CN109461775A - 一种基于外延生长半金属的自旋场效应晶体管及制备方法 - Google Patents
一种基于外延生长半金属的自旋场效应晶体管及制备方法 Download PDFInfo
- Publication number
- CN109461775A CN109461775A CN201811071297.5A CN201811071297A CN109461775A CN 109461775 A CN109461775 A CN 109461775A CN 201811071297 A CN201811071297 A CN 201811071297A CN 109461775 A CN109461775 A CN 109461775A
- Authority
- CN
- China
- Prior art keywords
- electrode
- gaas
- size
- film layer
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims description 12
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 8
- 230000005611 electricity Effects 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000001259 photo etching Methods 0.000 claims description 4
- 238000000609 electron-beam lithography Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims description 3
- 239000011241 protective layer Substances 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 230000005669 field effect Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/24—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66984—Devices using spin polarized carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
基于利用外延生长半金属的自旋场效应晶体管,所述半金属材料为Fe3O4合金,采用的基片为As/n‑GaAs/GaAs(100),在基片上承载了两个大小不同的半金属材料Fe3O4薄膜层作为电极基,其中小的半金属材料的大小为:17±5×156±20μm,大的半金属材料的大小为97±10×156±20μm,两个大小不同的半金属材料的间距为2.6±1μm;在半金属材料薄膜层上制备两对电极,通过改变Fe3O4薄膜层第一对电极间的外加电压,实现n‑GaAs沟道内部的自旋反转,从而改变第二对电极C,D间的电流大小。
Description
技术领域
本发明涉及微电子器件及制备,更具体地,涉及基于利用外延生长半金属制备自旋场效应晶体管的制备过程,所述半金属材料为Fe3O4合金。
背景技术
场效应晶体管(Field Effect Transistor,FET),基于半导体材料,利用电场效应来控制晶体管的电流,是一种利用输入电压控制输出电流的半导体器件,已成为人类信息时代的基础元件。然而为了提高单位面积上的计算性能,场效应晶体管的尺寸不断缩小,已接近量子隧穿效应的极限尺寸,在物理原理上限制了场效应晶体管进一步集成化。此外在小尺寸下,器件的散热、功耗等问题始终无法得到有效的解决。二十世纪以来,人们发现电子除了携带电荷的属性以外,还带有自旋的内禀属性。1990年Datta和Das首次提出了利用电子自旋特性的新型电子器件——自旋场效应晶体管,其基本结构如图一所示:两边的铁磁性材料分别作为源极(S)和漏极(D),并具有相同的极化方向(内部电子自旋取向相同),用以注入和收集自旋极化的电子。栅极(G)电场使沟道中高速运动的电子的自旋发生进动或转动,改变源极和漏极间的导通状态。当栅极有外加电压时,沟道内部的自旋反转,由平行反转为反平行,被D极排斥而不导电,从而S-D电流受到栅电压的控制。
发明内容
本发明目的是,提出一种基于半金属材料的自旋场效应晶体管及其生长与制备。尤其是利用外延生长Fe3O4并进行微加工处理,制备出自旋场效应晶体管。
本发明技术方案:一种基于外延生长半金属的自旋场效应晶体管,所述半金属材料为Fe3O4合金,采用的基片为As/n-GaAs/GaAs(100),在基片上承载了两个大小不同的半金属材料Fe3O4薄膜层,其中小的半金属材料的大小为:17±5×156±20μm,大的半金属材料的大小为97±10×156±20μm,两个大小不同的半金属材料的间距为2.6±1μm;在半金属材料薄膜层上制备两对电极,通过改变Fe3O4薄膜层上一对电极A,B间的外加电压,实现n-GaAs沟道内部的自旋反转,从而改变第二对电极C,D间的电流大小。
两个大小不同的半金属材料Fe3O4薄膜层,在Fe3O4制备电极,其中小Fe3O4薄膜层的大小为:17×156μm,大电极的Fe3O4薄膜层大小尺寸为97×156μm。
两个Fe3O4薄膜层(电极)间距为2.6μm。
一种涉及上述基于利用外延生长半金属制备自旋场效应晶体管的制备方法,所述半金属材料为Fe3O4合金,采用的基片为As/n-GaAs/GaAs(100),在基片上分子束外延生长法半金属材料Fe3O4电极,进行光刻、刻蚀得到两个Fe3O4薄膜层矩形块,尺寸如上述,在两个Fe3O4薄膜层矩形块蒸镀两对电极等工艺制备出自旋场效应晶体管。通过一对电极A,B电极间的电压可以控制第二对电极即C,D电极间电流的大小。
两个Fe3O4的电极为长方形,所述的自旋场效应晶体管中,两个Fe3O4的电极间距为2.6μm。
有益效果,本发明基于利用外延生长半金属制备自旋场效应晶体管。可实现通过A,B电极间的电压控制C,D电极间电流的大小,实现低损耗。
附图说明
图1为自旋场效应晶体管示意图。
图2为本发明基于Fe3O4自旋场效应晶体管制备的示意图,是基于Fe3O4自旋场效应晶体管的微加工过程,共有4幅图:4幅图中上部图为截面图,下部图为俯视图:(a)在分子束外延生长Fe3O4,(b)电子束刻蚀得到了两个大小不同的Fe3O4电极,(c)光刻胶进行保护,随后放入H2SO4中将其余Fe3O4完全刻蚀掉,(d)生长两对金电极。
具体实施方式
使用As/n-GaAs/GaAs(100)基片来制备半金属自旋场效应晶体管。生长(承载)了两个大小不同的半金属材料薄膜层Fe3O4,在Fe3O4上制备A,B、C、D两对电极,其中小电极的薄膜层Fe3O4大小为:17±5×156±20μm,大电极薄膜层Fe3O4的大小为97±10×156±20μm,电极间距为2.6±1μm;通过改变Fe3O4电极A,B间的外加电压,实现n-GaAs沟道内部的自旋反转,从而改变C,D间的电流大小。
所述的半金属材料Fe3O4的生长方法是采用分子数外延生长法。
基片中,最顶部的As作为保护层,常温下可以起到保护基片,防止氧化的作用。而As的升华点较低,可在高温下升华脱离基片,便于生长其它的材料。基片中间的一层为厚度为500nm,掺杂浓度为3×1018cm-3的n-GaAs。基片底为500μm的本征GaAs(100)。首先,我们使用丙酮和异丙酮清洗本征GaAs基底以保证其表面的清洁度,然后将其放入分子束外延生长腔室中,当腔体中真空度降低到2×10-10毫巴以下时,在830K的温度下退火30分钟来蒸发掉基底表面作为保护层的As,以得到平整的GaAs的表面。
然后,在分子束外延生长腔体内,边生长Fe(通入有机铁源)边通入氧气来在GaAs表面生长Fe3O4。室温下,当分子束外延生长腔室中的气压低于1×10-9毫巴时,在GaAs表面生长4nm的Fe3O4,生长速率为样品生长结束后,在氧分压为5×10-5、500K的富氧环境中氧化10分钟。在生长过程中,我们使用反射式高能电子衍射仪监控材料的单晶属性以获得较好的样品。
生长过后,通过电子束刻蚀得到了两个大小不同的Fe3O4电极(的基础),其中小电极基础的大小为:17×156μm,大电极基础的大小为97×156μm,电极间距为2.6μm。然后利用光刻在电极表面覆盖一层光刻胶进行保护,随后将样品放入H2SO4中将其余Fe3O4完全刻蚀掉,整个过程如图2所示。再Fe3O4电极的基础上生长两对金电极。本发明可以成为一种低能耗金属基逻辑电路,涉及利用外延生长半金属制备自旋场效应晶体管的过程,半金属材料为Fe3O4合金。通过改变Fe3O4电极A,B间的外加电压,实现n-GaAs沟道内部的自旋反转,从而改变C,D间的电流大小。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (5)
1.一种基于利用外延生长半金属的自旋场效应晶体管,其特征是,所述半金属材料为Fe3O4合金,采用的基片为As/n-GaAs/GaAs(100),在基片上承载了两个大小不同的半金属材料Fe3O4薄膜层作为电极基础,其中小的半金属材料的大小为:17±5×156±20μm,大的半金属材料的大小为97±10×156±20μm,两个大小不同的半金属材料的间距为2.6±1μm;在半金属材料薄膜层上制备两对电极,通过改变Fe3O4薄膜层上一对电极A,B间的外加电压,实现n-GaAs沟道内部的自旋反转,从而改变第二对电极C,D间的电流大小。
2.根据权利要求1所述的自旋场效应晶体管,其特征是,在Fe3O4制备电极,其中小Fe3O4薄膜层的大小为:17×156μm,大电极的Fe3O4薄膜层大小尺寸为97×156μm。
3.根据权利要求1所述的自旋场效应晶体管,其特征是,两个Fe3O4薄膜层(电极)间距为2.6μm。
4.根据权利要求1-3之一所述的自旋场效应晶体管的制备方法,其特征是,一种涉及基于利用外延生长半金属制备自旋场效应晶体管的制备方法,所述半金属材料为Fe3O4合金,采用的基片为As/n-GaAs/GaAs(100),在基片上分子束外延生长法半金属材料Fe3O4电极,进行光刻、刻蚀得到两个Fe3O4薄膜层矩形块,尺寸如上述,在两个Fe3O4薄膜层矩形块蒸镀两对电极等工艺制备出自旋场效应晶体管。通过一对电极A,B电极间的电压可以控制第二对电极即C,D电极间电流的大小。
5.根据权利要求4所述的自旋场效应晶体管制备方法,其特征是,基片中间的一层为厚度为500nm,掺杂浓度为3×1018cm-3的n-GaAs,基片底为500μm的本征GaAs(100),清洗GaAs基底,然后将其放入分子束外延生长腔室中,当腔体中真空度降低到2×10-10毫巴以下时,在830K的温度下退火30分钟来蒸发掉基底表面作为保护层的As,然后,在分子束外延生长腔体内,边生长Fe边通入氧气来在GaAs表面生长Fe3O4;室温下,当分子束外延生长腔室中的气压低于1×10-9毫巴时,在GaAs表面生长4nm的Fe3O4,生长过后,通过电子束刻蚀得到了两个大小不同的Fe3O4电极的基础,其中小电极基础的大小为:17×156μm,大电极基础的大小为97×156μm,电极间距为2.6μm;然后利用光刻在电极表面覆盖一层光刻胶进行保护,随后将样品放入H2SO4中将其余Fe3O4完全刻蚀掉;再Fe3O4电极的基上生长两对金电极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811071297.5A CN109461775B (zh) | 2018-09-14 | 2018-09-14 | 一种基于外延生长半金属的自旋场效应晶体管及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811071297.5A CN109461775B (zh) | 2018-09-14 | 2018-09-14 | 一种基于外延生长半金属的自旋场效应晶体管及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109461775A true CN109461775A (zh) | 2019-03-12 |
CN109461775B CN109461775B (zh) | 2022-03-15 |
Family
ID=65606693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811071297.5A Active CN109461775B (zh) | 2018-09-14 | 2018-09-14 | 一种基于外延生长半金属的自旋场效应晶体管及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109461775B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1713400A (zh) * | 2004-06-16 | 2005-12-28 | 株式会社东芝 | 自旋晶体管、可编程逻辑电路和磁存储器 |
CN1757121A (zh) * | 2003-03-07 | 2006-04-05 | 独立行政法人科学技术振兴机构 | 具有自旋相关转移特性的场效应晶体管及使用了它的非易失性存储器 |
US20090152606A1 (en) * | 2007-12-13 | 2009-06-18 | Korea Institute Of Science And Technology | Spin Transistor Using Epitaxial Ferromagnet-Semiconductor Junction |
CN102315255A (zh) * | 2010-07-07 | 2012-01-11 | 中国科学院物理研究所 | 一种自旋场效应晶体管及其磁性存储器 |
TWI546971B (zh) * | 2014-06-12 | 2016-08-21 | 國立成功大學 | 全電控自旋場效電晶體 |
-
2018
- 2018-09-14 CN CN201811071297.5A patent/CN109461775B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1757121A (zh) * | 2003-03-07 | 2006-04-05 | 独立行政法人科学技术振兴机构 | 具有自旋相关转移特性的场效应晶体管及使用了它的非易失性存储器 |
CN1713400A (zh) * | 2004-06-16 | 2005-12-28 | 株式会社东芝 | 自旋晶体管、可编程逻辑电路和磁存储器 |
US20090152606A1 (en) * | 2007-12-13 | 2009-06-18 | Korea Institute Of Science And Technology | Spin Transistor Using Epitaxial Ferromagnet-Semiconductor Junction |
CN102315255A (zh) * | 2010-07-07 | 2012-01-11 | 中国科学院物理研究所 | 一种自旋场效应晶体管及其磁性存储器 |
TWI546971B (zh) * | 2014-06-12 | 2016-08-21 | 國立成功大學 | 全電控自旋場效電晶體 |
Non-Patent Citations (1)
Title |
---|
ZHAOCONG HUANG ET AL: "Enhanceing the spin-orbit Coupling in Fe3O4 Epitaxial Thin Films by interface Engineering", 《ACS APPLIED MATERIAL & INTERFACES》 * |
Also Published As
Publication number | Publication date |
---|---|
CN109461775B (zh) | 2022-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107749433B (zh) | 一种二维范德华异质结光电探测器及其制备方法 | |
Iwasaki et al. | Diamond junction field-effect transistors with selectively grown n+-side gates | |
CN110265357A (zh) | 半导体器件 | |
CN108767107A (zh) | 一种电场调控的二维自旋电子器件及其制备方法 | |
CN108493234A (zh) | 一种鳍式沟道的氧化镓基垂直场效应晶体管及其制备方法 | |
Tang et al. | Spin transport in Ge nanowires for diluted magnetic semiconductor-based nonvolatile transpinor | |
CN109830529A (zh) | 一种提升开通速度的超高压碳化硅晶闸管及其制作方法 | |
CN108831928A (zh) | 一种二维半导体材料负电容场效应晶体管及制备方法 | |
CN108807553B (zh) | 一种基于二维半导体材料的同质pn结及其制备方法 | |
Treu et al. | Commercial SiC device processing: Status and requirements with respect to SiC based power devices | |
CN114566544A (zh) | 一种高迁移率自旋场效应晶体管及其制备方法 | |
CN109461775A (zh) | 一种基于外延生长半金属的自旋场效应晶体管及制备方法 | |
CN106783997B (zh) | 一种高迁移率晶体管及其制备方法 | |
Maeda et al. | Effect of Nitrogen-Doped LaB 6 Interfacial Layer on Device Characteristics of Pentacene-Based OFET | |
Wang et al. | Fabrication and characterization of miniaturized NbN superconducting quantum interference devices with nanobridge junctions | |
JPS63311768A (ja) | 相補型半導体装置の製造方法 | |
CN110323277A (zh) | 场效应晶体管及其制备方法 | |
CN107369707A (zh) | 基于4H‑SiC衬底异质结自旋场效应晶体管及其制造方法 | |
CN104993051B (zh) | 一种金属膜片阵列/有机半导体复合导电沟道薄膜晶体管的制备方法 | |
CN108630749A (zh) | 一种超高压碳化硅晶闸管及其制备方法 | |
CN210866183U (zh) | 一种电可控的二维自旋电子器件阵列 | |
Scott‐Thomas et al. | Si metal–oxide semiconductor field effect transistor with 70‐nm slotted gates for study of quasi‐one‐dimensional quantum transport | |
CN103811559B (zh) | 一种具有双极型工作特性的薄膜晶体管 | |
CN107658337B (zh) | 高电子迁移率自旋场效应晶体管及其制备方法 | |
CN107425059A (zh) | Cr掺杂异质结自旋场效应晶体管及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |