TWI546971B - 全電控自旋場效電晶體 - Google Patents

全電控自旋場效電晶體 Download PDF

Info

Publication number
TWI546971B
TWI546971B TW103120263A TW103120263A TWI546971B TW I546971 B TWI546971 B TW I546971B TW 103120263 A TW103120263 A TW 103120263A TW 103120263 A TW103120263 A TW 103120263A TW I546971 B TWI546971 B TW I546971B
Authority
TW
Taiwan
Prior art keywords
spin
effect transistor
field effect
electronically controlled
electron
Prior art date
Application number
TW103120263A
Other languages
English (en)
Other versions
TW201547026A (zh
Inventor
陳則銘
何昇晉
莊博任
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW103120263A priority Critical patent/TWI546971B/zh
Priority to US14/738,557 priority patent/US9373709B2/en
Publication of TW201547026A publication Critical patent/TW201547026A/zh
Application granted granted Critical
Publication of TWI546971B publication Critical patent/TWI546971B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Description

全電控自旋場效電晶體
本發明是有關於一種自旋場效電晶體,特別是有關於一種全電控自旋場效電晶體。
自旋場效電晶體(Spin FET)最早係由Supriyo Datta和Biswajit A.Das於Appl.Phys.Lett.56,665(1990)期刊上所提出的概念。在其所提出的結構中,源極(source)與汲極(drain)係採用鐵磁性材料分別作為自旋電子之注入端與偵測端。當閘極(gate)偏壓為0時,自旋電子由注入端可經由半導體異質接面所形成之二維電子氣(2DEG)通道抵達偵測端;當閘極偏壓不為0時,通道中的電場會產生改變(如增強或減弱垂直於通道方向之電場),此時對於運動的電子而言,此變化的電場會使得運動中的電子所感受到之等效磁場(Rashba效應)也發生改變,進而影響電子自旋的進動速度(precession speed),也等同於電子自旋的方向可由外加電場的大小所控制,進而影響到電子自旋流的通過與否(取決於自旋與偵測端的角度差,平行可通過,反平行則無法通過)。
然而目前鐵磁性材料與半導體接面的自旋注入效率極低,且需要外加磁場以改變注入端與偵測端自旋極化方向。此外,電子自旋的生命期(spin lifetime)及電子自旋的相位差(phase spread)等因素,同樣是自旋場效電 晶體難以實現的大問題。
有鑑於上述習知技藝之問題,本發明之目的提供一種不需使用鐵磁性材料、外加磁場或光學元件來控制電子自旋,單純以全電性的方法操控自旋場效電晶體。
根據本發明之目的,提出一種全電控自旋場效電晶體,包含:注入端,此端提供具有第二方向之第一電場,根據Rashba效應,當電子沿著第一方向通過注入端時,其自旋會被極化,只有以第三方向為旋轉軸進行進動(precession)之具有第一自旋方向之電子才能通過;偵測端,此端提供與第一電場相同(反向也可)方向之電場,根據Rashba效應,當電子沿著第一方向通過檢測端時,其自旋方向會被檢測,只有以第三方向為旋轉軸進行進動之具有第一自旋方向之電子才能通過(文中所述之通過,在實際情形上,電子進行進動之旋轉軸要平行於第三方向則可以完全通過,而反向平行則完全不通過,而介在這之間的角度則是部分通過,取決於COSINE值);以及閘極,係位於注入端及偵測端之間,閘極係提供具有第三方向之第二電場,以令電子由第一自旋方向以第二方向為轉軸進行進動;若此電子自旋方向進動至平行於第一自旋方向,則電子可通過偵測端;若此電子自旋方向進動至反向平行於第一自旋方向,則電子無法通過偵測端。
前述之注入端及偵測端可例如分別包含一電極對,且這些電極對係分別提供一偏壓以產生具有第二方向之第一電場。其中,電極對之間可例如形成量子線(quantum wire)或量子點接觸(quantum point contact,QPC)。
前述之注入端、偵測端可位於半導體異質接面上方或兩側而閘極 係位半導體異質接面上,使得半導體異質接面形成令電子沿著第一方向移動之通道。
前述之注入端及偵測端可例如分別包含一電極,且這些電極可例如位於閘極上方之通道之兩側而未接觸通道。其中,通道可例如為奈米線(nanowire)。
前述之注入端及偵測端所分別提供之具有第二方向之第一電場更感應出具有第三方向之第一磁場,以分別注入及偵測具有第一自旋方向之電子。
前述之閘極所提供之具有第三方向之第二電場更感應出具有第二方向之第二磁場,以令電子由第一自旋方向以第二方向為旋轉軸進行進動而轉變為第二自旋方向。
前述之第一方向、第二方向及第三方向係相互垂直。
承上所述,依本發明之全電控自旋場效電晶體,其可具有一或多個下述優點:
(1)本發明之全電控自旋場效電晶體利用注入端及偵測端之電極對所形成的量子線或量子點接觸,使得僅藉由外加電壓即可改變電子之自旋極化方向,而不需使用鐵磁性材料、外加磁場或其他光學元件。
(2)本發明之全電控自旋場效電晶體之注入端及偵測端可有效提高注入端與半導體接面之自旋注入效率。
茲為使 貴審查委員對本發明之技術特徵及所達到之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明如後。
10‧‧‧注入端
11、12‧‧‧注入端之電極對
13‧‧‧注入端之電極
20‧‧‧偵測端
21、22‧‧‧偵測端之電極對
23‧‧‧偵測端之電極
30‧‧‧閘極
40‧‧‧具有第一自旋方向之電子
41‧‧‧具有第二自旋方向之電子
50‧‧‧半導體異質接面
51‧‧‧二維電子氣通道
60‧‧‧奈米線
圖1為本發明之全電控自旋場效電晶體之第一實施例示意圖。
圖2為本發明之全電控自旋場效電晶體之偵測端電壓-閘極電壓曲線圖。
圖3為本發明之全電控自旋場效電晶體之第二實施例示意圖。
以下將參照相關圖式,說明依本發明之全電控自旋場效電晶體之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。
請參閱圖1,圖1為本發明之全電控自旋場效電晶體之第一實施例示意圖。本發明之全電控自旋場效電晶體之第一實施例至少包含注入端10、偵測端20及閘極30。其中,下文所述之第一、第二及第三方向係分別以x、y及z方向作舉例,惟本發明不限於此。
注入端10係用以注入具有第一自旋方向之電子40以令電子沿著第一方向(如x方向)移動。注入端10係可例如包含一電極對11、12,且電極對11、12係施加一偏壓以產生具有第二方向(如y方向)之第一電場Ey,使得注入端10感應出具有第三方向(如z方向)之第一磁場B1,進而藉由第一磁場B1改變注入端10之電子自旋極化方向以注入具有第一自旋方向之電子40。其中,電極對11、12之間可例如形成量子線(quantum wire)或量子點接觸(quantum point contact,QPC)。
偵測端20係用以偵測具有第一自旋方向之電子40。偵測端20可例如包含一電極對21、22,且電極對21、22係施加一偏壓以產生具有第二方向之第一電場Ey,使得偵測端20感應出具有第三方向之第一磁場B1, 進而藉由第一磁場B1偵測具有第一自旋方向之電子40。其中,電極對21、22之間可例如形成量子線或量子點接觸(QPC)。
閘極30係位於注入端10及偵測端20之間。閘極30係施加具有第三方向之第二電場Ez,使得閘極30感應出具有第二方向之第二磁場B2,進而以令通過閘極30之具有第一自旋方向之電子40由第一自旋方向以第二方向為旋轉軸進行進動(precession)而轉變為具有第二自旋方向之電子41。其中,若第二自旋方向平行於第一自旋方向,則電子可通過偵測端,使得自旋場效電晶體之汲極可偵測到電流;反之,若第二自旋方向反平行於第一自旋方向,則電子無法通過偵測端,使得自旋場效電晶體之汲極無法偵測到電流。
此外,注入端10、偵測端20及閘極30係位於半導體異質接面50上,使得半導體異質接面50形成令電子沿著第一方向移動之二維電子氣(2DEG)通道51。其中,半導體異質接面50可例如為砷化銦鎵/砷化銦鋁(InGaAs/InAlAs)等,惟本發明不限於此。
請參閱圖1及圖2,圖2為本發明之全電控自旋場效電晶體之偵測端電壓-閘極電壓曲線圖。其中,△Vg為電極對11、12之電壓差以及電極對21、22之電壓差,即△Vg=V11-V12=V21-V22
本發明之全電控自旋場效電晶體之例示性操作係設定注入端10及偵測端20之量子線或量子點接觸之電導率(conductance)GQPC=0.3×2e 2/h,且△Vg=-3V。其中e為電子之電荷量,h為普朗克常數(Planck constant)。此外,為明確觀察△Vg=-3及△Vg=0在不同閘極電壓VM下之偵測端20之電壓變化,係將彼此之偵測端20之電壓位移1μV。
由圖2可觀察到,當電極對11、12之電壓差及電極對21、22之電壓差△Vg=0時,偵測端20之電壓並未有明顯的變化;而當電極對11、 12之電壓差及電極對21、22之電壓差△Vg=-3時,偵測端20可觀察到明顯的電壓變化。這結果顯示,本發明之全電控自旋場效電晶體可僅藉由注入端10及偵測端20之外加電壓來改變電子的自旋極化方向,並且藉由閘極30之外加電壓來改變電子自旋的進動速度以控制偵測端20之電流通過與否(即,導通/不導通(on/off)之狀態)。
此外,由圖2之偵測端電壓-閘極電壓曲線圖可得知,偵測端20之最大與最小電流之變化量可達到最小電流的五倍(即,Imax-Imin/Imin=500%),因此可有效地藉由閘極電壓VM控制本發明之全電控自旋場效電晶體之導通/不導通(on/off)之狀態。
請參閱圖3,圖3為本發明之全電控自旋場效電晶體之第二實施例示意圖。第二實施例與第一實施例之差異主要在於利用奈米線(nanowire)60作為電子由注入端10移動至偵測端20之通道。
本發明之全電控自旋場效電晶體之第二實施例至少包含注入端10、偵測端20及閘極30。其中,下文所述之第一、第二及第三方向係分別以x、y及z方向作舉例,惟本發明不限於此。
注入端10係用以注入具有第一自旋方向之電子40以令電子沿著第一方向移動。注入端10係可例如包含一電極13以藉由施加一偏壓而產生具有第二方向之第一電場Ey,使得注入端10感應出具有第三方向之第一磁場B1,進而藉由第一磁場B1改變注入端10之電子自旋極化方向,以注入具有第一自旋方向之電子40至奈米線60中。
偵測端20係用以偵測具有第一自旋方向之電子40。偵測端20可例如包含一電極23以藉由施加一偏壓而產生具有第二方向之第一電場Ey,使得偵測端20感應出具有第三方向之第一磁場B1,進而藉由第一磁場B1偵測奈米線60中具有第一自旋方向之電子40。
閘極30係位於注入端10及偵測端20之間。閘極30係施加具有第三方向之第二電場Ez,使得閘極30感應出具有第二方向之第二磁場B2,進而以令通過閘極30上方之奈米線60之具有第一自旋方向之電子40由第一自旋方向以第二方向為旋轉軸進行進動而轉變為具有第二自旋方向之電子41。其中,電極13、23可例如分別位於閘極30上方之奈米線60之兩側,且未接觸奈米線60。
由於本發明所屬技術領域之通常知識者可依據前述第一實施例而能理解本發明之第二實施例所能達成之技術功效,故在此不再贅述。
綜上所述,本發明之全電控自旋場效電晶體不僅可有效提高電子之自旋注入效率,更不需使用鐵磁性材料、外加磁場或光學元件來控制電子之自旋極化方向,實具產業利用價值。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
10‧‧‧注入端
11、12‧‧‧注入端之電極對
20‧‧‧偵測端
21、22‧‧‧偵測端之電極對
30‧‧‧閘極
40‧‧‧具有第一自旋方向之電子
41‧‧‧具有第二自旋方向之電子
50‧‧‧半導體異質接面
51‧‧‧二維電子氣通道

Claims (10)

  1. 一種全電控自旋場效電晶體,包含:一注入端,係注入具有一第一自旋方向之電子以令該電子沿著一第一方向移動,其中該注入端係提供具有一第二方向之一第一電場;一偵測端,係提供具有該第二方向之該第一電場,以偵測具有該第一自旋方向之該電子;以及一閘極,係位於該注入端及該偵測端之間,該閘極係提供具有一第三方向之一第二電場,以令該電子由該第一自旋方向以該第二方向為旋轉軸進行進動(precession)而轉變為一第二自旋方向;若該第二自旋方向平行於該第一自旋方向,則該電子可通過該偵測端;若該第二自旋方向反平行於該第一自旋方向,則該電子無法通過該偵測端。
  2. 如申請專利範圍第1項所述之全電控自旋場效電晶體,其中該注入端及該偵測端係分別包含一電極對。
  3. 如申請專利範圍第2項所述之全電控自旋場效電晶體,其中該些電極對係分別提供一偏壓,以產生具有該第二方向之該第一電場。
  4. 如申請專利範圍第3項所述之全電控自旋場效電晶體,其中該電極對之間係形成一量子線(quantum wire)或一量子點接觸(quantum point contact,QPC)。
  5. 如申請專利範圍第2項所述之全電控自旋場效電晶體,其中該注入端、該偵測端及該閘極係位一半導體異質接面上,使得該半導體異質接面形成令該電子沿著該第一方向移動之通道。
  6. 如申請專利範圍第1項所述之全電控自旋場效電晶體,其中 該注入端及該偵測端係分別包含一電極,且該些電極係位於該閘極上方之一通道之兩側而未接觸該通道。
  7. 如申請專利範圍第6項所述之全電控自旋場效電晶體,其中該通道為奈米線(nanowire)。
  8. 如申請專利範圍第1項所述之全電控自旋場效電晶體,其中該注入端及該偵測端所分別提供之具有該第二方向之該第一電場更感應出具有該第三方向之一第一磁場,以分別注入及偵測具有該第一自旋方向之該電子。
  9. 如申請專利範圍第8項所述之全電控自旋場效電晶體,其中該閘極所提供之具有該第三方向之該第二電場更感應出具有該第二方向之一第二磁場,以令該電子由該第一自旋方向以該第二方向為旋轉軸進行進動而轉變為該第二自旋方向。
  10. 如申請專利範圍第1項所述之全電控自旋場效電晶體,其中該第一方向、該第二方向及該第三方向係相互垂直。
TW103120263A 2014-06-12 2014-06-12 全電控自旋場效電晶體 TWI546971B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103120263A TWI546971B (zh) 2014-06-12 2014-06-12 全電控自旋場效電晶體
US14/738,557 US9373709B2 (en) 2014-06-12 2015-06-12 All-electric spin field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103120263A TWI546971B (zh) 2014-06-12 2014-06-12 全電控自旋場效電晶體

Publications (2)

Publication Number Publication Date
TW201547026A TW201547026A (zh) 2015-12-16
TWI546971B true TWI546971B (zh) 2016-08-21

Family

ID=54836869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103120263A TWI546971B (zh) 2014-06-12 2014-06-12 全電控自旋場效電晶體

Country Status (2)

Country Link
US (1) US9373709B2 (zh)
TW (1) TWI546971B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461775A (zh) * 2018-09-14 2019-03-12 南京大学 一种基于外延生长半金属的自旋场效应晶体管及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461775A (zh) * 2018-09-14 2019-03-12 南京大学 一种基于外延生长半金属的自旋场效应晶体管及制备方法
CN109461775B (zh) * 2018-09-14 2022-03-15 南京大学 一种基于外延生长半金属的自旋场效应晶体管及制备方法

Also Published As

Publication number Publication date
US9373709B2 (en) 2016-06-21
TW201547026A (zh) 2015-12-16
US20150364583A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
Zhuravlev et al. Tunneling anomalous Hall effect in a ferroelectric tunnel junction
GB2560838B (en) Non-linear spin-orbit interaction devices and methods for current-to-spin conversion and amplification of spin-polarizations
Wójcik et al. Spin transistor operation driven by the Rashba spin-orbit coupling in the gated nanowire
Wang et al. Proposal for multi-gate spin field-effect transistor
KR101421075B1 (ko) 정류 장치, 트랜지스터 및 정류 방법
TWI546971B (zh) 全電控自旋場效電晶體
d'Hollosy et al. g-factor anisotropy in nanowire-based InAs quantum dots
Choi et al. Spin-polarization-induced anisotropic magnetoresistance in a two-dimensional Rashba system
Jiang et al. Tunneling magnetoresistance properties in ballistic spin field-effect transistors
US8183611B2 (en) Spin transistor using N-type and P-type double carrier supply layer structure
Choi et al. Ballistic spin Hall transistor using a heterostructure channel and its application to logic devices
Kiyama et al. Spin-dependent current through a quantum dot from spin-polarized nonequilibrium quantum Hall edge channels
Volkov et al. Bias-voltage-controlled ac and dc magnetotransport phenomena in hybrid structures
Liu et al. Spin transport and tunnel magnetoresistance in ferromagnetic graphene/Thue–Morse graphene superlattice double junction
Adari et al. Enhanced magnetoresistance in lateral spin-valves
An et al. A spin switch device based on a triple quantum dots superlattice using the Dicke effect
Park et al. Exchange-biased ferromagnetic electrodes and their application to complementary spin transistors
Ciorga et al. In-plane anisotropy of tunneling magnetoresistance and spin polarization in lateral spin injection devices with (Ga, Mn) As/GaAs spin-Esaki diode contacts
Wu et al. Spin rotator and shot noise in graphene-based multi-barrier nanostructure
Soodchomshom et al. Similarities between normal-and super-currents in topological insulator magnetic tunnel junctions
Xie et al. Efficient spin-current injection in single-molecule magnet junctions
Sverdlov et al. A Single-Spin Switch
Sverdlov et al. Magnetic field dependent tunneling magnetoresistance through a quantum well between ferromagnetic contacts
Park et al. Observation of spin dependent electrochemical potentials at room temperature in a quantum well structure
JP2007005641A (ja) スピントランジスタ