CN109415635B - 用于高苛刻度流化催化裂化系统的工艺 - Google Patents

用于高苛刻度流化催化裂化系统的工艺 Download PDF

Info

Publication number
CN109415635B
CN109415635B CN201780037661.3A CN201780037661A CN109415635B CN 109415635 B CN109415635 B CN 109415635B CN 201780037661 A CN201780037661 A CN 201780037661A CN 109415635 B CN109415635 B CN 109415635B
Authority
CN
China
Prior art keywords
catalyst
condensate
zeolite
propylene
product stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780037661.3A
Other languages
English (en)
Other versions
CN109415635A (zh
Inventor
曼苏尔·阿里·阿尔-赫兹
内森·霍尔德
艾哈迈德·阿尔-阿塞尔
瓦拉·阿尔戈齐布
穆塞德·阿尔-赫拉米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of CN109415635A publication Critical patent/CN109415635A/zh
Application granted granted Critical
Publication of CN109415635B publication Critical patent/CN109415635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

将凝析油转化为包含丙烯的产物流的方法的实施方案包括在下流式高苛刻度流化催化裂化反应器(HSFCC)的顶部区域供给凝析油,其中所述凝析油包含:至少50重量%的链烷烃和小于0.1重量%的烯烃。该方法还包括将催化剂进料到下流式HSFCC反应器的顶部区域,其量的特征在于催化剂与凝析油的重量比为约5:1至约40:1,其中催化剂包含纳米ZSM‑5沸石催化剂,其平均粒径为0.01‑0.2μm,Si/Al摩尔比为20‑40,表面积为至少20cm2/g。该方法还包括在催化剂存在下在约500℃至约700℃的反应温度下裂解凝析油,以产生包含丙烯的产物流。

Description

用于高苛刻度流化催化裂化系统的工艺
相关申请的交叉引用
技术领域
本申请要求2016年6月23日提交的美国专利申请15/190,327的优先权,其全部内容通过引用并入本文。
本公开的实施方案一般涉及流化催化裂化方法,更具体地涉及在高苛刻度流化催化裂化(HSFCC)系统中使用的裂化催化剂,其中裂化催化剂包含纳米ZSM-5沸石。
背景技术
全球对轻质烯烃日益增长的需求仍然是许多综合炼油厂面临的主要挑战。特别是,由于纯烯烃流被认为是聚合物合成的结构单元,因此一些有价值的轻质烯烃如乙烯、丙烯和丁烯的生产引起了越来越多的关注。轻质烯烃的生产取决于几种工艺变量,如进料类型、操作条件和催化剂类型。尽管有可用于生产更高产率的丙烯和轻质烯烃的选择,但仍在进行该领域的广泛研究活动。这些选择包括使用HSFCC系统,为该过程开发更具选择性的催化剂,以及增强该过程的配置以支持更有利的设置。
HSFCC工艺能够产生比传统流化催化裂化装置高达四倍的丙烯产率和一系列石油蒸汽的更高转化率。话虽如此,从各种进料质量实现最大丙烯和转化为HSFCC的催化剂设计提出了相当大的挑战。
此外,常规FCC原料的范围从加氢裂化的塔底物到重质原料馏分如减压瓦斯油和常压渣油。然而,这些原料是有限的,通过昂贵且能量密集的精炼步骤获得,因此预计不会满足不断增长的市场需求。
由于其形状选择性、特殊孔结构和大的比表面积,向HSFCC催化剂中加入沸石用于提高轻质烯烃的产率。然而,当沸石的晶体尺寸接近轻质烃的分子直径时,反应物/产物分子在微孔内的扩散通常是反应的限速步骤。此外,沸石的晶体表面易于形成焦炭,这阻碍了微孔的可接近性并因此使催化剂失活。
发明内容
本公开的实施方案涉及改进的HSFCC裂化系统,其使用具有纳米ZSM-5催化剂的催化剂将凝析油转化为轻质烯烃,同时减少纳米ZSM-5沸石上的焦炭形成和孔扩散。
在一个实施方案中,提供了将凝析油转化为包含丙烯的产物流的方法。所述方法包括在下流式高苛刻度流化催化裂化反应器(HSFCC)的顶部区域供给凝析油,其中该凝析油包括至少50重量%的链烷烃并且在一些实施方案中烯烃小于0.1重量%。该方法还包括将催化剂进料到下流式HSFCC反应器的顶部区域,其量的特征在于催化剂与凝析油的重量比为约5:1至约40:1,其中催化剂包含纳米ZSM-5沸石催化剂,其平均粒径为0.01-0.2μm,Si/Al原子比为20-40,表面积为至少20cm2/g。该方法还包括在催化剂存在下在约500℃至约700℃的反应温度下裂解凝析油,以产生包含丙烯的产物流。
所描述的实施方案的另外的特征和优点将在下文的具体实施方式中阐述,并且本领域的技术人员将部分地从所述描述容易地清楚,或通过实践所描述的实施方案(包括下文的具体实施方式、权利要求以及附图)而认识到。
附图说明
图1是根据本公开的一个或多个实施方案的下流式HS-FCC反应器的示意图。
图2A是基于纳米ZSM-5的催化剂实施方案在各种氢氧化钠下的X射线衍射(XRD)图。
图2B是图2A的XRD图的放大部分。
图3是基于合成溶液中Al/Si和Na/Si比的催化剂合成溶液的相选择性的图解说明。
图4A是微米尺寸ZSM-5沸石实施方案的环境扫描电子显微镜(ESEM)显微照片。
图4B是纳米ZSM-5沸石实施方案的ESEM显微照片。
图5A是重量分数对温度的曲线图,其描绘了在用不同Na和Al浓度合成的ZSM-5沸石实施方案上进行的热重分析(TGA)的结果。
图5B是差示重量分析与温度的曲线图,其描绘了在用不同Na和Al浓度合成的ZSM-5沸石实施方案上进行的图5A的TGA分析的进一步结果。
图6A是热解吸光谱(TPD)曲线,其描绘了在多个质荷比(m/z)下以Si/Al=100制备的高二氧化硅MFI型沸石实施方案。
图6B是TPD曲线,其描绘了在多个m/z比下在Si/Al=20下制备的低二氧化硅MFI型沸石实施方案。
图7A是Y沸石实施方案的ESEM图像。
图7B是Y沸石实施方案的能量色散谱(EDS),其对应于图7A的ESEM。
图8A是镧浸渍的Y沸石实施方案的ESEM图像。
图8B是镧浸渍的Y沸石实施方案的EDS,其对应于图8A的ESEM。
图9是母体Y沸石实施方案相对于其镧浸渍的Y沸石形式的XRD图。
附图中阐述的实施方案本质上是说明性的,并不旨在限制权利要求书。此外,基于具体实施方式,附图的各个特征将更充分地清楚和明白。
具体实施方式
本公开的实施方案涉及在下流式高苛刻度流化催化裂化(HSFCC)反应器中在包括纳米ZSM-5沸石催化剂的催化剂浆料的存在下将凝析油转化为包含丙烯的产物流的系统和方法。
参考图1,该系统和方法利用下流式HSFCC反应器100,其中凝析油110可以在FCC反应器100的顶部区域105进料。类似地,催化剂120可以在HSFCC反应器100的顶部区域105进料,其量特征在于催化剂120与凝析油110的重量比为约5:1至约40:1。如图1所示,催化剂120和凝析油110可以通过下流HSFCC反应器100的顶部区域105处的不同入口进料。在进料之后,在催化剂120存在下,在约500℃至约700℃的反应温度下使凝析油110裂化,以产生包含丙烯的产物流140。在一些实施方案中,催化剂床可以固定在HSFCC反应器100的底部。虽然未示出,但是可以将蒸汽注入下流式HSFCC中以实现必要的高操作温度。参考图1,当凝析油110沿箭头130所示的向下路径行进时,凝析油110裂化。如图所示,催化剂120和产物流140可以通过HSFCC反应器100底部的分离器区域107分离,然后分别从下流式HSFCC反应器100中排出。可以在分离器区域107中分离凝析油110和包含丙烯的产物流140。在一些实施方案中,液体产物可以收集在液体接收器中,并且气态产物可以通过水置换收集在气体滴定管中。
不受理论束缚,相比于传统HSFCC反应器,本发明实施方案可在产物流140中提供更高的丙烯产率。在具体的实施方案中,产物流140包含至少20wt%的丙烯产率。在进一步的实施方案中,产物流140可包含至少10wt%的乙烯产率。此外,产物流140可包含至少30wt%的乙烯和丙烯产率。产物流可包含小于3重量%的焦炭产率,或小于1重量%的焦炭产率。
本发明的下流式HSFCC反应器100的特征在于高温、较短的停留时间和高的催化剂与油的比率。在一种或多种实施方案中,反应温度可以为500℃至700℃或550℃至630℃。关于停留时间,凝析油可具有0.7秒至10秒、或1秒至5秒、或1秒至2秒的停留时间。此外,催化剂与凝析油的比例可以是5:1至40:1、或5:1至25:1、或5:1至约15:1、或5:1至约10:1。
凝析油110是重质链烷烃组合物,其包含至少50重量%的链烷烃和小于0.1重量%的烯烃。另外,凝析油110可包含环烷烃和芳族化合物。从性能观点来看,当根据真实沸点分析测量时,凝析油110可具有至少0℃的初沸点和至少450℃的终沸点。根据ASTM 2699或ASTM 2700,凝析油的研究法辛烷值(RON)为70至75。
在具体的实施方案中,所述凝析油可以包括Khuff凝析油(KGC),其包括65重量%链烷烃、0重量%烯烃、21重量%环烷烃和15重量%芳族化合物。像KGC这样的进料在低硫、氮、金属和康拉逊残炭(CCR)方面具有吸引人的原料特性。话虽如此,凝析油(例如KGC)的高度链烷烃性质使得裂解成轻质烯烃(例如丙烯)非常具有挑战性。不限于应用,本下流式HSFCC系统克服了这些挑战,并使用KGC产生优异的丙烯产率,同时与现有的炼油厂FCC反应器互补。
如前所述,催化剂120,其可以是浆料形式,包含纳米ZSM-5沸石,其平均粒径为0.01-0.2μm、Si/Al摩尔比为20-40、表面积为至少20cm2/g。在进一步的实施方案中,Si/Al摩尔比为25至35,并且纳米ZSM-5具有至少30cm2/g的表面积。换句话说,纳米ZSM-5具有30cm2/g到60cm2/g,或从40cm2/g至为50cm2/g的表面积。纳米ZSM-5沸石解决了裂化反应中遇到的扩散限制,从而提高了裂化反应的速率以产生更多的烯烃。此外,纳米ZSM-5沸石减少了催化剂表面上的焦炭形成,从而延长了纳米ZSM-5沸石催化剂的寿命。
为了提高催化裂化活性,考虑纳米ZSM-5沸石催化剂可以用其他组分浸渍。在一个实施方案中,纳米ZSM-5催化剂用磷浸渍。在具体的实施方案中,纳米ZSM-5催化剂包含1至20重量%的磷,或2至10重量%的磷。或者,纳米ZSM-5催化剂用稀土氧化物浸渍。
催化剂考虑了不同量的纳米ZSM-5沸石。例如,催化剂可包含10至50wt%的纳米ZSM-5催化剂,或15至40wt%的纳米ZSM-5催化剂,或15至25wt%的纳米ZSM-5催化剂。
此外,催化剂还可以包含USY(超稳定Y型沸石)。为了提高催化裂化活性,考虑USY催化剂也可以用其它组分浸渍。在具体的实施方案中,USY催化剂可以用镧浸渍。在催化剂中考虑了各种量的USY催化剂。例如,催化剂可包含10至50wt%的USY催化剂,或15至40wt%的USY催化剂,或15至25wt%的USY催化剂。
USY沸石浸渍镧会影响对轻质烯烃的选择性。用稀土浸渍也可以作为催化剂稳定性和活性的增强剂。USY沸石(也称为Y沸石)中的镧浸渍用于改善活性和水热稳定性,因为它在沸石结构中起到脱铝抑制剂的作用。
在催化剂中也考虑了各种量的氧化铝。在一个或多个实施方案中,催化剂包含2至20wt%的氧化铝,或5至15wt%的氧化铝。催化剂还可包含二氧化硅。在一个或多个实施方案中,催化剂包含0.1至10wt%的二氧化硅,或1至5wt%的二氧化硅。不受理论束缚,氧化铝可以充当催化剂的粘合剂。
例如但不限于,粘土包含一种或多种选自高岭土、蒙脱石、埃洛石和膨润土的组分。在具体的实施方案中,粘土包含高岭土。在一个或多个实施方案中,催化剂可包含30至70重量%的粘土,或40至60重量%的粘土。
在一个或多个实施方案中,催化剂可包含纳米ZSM-5催化剂、USY催化剂、氧化铝、粘土和二氧化硅。在进一步的实施方案中,催化剂包含10至50wt%的纳米ZSM-5催化剂、10至50wt%的USY催化剂、2至20wt%的氧化铝、30至70wt%的粘土和0.1至10wt%的二氧化硅。此外,催化剂可包含15至25wt%的纳米ZSM-5催化剂、15至25wt%的USY催化剂、5至15wt%的氧化铝、40至60wt%的粘土、和1至5wt%的二氧化硅。
实施例
以下实施例说明了先前描述的本公开的一个或多个另外的特征。
研究中使用的所有化学品和溶剂如表1所示。
表1:化学品和溶剂
Figure BDA0001908409760000061
在实施例中使用的Khuff凝析油(KGC)的主要性能如下列于表2中。
表2:KGC性能
Figure BDA0001908409760000062
Figure BDA0001908409760000071
催化剂制备程序
ZSM-5沸石合成
合成Si/Al摩尔比为100的微米级ZSM-5沸石的细节如下表3所示。分别在表4和表5中示出了合成具有20和33的Si与Al比的纳米ZSM-5沸石的细节。通过将所有组分和试剂混合在一起并在室温下搅拌一天来制备前体合成溶液。然后将混合物转移到Teflon衬里的不锈钢高压釜中并加热至140℃持续4天。之后,将溶液离心并收集固体产物。然后将固体产物分散在去离子水中,离心得到最终产物,然后在80℃的烘箱中干燥。使用以下程序煅烧产物。使用3℃/min的加热速率,将产物在200℃下保持2小时,在550℃下保持8小时。制备粒径为1.1μm的微米级ZSM-5,而在一个实施例中制备粒径为0.07μm的Si-Al摩尔比为20的纳米ZSM-5沸石,和在第二实施例中,Si与铝摩尔比为33,粒径为0.084μm。
表3:Si-Al摩尔比为100的纳米ZSM-5沸石的完成合成溶液组成、合成细节、产率和相选择性。
Figure BDA0001908409760000072
表4:Si-Al摩尔比为20的纳米ZSM-5沸石的完成合成溶液组成、合成细节、产率和相选择性。
Figure BDA0001908409760000073
Figure BDA0001908409760000081
表5:Si-Al摩尔比为33的纳米ZSM-5沸石的完成合成溶液组成、合成细节、产率和相选择性。
Figure BDA0001908409760000082
纳米ZSM-5分子筛的改性及最终催化剂制剂的制备
以下方法旨在制备催化剂制剂,其组成如下表6所示。
表6:用于内部制备的HSFCC催化剂的催化剂组成。
组分 重量% 备注
ZSM-5 20 磷在沸石上以7.5wt%P<sub>2</sub>O<sub>5</sub>浸渍
USY 21 镧以2.5wt%La<sub>2</sub>O<sub>3</sub>浸渍在沸石上
氧化铝 8 Sasol的Pural SB
粘土 49 高岭土
二氧化硅 2 添加为胶体二氧化硅Ludox TM-40
ZSM-5沸石用磷浸渍,Y沸石用镧浸渍。将浸渍的沸石与氧化铝粘合剂、二氧化硅和粘土混合并搅拌1小时。将所得到的浆料放入温度编程烘箱进行干燥和煅烧,按照下面的程序:(速率(℃/分钟):温度(℃):时间(小时))
7:125:7→3:200:1→2:320:1→2:440:7→1:500:1→7:100:1
通过研钵和研杵将煅烧的催化剂研磨成细粉末。然后,将磨碎的催化剂过筛以得到40-120μm之间的部分并用于表征和评价。
使用石英管式反应器在Sakuragi Rikagaku(日本)微活性测试(MAT)仪器中进行反应。根据ASTM D-3907方法评价合成的催化剂裂解Khuff凝析油。在反应之前,将所有催化剂在750℃蒸汽处理3小时。实验在MAT装置中以30秒的运行时间(TOS)进行。每次反应后,使用30mL/min N2流速汽提催化剂。将液体产物收集在液体接收器中,通过水置换将气态产物收集在气体滴定管中,并送至气相色谱仪(GC)进行分析。废催化剂用于测量反应产生的焦炭量。
基于微米和纳米ZSM-5的催化剂的MAT结果示于表7中。可以看出,三种催化剂获得高于18wt%的高丙烯产率。Si-Al摩尔比为33的纳米ZSM-5获得最高丙烯产率为21.12wt%,而与之相比,使用Si-Al摩尔比为20的纳米ZSM-5得到的丙烯产率为20.07wt%。微米级ZSM-5获得18.78wt%的最低丙烯产率,这表明由纳米ZSM-5沸石提供的较高表面积对于选择性生产轻质烯烃的作用。
表7:内部制备的基于纳米ZSM-5的催化剂的MAT结果突出
Figure BDA0001908409760000091
Figure BDA0001908409760000101
纳米ZSM-5沸石的表征
通过X射线衍射(XRD)技术检查用有机和有机-无机结构导向剂合成的MFI型沸石,并且获得的数据显示与MFI型沸石结构的衍射图精确匹配,如图2A和2B所示。
此外,XRD也被用于开发一种相包络,其中[AlO2/4]/[SiO2/4]沿纵坐标标绘,而NaOH/[SiO2/4]沿横坐标绘制,如图3所示。该图确定MFI型沸石仅形成在相空间中的小区域中。发现具有相对低浓度的氢氧化钠(即Si/Na~5)和铝(即Si/Al~25)的溶液导致纯MFI型产物。观察到较低浓度的氢氧化钠和氧化铝得到一些混合相产物,包括未知物和相对重要浓度的无定形相,如图3所示。
图4A和4B中的获得的ESEM显微照片用于测量粒度并确定合成样品的表面形态。分析所选样品以示出所产生的MFI沸石是纳米尺寸的颗粒还是微米尺寸的颗粒,如图4A和4B所示。表8列出了所选样品的平均粒度测量结果。
表8:ZSM-5沸石的BET测量。
样品 沸石 尺寸特征 表面积(cm<sup>2</sup>/g) 粒径(μm)
SAZ-11 MFI 微米级颗粒 3 1.1
SAZ-21 MFI 纳米颗粒 40 0.084
SAZ-24 MFI 纳米颗粒 40 0.084
SAZ-28 MFI 纳米颗粒 48 0.07
任何新合成的沸石的热重(TGA)分析是重要的表征,因为催化剂必须承受HSFCC工艺典型的500-750℃的温度范围。合成沸石的水和四丙基铵(TPA+)含量由加热时的重量损失计算。25-200℃之间的重量损失归因于从沸石中解吸的水含量。观察到在25-200℃之间解吸的水与沸石中的钠含量成比例。相反,样品中TPA+越多,加热过程中从样品中解吸的水越少。这是因为与钠离子相比,TPA+相对较大。TPA+具有疏水性,可防止水分子吸附在沸石样品内部。另外,TPA+填充大部分微孔,没有空间用于水附着于沸石(见表9)。
在200-550℃的较高温度下,TPA+转化为三丙基氨并释放出丙烯分子。这引起了重量损失,这在图5A和5B中给出。从TGA迹线,可以假设单位晶胞结构中没有缺陷来计算每单位晶胞的TPA原子数。无缺陷的理想MFI型沸石具有以下分子式(|TPAn|[AlnSi96-nO182])。因此,TPA+的数量可以使用表9中所示的重量损失分数和MFI型沸石的分子式来计算。
表9:用不同Na和Al浓度合成的ZSM-5沸石的TGA分析。
Figure BDA0001908409760000111
参见图6A和6B,收集高硅酸盐样品和低硅酸盐样品(高氧化铝)的程序升温脱附曲线。16、17和18的质荷比曲线分别对应于NH2 +、NH3 +、H2O+离子。高二氧化硅样品显示出两个具有不同能量的峰。低能量峰值出现在109℃,归因于弱键合的氨。这种低能量(低温)峰表明存在氨物理吸附的硅烷醇基团。在350℃的峰值是高能峰,其表示强键合氨进入强布朗斯台德酸位点。在200-500℃之间观察到信号,其对于高氧化铝样品在225℃和400℃处分成两个峰。这些峰的能量高于高二氧化硅样品检测到的峰。它们被归属于催化剂中存在的布朗斯台德活性位点,当存在更多活性位点时,其可以提供更好的裂化。总之,样品中存在更多的氧化铝产生在较高温度处的峰值,这些峰值归属于更多的布朗斯台德酸位点和更少的与氨结合的硅烷醇基团。
Y沸石的表征
如前所述,USY沸石浸渍镧会影响对轻质烯烃的选择性。话虽如此,分别在图7A和8A中显示的母体和浸渍型Y沸石的ESEM分析显示母体沸石的形貌特征没有变化。另一方面,使用集成在ESEM中的EDS检测器的元素分析表明,除了用于图8B中所示的浸渍型Y沸石的镧之外,沸石样品主要由硅、铝和氧组成。
如图9所示,XRD分析用于研究镧浸渍对母体Y沸石的晶体结构的影响。所产生的母体和浸渍形式的沸石的衍射图是相同的,因此表明对晶体结构没有影响,如图9所示。此外,表面积和孔体积分析(参见表10)显示Y沸石与其浸渍形式之间的差异可以忽略不计。
表10:Y沸石的BET测量。
Figure BDA0001908409760000121
对于本领域技术人员显而易见的是,在不脱离要求保护的主题的精神和范围的情况下,可以对描述的实施方案进行各种修改和变化。因此说明书旨在包括所述的各种实施方案的修改和变更,只要这种修改和变更落入所附权利要求书及其等价物的范围内。

Claims (14)

1.一种将凝析油转化成包含丙烯的产物流的方法,所述方法包括:
在下流式高苛刻度流化催化裂化(HSFCC)反应器的顶部区域供给凝析油,所述凝析油包含至少50重量%的链烷烃;
将催化剂进料到所述下流式HSFCC反应器的顶部区域,其量的特征在于催化剂与凝析油的重量比为5:1至40:1,其中所述催化剂包含纳米ZSM-5沸石催化剂,其平均粒径为0.01-0.2μm,Si/Al摩尔比为20-40,表面积为至少20cm2/g;和
在所述催化剂存在下在500℃至700℃的反应温度下裂化所述凝析油,以产生所述包含丙烯的产物流。
2.根据权利要求1所述的方法,进一步包括加入蒸汽至所述下流式HSFCC反应器的顶部区域。
3.根据权利要求1所述的方法,其中所述裂化发生在1至2atm的压力下,以产生所述包含丙烯的产物流。
4.根据权利要求1所述的方法,其中所述凝析油包含小于0.1重量%的烯烃。
5.根据权利要求1所述的方法,其中所述Si/Al摩尔比为25至35。
6.根据权利要求1所述的方法,其中所述产物流包含至少20wt%产率的丙烯。
7.根据权利要求1所述的方法,其中所述产物流包含至少10wt%产率的乙烯。
8.根据权利要求1所述的方法,其中所述纳米ZSM-5催化剂用磷浸渍。
9.根据权利要求1所述的方法,其中所述催化剂包含10至50wt%的纳米ZSM-5催化剂。
10.根据权利要求1所述的方法,其中所述催化剂包含USY(超稳定Y型沸石)。
11.根据权利要求1所述的方法,其中所述凝析油在所述下流式HSFCC反应器中的停留时间为0.7到10秒。
12.根据权利要求1所述的方法,其中所述凝析油包括环烷烃和芳族化合物。
13.根据权利要求1所述的方法,其中当根据真实沸点分析测量时,所述凝析油具有至少0℃的初沸点和至少450℃的终沸点。
14.根据权利要求1所述的方法,其中所述凝析油具有根据ASTM 2699或ASTM 2700的70至75的研究法辛烷值(RON)。
CN201780037661.3A 2016-06-23 2017-06-22 用于高苛刻度流化催化裂化系统的工艺 Active CN109415635B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/190,327 US9981888B2 (en) 2016-06-23 2016-06-23 Processes for high severity fluid catalytic cracking systems
US15/190,327 2016-06-23
PCT/US2017/038740 WO2017223310A1 (en) 2016-06-23 2017-06-22 Processes for high severity fluid catalytic cracking systems

Publications (2)

Publication Number Publication Date
CN109415635A CN109415635A (zh) 2019-03-01
CN109415635B true CN109415635B (zh) 2021-04-16

Family

ID=59399470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780037661.3A Active CN109415635B (zh) 2016-06-23 2017-06-22 用于高苛刻度流化催化裂化系统的工艺

Country Status (7)

Country Link
US (2) US9981888B2 (zh)
EP (1) EP3475393B1 (zh)
JP (1) JP6959269B2 (zh)
KR (1) KR102431019B1 (zh)
CN (1) CN109415635B (zh)
SG (2) SG10201912689PA (zh)
WO (1) WO2017223310A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724553B (zh) 2018-07-16 2021-04-06 中国石油化工股份有限公司 一种采用稀相输送床与快速流化床进行催化裂解的方法和系统
CN110724550B (zh) 2018-07-16 2021-04-06 中国石油化工股份有限公司 一种采用快速流化床进行催化裂解的方法和系统
CN111607425B (zh) * 2019-02-26 2022-03-29 中国石油天然气股份有限公司 一种直馏柴油催化裂解的方法
WO2021024120A1 (en) * 2019-08-05 2021-02-11 Sabic Global Technologies B.V. A method for catalytic cracking of hydrocarbons to produce olefins and aromatics without steam as diluent
US11066606B2 (en) * 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins with steam
US11066605B2 (en) * 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins
US11225612B2 (en) * 2020-03-27 2022-01-18 Saudi Arabian Oil Company Catalyst and process for catalytic steam cracking of heavy distillate
US11213810B1 (en) 2020-07-06 2022-01-04 Saudi Arabian Oil Company Method of producing a cracking catalyst
US11278873B2 (en) * 2020-07-16 2022-03-22 Saudi Arabian Oil Company Method of producing an aromatization catalyst
US11370975B2 (en) 2020-09-30 2022-06-28 Saudi Arabian Oil Company Steam-enhanced catalytic cracking of hydrocarbons to produce light olefins
US11370731B1 (en) 2021-01-12 2022-06-28 Saudi Arabian Oil Company Systems and processes for producing olefins from crude oil
WO2024006381A1 (en) * 2022-06-29 2024-01-04 W.R. Grace & Co.-Conn. Fcc process useful for production of petrochemicals
US20240010926A1 (en) * 2022-07-06 2024-01-11 Saudi Arabian Oil Company Process and catalyst formulation for cracking crude oil to produce light olefins and aromatics
US11827855B1 (en) * 2022-07-06 2023-11-28 Saudi Arabian Oil Company Process and nano-ZSM-5 based catalyst formulation for cracking crude oil to produce light olefins and aromatics
US11866651B1 (en) * 2022-11-09 2024-01-09 Saudi Arabian Oil Company Process and catalyst formulation for cracking crude oil
US11866660B1 (en) 2022-11-09 2024-01-09 Saudi Arabian Oil Company Process and catalyst formulation for cracking crude oil
US11814593B1 (en) * 2022-12-12 2023-11-14 Saudi Arabian Oil Company Processes for hydroprocessing and cracking crude oil
US11814594B1 (en) * 2022-12-12 2023-11-14 Saudi Arabian Oil Company Processes for hydroprocessing and cracking crude oil

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837822A (en) 1972-09-28 1974-09-24 Universal Oil Prod Co Two-stage countercurrent fluid-solid contacting process
CN1004878B (zh) 1987-08-08 1989-07-26 中国石油化工总公司 制取低碳烯烃的烃类催化转化方法
US5043522A (en) 1989-04-25 1991-08-27 Arco Chemical Technology, Inc. Production of olefins from a mixture of Cu+ olefins and paraffins
US5026935A (en) 1989-10-02 1991-06-25 Arco Chemical Technology, Inc. Enhanced production of ethylene from higher hydrocarbons
US5026936A (en) 1989-10-02 1991-06-25 Arco Chemical Technology, Inc. Enhanced production of propylene from higher hydrocarbons
US5160424A (en) 1989-11-29 1992-11-03 Mobil Oil Corporation Hydrocarbon cracking, dehydrogenation and etherification process
US5171921A (en) 1991-04-26 1992-12-15 Arco Chemical Technology, L.P. Production of olefins
US5232580A (en) 1991-06-21 1993-08-03 Mobil Oil Corporation Catalytic process for hydrocarbon cracking using synthetic mesoporous crystalline material
CN1029407C (zh) * 1992-07-16 1995-08-02 中国石油化工总公司 灵活多效烃类催化裂化方法
US5318689A (en) 1992-11-16 1994-06-07 Texaco Inc. Heavy naphtha conversion process
JPH06192135A (ja) * 1992-12-25 1994-07-12 Asahi Chem Ind Co Ltd 軽質炭化水素の変換方法
US5523502A (en) 1993-11-10 1996-06-04 Stone & Webster Engineering Corp. Flexible light olefins production
US5770042A (en) 1993-11-15 1998-06-23 Uop Upgrading of cyclic naphthas
US5549813A (en) 1994-03-07 1996-08-27 Dai; Pei-Shing E. FCC process employing low unit cell size y-zeolites
AU4737896A (en) 1994-11-23 1996-06-17 Exxon Chemical Patents Inc. Hydrocarbon conversion process using a zeolite bound zeolite catalyst
US5637207A (en) 1995-04-14 1997-06-10 Abb Lummus Global Inc. Fluid catalytic cracking process
US5685972A (en) 1995-07-14 1997-11-11 Timken; Hye Kyung C. Production of benzene, toluene, and xylene (BTX) from FCC naphtha
NO319519B1 (no) 1997-10-15 2005-08-22 Res Inst Petroleum Processing Fremgangsmate for fremstilling av etylen og propylen ved katalytisk pyrolyse av tunge hydrokarboner
US5976356A (en) 1997-11-12 1999-11-02 Phillips Petroleum Company Acid treated zeolite containing boron and silver used as a catalyst for converting hydrocarbons and a method of making and using such catalyst
EP0921179A1 (en) 1997-12-05 1999-06-09 Fina Research S.A. Production of olefins
CN1304440A (zh) 1998-05-05 2001-07-18 埃克森化学专利公司 用高硅中孔沸石催化剂将烃转化为丙烯
US6602403B1 (en) 1998-05-05 2003-08-05 Exxonmobil Chemical Patents Inc. Process for selectively producing high octane naphtha
US6069287A (en) 1998-05-05 2000-05-30 Exxon Research And Engineering Co. Process for selectively producing light olefins in a fluid catalytic cracking process
US6315890B1 (en) 1998-05-05 2001-11-13 Exxonmobil Chemical Patents Inc. Naphtha cracking and hydroprocessing process for low emissions, high octane fuels
US6455750B1 (en) 1998-05-05 2002-09-24 Exxonmobil Chemical Patents Inc. Process for selectively producing light olefins
US6294493B1 (en) 1998-05-26 2001-09-25 Exxon Mobil Chemical Patents Inc. Silicoaluminophosphates having an AEL structure
US6015933A (en) 1998-07-15 2000-01-18 Uop Llc Process for removing polymeric by-products from acetylene hydrogenation product
EP1117750B1 (en) 1998-09-28 2004-06-30 BP Corporation North America Inc. Process for manufacturing olefins using a pentasil zeolite based catalyst
US20020003103A1 (en) 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction
EP1116775A1 (en) 2000-01-12 2001-07-18 Akzo Nobel N.V. Catalyst composition with high efficiency for the production of light olefins
US20010042700A1 (en) 2000-04-17 2001-11-22 Swan, George A. Naphtha and cycle oil conversion process
US6652737B2 (en) 2000-07-21 2003-11-25 Exxonmobil Research And Engineering Company Production of naphtha and light olefins
US6784329B2 (en) 2002-01-14 2004-08-31 Chevron U.S.A. Inc. Olefin production from low sulfur hydrocarbon fractions
DE10217863A1 (de) 2002-04-22 2003-10-30 Linde Ag Verfahren und Vorrichtung zur Olefinherstellung
CA2490908C (en) 2002-06-28 2011-09-20 Albemarle Netherlands B.V. Fcc catalyst for reducing the sulfur content in gasoline and diesel
US6867341B1 (en) 2002-09-17 2005-03-15 Uop Llc Catalytic naphtha cracking catalyst and process
US7270739B2 (en) 2003-02-28 2007-09-18 Exxonmobil Research And Engineering Company Fractionating and further cracking a C6 fraction from a naphtha feed for propylene generation
US7273543B2 (en) * 2003-08-04 2007-09-25 Stone & Webster Process Technology, Inc. Process and apparatus for controlling catalyst temperature in a catalyst stripper
US7326332B2 (en) 2003-09-25 2008-02-05 Exxonmobil Chemical Patents Inc. Multi component catalyst and its use in catalytic cracking
US7128827B2 (en) 2004-01-14 2006-10-31 Kellogg Brown & Root Llc Integrated catalytic cracking and steam pyrolysis process for olefins
KR100632563B1 (ko) 2004-09-10 2006-10-09 에스케이 주식회사 접촉 분해용 고체산 촉매 및 이를 이용하여 전범위납사로부터 경질 올레핀을 선택적으로 제조하는 공정
US7323099B2 (en) 2004-11-19 2008-01-29 Exxonmobil Chemical Patents Inc. Two stage fluid catalytic cracking process for selectively producing C2 to C4 olefins
US7374660B2 (en) 2004-11-19 2008-05-20 Exxonmobil Chemical Patents Inc. Process for selectively producing C3 olefins in a fluid catalytic cracking process with recycle of a C4 fraction to a secondary reaction zone separate from a dense bed stripping zone
US7459596B1 (en) 2005-07-26 2008-12-02 Uop Llc Nanocrystalline silicalite for catalytic naphtha cracking
CN100391610C (zh) 2005-08-15 2008-06-04 中国石油化工股份有限公司 含分子筛的催化裂解流化床催化剂
KR101270191B1 (ko) 2005-08-15 2013-05-31 상하이 리서치 인스티튜트 오브 페트로케미칼 테크놀로지 시노펙 유동상 촉매를 사용하여 촉매 분해에 의하여 에틸렌 및 프로필렌을 제조하는 방법
CN101490216B (zh) * 2006-07-26 2013-04-17 道达尔石油化学产品研究弗吕公司 烯烃的生产
US7935654B2 (en) 2006-09-28 2011-05-03 Lg Chem, Ltd. Oxide catalyst and phosphoric oxide catalyst for hydrocarbon steam cracking, method for preparing the same and method for preparing olefin by using the same
BRPI0718870A8 (pt) * 2006-11-07 2017-02-07 Saudi Arabian Oil Co controle avançado de processo de craqueamento catalítico severo de fluido para maximizar a produção de propileno de uma matéria prima de petróleo
US7727486B2 (en) * 2007-08-01 2010-06-01 Uop Llc Apparatus for heating regeneration gas
CN101367699B (zh) * 2007-10-31 2012-05-09 陕西煤化工技术工程中心有限公司 一种制取丙烯的方法
US8652737B2 (en) 2007-11-08 2014-02-18 Canon Kabushiki Kaisha Toner and image forming process
FR2932495B1 (fr) * 2008-06-17 2011-03-25 Inst Francais Du Petrole Dispositif de controle des conditions operatoires dans une unite de craquage catalytique a deux risers.
US8137533B2 (en) 2008-10-24 2012-03-20 Uop Llc Mixture of catalysts for cracking naphtha to olefins
CN102209767A (zh) 2008-11-06 2011-10-05 环球油品公司 用于催化石脑油裂化的纳晶硅沸石
BRPI0805207B1 (pt) 2008-11-25 2019-11-12 Petroleo Brasileiro Sa Petrobras processo de craqueamento catalítico de uma corrente de hidrocarbonetos para maximização de olefinas leves
US8246914B2 (en) * 2008-12-22 2012-08-21 Uop Llc Fluid catalytic cracking system
WO2010113174A1 (en) * 2009-03-30 2010-10-07 Indian Oil Corporation Limited A fluidized catalytic cracking process
US8845882B2 (en) 2010-03-18 2014-09-30 W. R. Grace & Co.-Conn. High light olefins FCC catalyst compositions
US8247631B2 (en) 2010-06-21 2012-08-21 Uop Llc Process for catalytic cracking of hydrocarbons using UZM-35
US8524630B2 (en) * 2010-10-08 2013-09-03 Exxonmobil Research And Engineering Company Mesoporous aluminas stabilized with rare earth and phosphorous
US9101853B2 (en) 2011-03-23 2015-08-11 Saudi Arabian Oil Company Integrated hydrocracking and fluidized catalytic cracking system and process
KR101821451B1 (ko) * 2012-02-14 2018-01-23 릴라이언스 인더스트리즈 리미티드 저가 탄화수소 흐름을 경질 올레핀으로 촉매 전환하는 공정
US9919985B2 (en) 2012-03-02 2018-03-20 Raquel Bastiani Additives for maximizing light olefins in fluid catalytic cracking and process units
CN104334694B (zh) 2012-03-20 2016-06-29 沙特阿拉伯石油公司 由原油生产石油化学产品的集成加氢处理、蒸汽热解和催化裂化工艺
CN103159579A (zh) * 2013-02-07 2013-06-19 大连理工大学 一种改性分子筛催化剂用于低碳烷烃催化裂解的方法
US8895790B2 (en) 2013-02-12 2014-11-25 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products
CN105980531B (zh) 2013-12-02 2018-06-19 沙特阿拉伯石油公司 用于轻质烯烃生产的整合的溶剂脱沥青和流化催化裂化方法
JP6329436B2 (ja) * 2014-05-30 2018-05-23 Jxtgエネルギー株式会社 重質油の流動接触分解法

Also Published As

Publication number Publication date
WO2017223310A1 (en) 2017-12-28
US10059642B1 (en) 2018-08-28
CN109415635A (zh) 2019-03-01
SG10201912689PA (en) 2020-02-27
EP3475393A1 (en) 2019-05-01
US20180244591A1 (en) 2018-08-30
US9981888B2 (en) 2018-05-29
KR20190020793A (ko) 2019-03-04
KR102431019B1 (ko) 2022-08-11
JP6959269B2 (ja) 2021-11-02
EP3475393B1 (en) 2020-03-11
SG11201811402SA (en) 2019-01-30
US20170369397A1 (en) 2017-12-28
JP2019524914A (ja) 2019-09-05

Similar Documents

Publication Publication Date Title
CN109415635B (zh) 用于高苛刻度流化催化裂化系统的工艺
Zhao et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts
US10350585B1 (en) Methods for synthesizing hierarchical zeolites for catalytic cracking
Ma et al. Silicalite-1 derivational desilication-recrystallization to prepare hollow nano-ZSM-5 and highly mesoporous micro-ZSM-5 catalyst for methanol to hydrocarbons
JP6710006B2 (ja) 流動接触分解の方法
Ding et al. Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template
Li et al. Effects of large pore zeolite additions in the catalytic pyrolysis catalyst on the light olefins production
Ghashghaee et al. Steam catalytic cracking of fuel oil over a novel composite nanocatalyst: characterization, kinetics and comparative perspective
KR101714805B1 (ko) 단환 방향족 탄화수소 제조용 촉매 및 단환 방향족 탄화수소의 제조 방법
TW201029929A (en) Novel ultra stable zeolite Y and method for manufacturing the same
RU2672919C2 (ru) Повышение активности присадки zsm-5 с помощью улучшенного взаимодействия цеолита и фосфора
CN107974286A (zh) 一种生产低碳烯烃和轻芳烃的催化裂解方法
Liu et al. Intra-crystalline mesoporous SAPO-11 prepared by a grinding synthesis method as FCC promoters to increase iso-paraffin of gasoline
Nasser et al. Nano BEA zeolite catalysts for the selective catalytic cracking of n-dodecane to light olefins
Qureshi et al. Enhanced light olefins production via n-pentane cracking using modified MFI catalysts
Kolesnichenko et al. Dimethyl ether to olefins conversion in a slurry reactor: Effects of the size of particles and the textural and acidic properties of the MFI-type zeolite
US11701644B2 (en) Catalyst systems and methods of synthesizing catalyst systems
Amini et al. Preparation of nanozeolite-based RFCC catalysts and evaluation of their catalytic performance in RFCC process
US11148124B2 (en) Hierarchical zeolite Y and nano-sized zeolite beta composite
EP2946832B1 (en) A catalytic cracking catalyst for rfcc process with maximized diesel yields and a method for the preparation thereof
US11938466B2 (en) Catalyst systems and methods of synthesizing catalyst systems
EP2868374A1 (en) Catalytic cracking of organic compounds, using a modified y zeolite
US11857955B1 (en) Processes of producing catalysts
Afshar Ebrahimi et al. Olefin production from catalytic cracking of light fuel oil over different additives
WO2024081724A1 (en) Processes of producing mesoporous beta zeolites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant