN 202010521344 A CN202010521344 A CN 202010521344A CN 111644203 A CN111644203 A CN 111644203A
Authority
CN
China
Prior art keywords
metalloporphyrin
boron nitride
photocatalytic material
reaction
graphene quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010521344.2A
Other languages
English (en)
Inventor
孙占仑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Pintai New Material Technology Co ltd
Original Assignee
Qingdao Pintai New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Pintai New Material Technology Co ltd filed Critical Qingdao Pintai New Material Technology Co ltd
Priority to CN202010521344.2A priority Critical patent/CN111644203A/zh
Publication of CN111644203A publication Critical patent/CN111644203A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用,属于光催化制氢技术领域。本发明的光催化材料以金属卟啉作为光敏剂,石墨烯量子点为电子转移剂,将金属卟啉共价接枝于石墨烯量子点,并原位负载于二维氮化硼纳米片上。利用石墨烯量子点的大的比表面和高电子转移性能以及带负电荷的氮化硼纳米片的空穴吸收性能,提升光敏剂金属卟啉在光照条件下激发的电子‑空穴的分离效率,从而提升光催化材料的光催化效率。将上述三元体系光催化材料用于光解水制氢,各组分间能够发挥优异的协同作用,光照6个小时后的产氢量可高达1.15μmol/mg,具有潜在的应用价值。

Description

一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材 料在光解水制氢中的应用
技术领域
本发明涉及一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用,属于光催化制氢技术领域。
背景技术
氢能是一种绿色可持续的清洁能源。在多种氢能的制备方法中,通过光催化法将太阳能转换为氢能的研究受到国内外研究者的广泛关注,其中光催化剂因与制氢效率息息相关而成为研究者主要关注的目标。
卟啉是卟吩外环带有取代基的同系物和衍生物的总称,在生物体内具有电子传递、氧转移和电荷分离等功能。卟啉类化合物在可见光区和近红外区有较好的吸收,强吸收的Soret带,吸收光谱范围一般在400-450nm;弱吸收的Q带,吸收光谱范围一般在500-750nm。此外,卟啉类化合物还具有优良的载流子传输性能。卟啉性质稳定,熔点一般大于300℃,因此,可以作为性能稳定的可见光光催化剂使用。石墨烯是由sp2杂化碳原子组成的二维网状的超薄单层,由于石墨烯大的比表面积,优越的吸附性能和电荷转移性能,常作为光催化剂的电子转移剂与光催化剂复合。卟啉与石墨烯的电子结构互补,而且卟啉的光学、电学性质等易通过调整卟啉分子中的金属中心来调节。因此,以卟啉分子作为功能单元与石墨烯组装,反应方式更加灵活,且能精细地调控石墨烯基光催化剂的微观结构和性能。
石墨烯量子点(Graphene quantum dots,GQDs),可以看做是横向尺寸小于100 nm的石墨烯,严格意义上来讲,是尺寸在20 nm以下,拥有1-3层原子层的准零维材料。相比之下,GQDs不仅具备了石墨烯的优异特性,而且作为准零维材料,它的量子限域效应以及边缘效应则会更加的凸显出来。除此之外,GQDs还拥有更大的比表面积、更大的机械强度和更高的电子迁移率。
六方氮化硼(H-BN)具有类似石墨的层状结构,具备独特的物理化学性质,如高化学稳定性、低介电常数、大的热导率以及无毒性。更重要的是,当BN被剥离成二维纳米片时,BN将具有电负性。带负电荷的BN纳米片能够吸引光激发空穴并提高光激发电子空穴对的分离效率。理论和实验工作证实,BN的负电荷源于与氮空位或碳杂质相关的稳定缺陷。
基于上述技术认知,本发明开发了一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料,并将其用于光解水制氢。上述光催化材料以金属卟啉作为光敏剂,石墨烯量子点为电子转移剂,将金属卟啉共价接枝于石墨烯量子点,并原位负载于二维氮化硼纳米片上。利用石墨烯量子点的大的比表面和高电子转移性能以及带负电荷的氮化硼纳米片的空穴吸收性能,提升光敏剂金属卟啉在光照条件下激发的电子-空穴的分离效率,从而提升上述光催化材料的光催化效率。将上述光催化材料用于光解水制氢,各组分间能够发挥优异的协同作用,提高光催化材料的产氢效率,存在潜在的应用前景。
发明内容
本发明的目的在于提供一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用,具体为:
将所述光催化材料加入光解水制氢的反应器皿中,并以氙灯作为光源,进行光解水制氢反应;所述光催化材料以金属卟啉作为光敏剂,石墨烯量子点为电子转移剂,二维氮化硼纳米片为载体,将金属卟啉共价接枝于石墨烯量子点,并负载于二维氮化硼纳米片上。
进一步的,所述金属卟啉中的配位金属选自Ni、Cu、Cr、Zn。
进一步的,所述金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料的制备方法,包括如下的制备步骤:
(1)将氧化石墨烯(GO)分散于DMF中,超声分散均匀,加入氯化亚砜,于50-70℃回流反应20-30h,反应体系通氮气保护,反应结束后蒸发除去未反应的氯化亚砜和多余的溶剂,得到酰氯化的氧化石墨烯;
(2)步骤(1)得到的产物重新分散于DMF中,超声分散均匀,滴加少量三乙胺作为催化剂,加入氨基金属卟啉,于100-140℃反应36-72h,反应体系通氮气保护,反应结束后,将所得反应物注入乙醚中进行沉淀,并通过0.22μm滤膜过滤,将过滤得到的产物充分洗涤,得到金属卟啉共价接枝的氧化石墨烯;
(3)将步骤(2)得到的产物分散于去离子水中,加入氮化硼纳米片水分散液,超声分散均匀,逐滴滴加过氧化氢,超声分散均匀;将混合液转移至聚四氟乙烯内衬的反应釜中,密封后在130-200℃条件下反应2-6h,将水热反应后的产物离心分离,得到所述的金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料。
进一步的,所述步骤(2)中的所述的氨基金属卟啉的结构式为:
Figure 100002_DEST_PATH_IMAGE002
,其中,M选自Ni、Cu、Cr、Zn。
进一步的,所述GO与氯化亚砜的质量之比为1:20-1000,所述GO与氨基金属卟啉的质量比为1:0.5-5。
进一步的,所述GO、氮化硼纳米片、过氧化氢的质量比为1:0.5-2:20-50。
进一步的,所述(3)中的反应温度优选为150-180℃,反应时间优选为2-4h。
本发明中,首先采用氯化亚砜在DMF催化作用下对氧化石墨烯进行酰氯化改性,然后将酰氯化的氧化石墨烯与氨基金属卟啉进行亲核取代反应共价接枝。经上述反应,金属卟啉能够通过酰胺键稳定键合于氧化石墨烯的表面。将共价接枝的氧化石墨烯进一步分散在水热体系中,以过氧化氢为氧化剂,采用过氧化氢高温解离出来的羟基和氧自由基的氧化作用破坏氧化石墨烯中的C-C,形成C-OH,使片状的石墨烯逐渐裂解形成量子点。在此过程中,经酰胺键共价接枝的金属卟啉由于具有较好的热稳定性,能够免受后续水热过程的影响。同时,由于氮化硼纳米片具有较高的比表面积,在水热体系中亦可以实现量子点的原位负载。本发明的制备方法相对简单,工艺条件亦相对温和,产物收率较高。
采用500W的氙灯(紫外光和可见光)照射,本发明的三元光催化材料在光解水制氢过程中能够较好的发挥协同作用,光照6个小时后的产氢量可高达1.15μmol/mg,具有潜在的应用价值。
与现有技术相比,本发明的有益效果是:
(1)本发明首次开发了一种金属卟啉-石墨烯量子点-氮化硼三元光催化体系,利用石墨烯量子点的大的比表面和高电子转移性能以及带负电荷的氮化硼纳米片的空穴吸收性能,提升光敏剂金属卟啉在光照条件下激发的电子-空穴的分离效率,从而提升上述三元光催化材料的光催化效率。
(2)本发明采用共价接枝的方法将氧化石墨烯与金属卟啉以酰胺键键合,键合力远高于物理混合和静电吸附作用,所得复合能稳定存在于不同的体系中,为后续的水热切割石墨烯为量子点提供了有力保障。
(3)本发明采用简单水热法对共价接枝的氧化石墨烯进行化学氧化切割,同时实现了切割所得量子点在氮化硼表面的原位负载。制备方法相对简单,工艺条件亦相对温和,产物收率较高。
(4)本发明所得光催化材料在6个小时内的产氢量可高达1.15μmol/mg,优于二元光催化材料金属卟啉/石墨烯和金属卟啉/石墨烯量子点,具有潜在的应用前景。
附图说明
图1示出了不同光催化材料应用于光解水制氢时的产氢量随反应时间的变化关系。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将氧化石墨烯20mg(GO)分散于DMF中,超声分散均匀,加入10g氯化亚砜,于60℃回流反应20h,反应体系通氮气保护,反应结束后蒸发除去未反应的氯化亚砜和多余的溶剂,得到酰氯化的氧化石墨烯;
(2)步骤(1)得到的产物重新分散于DMF中,超声分散均匀,滴加少量三乙胺作为催化剂,加入30mg氨基Zn卟啉,于120℃反应36h,反应体系通氮气保护,反应结束后,将所得反应物注入乙醚中进行沉淀,并通过0.22μm滤膜过滤,将过滤得到的产物充分洗涤,得到Zn卟啉共价接枝的氧化石墨烯;
(3)将步骤(2)得到的产物分散于去离子水中,加入含有20mg氮化硼纳米片的水分散液,超声分散均匀,逐滴滴加0.8g过氧化氢,超声分散均匀;将混合液转移至聚四氟乙烯内衬的反应釜中,密封后在180℃条件下反应3h,将水热反应后的产物离心分离,得到Zn卟啉功能化的石墨烯量子点/氮化硼复合光催化材料;记为编号S-1。
实施例2
(1)将氧化石墨烯20mg(GO)分散于DMF中,超声分散均匀,加入10g氯化亚砜,于60℃回流反应20h,反应体系通氮气保护,反应结束后蒸发除去未反应的氯化亚砜和多余的溶剂,得到酰氯化的氧化石墨烯;
(2)步骤(1)得到的产物重新分散于DMF中,超声分散均匀,滴加少量三乙胺作为催化剂,加入40mg氨基Cu卟啉,于120℃反应36h,反应体系通氮气保护,反应结束后,将所得反应物注入乙醚中进行沉淀,并通过0.22μm滤膜过滤,将过滤得到的产物充分洗涤,得到Cu卟啉共价接枝的氧化石墨烯;
(3)将步骤(2)得到的产物分散于去离子水中,加入含有30mg氮化硼纳米片的水分散液,超声分散均匀,逐滴滴加1g过氧化氢,超声分散均匀;将混合液转移至聚四氟乙烯内衬的反应釜中,密封后在160℃条件下反应2h,将水热反应后的产物离心分离,得到Cu卟啉功能化的石墨烯量子点/氮化硼复合光催化材料;记为编号S-2。
对比例1-2
将实施例1中步骤(2)所得Zn卟啉共价接枝的氧化石墨烯作为对比例1,记为编号D-1;实施例1中步骤(3)未加氮化硼纳米片所得产物作为对比例2,记为编号D-2。
实施例3
将光催化材料加入光解水制氢的反应器皿中,并以500 W氙灯作为光源,测试光催化材料的产氢效率。不同样品的产氢量随时间的变化如附图1所示。
由图1可以看出,由本发明实施例1、2所制备的光催化材料的产氢量明显优于对比例1、2所制备的二元光催化材料。光照6h,本发明实施例1所制备的样品S-1的产氢量可达1.15μmol/mg,说明本发明的三元体系光催化体系发挥了很好的协同作用,具有潜在的应用价值。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

1.一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用,其特征在于,具体为:
将所述光催化材料加入光解水制氢的反应器皿中,并以氙灯作为光源,进行光解水制氢反应;所述光催化材料以金属卟啉作为光敏剂,石墨烯量子点为电子转移剂,二维氮化硼纳米片为载体,将金属卟啉共价接枝于石墨烯量子点,并负载于二维氮化硼纳米片上。
2.根据权利要求1所述的应用,其特征在于,所述金属卟啉中的配位金属选自Ni、Cu、Cr、Zn。
3.根据权利要求1所述的应用,其特征在于,所述金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料的制备方法包括如下的制备步骤:
(1)将氧化石墨烯(GO)分散于DMF中,超声分散均匀,加入氯化亚砜,于50-70℃回流反应20-30h,反应体系通氮气保护,反应结束后蒸发除去未反应的氯化亚砜和多余的溶剂,得到酰氯化的氧化石墨烯;
(2)步骤(1)得到的产物重新分散于DMF中,超声分散均匀,滴加少量三乙胺作为催化剂,加入氨基金属卟啉,于100-140℃反应36-72h,反应体系通氮气保护,反应结束后,将所得反应物注入乙醚中进行沉淀,并通过0.22μm滤膜过滤,将过滤得到的产物充分洗涤,得到金属卟啉共价接枝的氧化石墨烯;
(3)将步骤(2)得到的产物分散于去离子水中,加入氮化硼纳米片水分散液,超声分散均匀,逐滴滴加过氧化氢,超声分散均匀;将混合液转移至聚四氟乙烯内衬的反应釜中,密封后在130-200℃条件下反应2-6h,将水热反应后的产物离心分离,得到所述的金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料。
4.根据权利要求3所述的应用,其特征在于,所述步骤(2)中的所述的氨基金属卟啉的结构式为:
Figure DEST_PATH_IMAGE002
,其中,M选自Ni、Cu、Cr、Zn。
5.根据权利要求3所述的应用,其特征在于,所述GO与氯化亚砜的质量之比为1:20-1000,所述GO与氨基金属卟啉的质量比为1:0.5-5。
6.根据权利要求3所述的应用,其特征在于,所述GO、氮化硼纳米片、过氧化氢的质量比为1:0.5-2:20-50。
7.根据权利要求3所述的应用,其特征在于,所述(3)中的反应温度优选为150-180℃,反应时间优选为2-4h。
CN202010521344.2A 2020-06-10 2020-06-10 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用 Pending CN111644203A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010521344.2A CN111644203A (zh) 2020-06-10 2020-06-10 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010521344.2A CN111644203A (zh) 2020-06-10 2020-06-10 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用

Publications (1)

Publication Number Publication Date
CN111644203A true CN111644203A (zh) 2020-09-11

Family

ID=72344091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010521344.2A Pending CN111644203A (zh) 2020-06-10 2020-06-10 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用

Country Status (1)

Country Link
CN (1) CN111644203A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413913A (zh) * 2021-08-02 2021-09-21 哈尔滨工业大学 一种石墨烯光催化剂的制备方法、产品及应用
CN113502110A (zh) * 2021-08-20 2021-10-15 西安石油大学 一种石墨烯基无溶剂型环氧导静电防腐涂料及其制备方法和使用方法
CN114516616A (zh) * 2022-03-11 2022-05-20 南京工业大学 一种将等离激元金属与钴卟啉催化剂耦合协同催化高效的产氢反应的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786815A (zh) * 2012-08-15 2012-11-21 中国科学院上海硅酸盐研究所 氮化硼粉体表面改性的方法、改性氮化硼及聚合物复合材料
CN105597828A (zh) * 2015-12-28 2016-05-25 上海应用技术学院 一种氧化石墨烯/卟啉复合物光催化剂的制备方法
CN105688967A (zh) * 2016-01-20 2016-06-22 陕西科技大学 一种钨酸铋/氮化硼复合光催化材料及其制备方法
CN105688995A (zh) * 2016-01-21 2016-06-22 湖南科技大学 一种在室温条件下制备金属卟啉-石墨烯纳米复合材料的方法
CN109052365A (zh) * 2018-09-06 2018-12-21 苏州仁勤新材料有限公司 一种碳量子点的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786815A (zh) * 2012-08-15 2012-11-21 中国科学院上海硅酸盐研究所 氮化硼粉体表面改性的方法、改性氮化硼及聚合物复合材料
CN105597828A (zh) * 2015-12-28 2016-05-25 上海应用技术学院 一种氧化石墨烯/卟啉复合物光催化剂的制备方法
CN105688967A (zh) * 2016-01-20 2016-06-22 陕西科技大学 一种钨酸铋/氮化硼复合光催化材料及其制备方法
CN105688995A (zh) * 2016-01-21 2016-06-22 湖南科技大学 一种在室温条件下制备金属卟啉-石墨烯纳米复合材料的方法
CN109052365A (zh) * 2018-09-06 2018-12-21 苏州仁勤新材料有限公司 一种碳量子点的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SARAH AGHAKHANINEJAD, ET AL.: "Synthesis of pineapple slab like morphology of ternary BiVO4/graphene/porphyrin nanocomposite with enhanced visible light photocatalytic activity", 《SN APPLIED SCIENCES》 *
吴品: "卟啉共价修饰的石墨烯杂化材料的制备、表征及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413913A (zh) * 2021-08-02 2021-09-21 哈尔滨工业大学 一种石墨烯光催化剂的制备方法、产品及应用
CN113502110A (zh) * 2021-08-20 2021-10-15 西安石油大学 一种石墨烯基无溶剂型环氧导静电防腐涂料及其制备方法和使用方法
CN114516616A (zh) * 2022-03-11 2022-05-20 南京工业大学 一种将等离激元金属与钴卟啉催化剂耦合协同催化高效的产氢反应的方法
CN114516616B (zh) * 2022-03-11 2023-05-16 南京工业大学 一种将等离激元金属与钴卟啉催化剂耦合协同催化高效的产氢反应的方法

Similar Documents

Publication Publication Date Title
Li et al. MXenes as noble-metal-alternative co-catalysts in photocatalysis
Han et al. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation
Low et al. Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels
Hu et al. Engineering black phosphorus to porous gC 3 N 4-metal–organic framework membrane: a platform for highly boosting photocatalytic performance
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
CN111644203A (zh) 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料在光解水制氢中的应用
Chen et al. Metal–organic framework-based nanomaterials for photocatalytic hydrogen peroxide production
Almomani et al. A comprehensive review of hydrogen generation by water splitting using 2D nanomaterials: Photo vs electro-catalysis
Wan et al. A facile dissolution strategy facilitated by H2SO4 to fabricate a 2D metal-free g-C3N4/rGO heterojunction for efficient photocatalytic H2 production
Su et al. Enhanced visible light photocatalytic performances of few-layer MoS2@ TiO2 hollow spheres heterostructures
Zhang et al. Pt nanoparticles embedded spine-like g-C3N4 nanostructures with superior photocatalytic activity for H2 generation and CO2 reduction
CN110433844B (zh) 一种用于高效处理含Cr6+废水的(B,O)共掺杂g-C3N4光催化剂的制备方法
Li et al. Construction of nano-flower MIL-125 (Mo)-In2Se3 Z-scheme heterojunctions by one-step solvothermal method for removal of tetracycline from wastewater in the synergy of adsorption and photocatalysis way
Gao et al. Ag plasmon resonance promoted 2D AgBr-δ-Bi2O3 nanosheets with enhanced photocatalytic ability
Song et al. Boosting charge carriers separation and migration efficiency via fabricating all organic van der Waals heterojunction for efficient photoreduction of CO2
CN111644202A (zh) 一种金属卟啉功能化的石墨烯量子点/氮化硼复合光催化材料及其制备方法
Rao et al. Nanostructured metal nitrides for photocatalysts
CN113499781A (zh) 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用
Wang et al. Scheme-II heterojunction of Bi2WO6@ Br-COFs hybrid materials for CO2 photocatalytic reduction
Zheng et al. In situ synthesis of N-doped TiO 2 on Ti 3 C 2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N 2
CN113751049B (zh) 一种碳化钛/氮化碳复合光催化剂的制备方法、产品及应用
Wang et al. Fabrication of nitrogen-deficient gC 3 N 4 nanosheets via an acetaldehyde-assisted hydrothermal route and their high photocatalytic performance for H 2 O 2 production and Cr (vi) reduction
Ikreedeegh et al. Facile fabrication of binary g-C3N4/NH2-MIL-125 (Ti) MOF nanocomposite with Z-scheme heterojunction for efficient photocatalytic H2 production and CO2 reduction under visible light
Tan et al. Supercritical carbon dioxide-assisted TiO2/g-C3N4 heterostructures tuning for efficient interfacial charge transfer and formaldehyde photo-degradation
Chen et al. Manganese phosphorous trifulfide nanosheets and nitrogen doped carbon dot composites with manganese vacancies for a greatly enhanced hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination