CN109400154B - 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法 - Google Patents

一种双铌源碱金属铌酸盐微纳米线材料及其制备方法 Download PDF

Info

Publication number
CN109400154B
CN109400154B CN201811333250.1A CN201811333250A CN109400154B CN 109400154 B CN109400154 B CN 109400154B CN 201811333250 A CN201811333250 A CN 201811333250A CN 109400154 B CN109400154 B CN 109400154B
Authority
CN
China
Prior art keywords
ball milling
niobium
alkali metal
double
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811333250.1A
Other languages
English (en)
Other versions
CN109400154A (zh
Inventor
江民红
许亚萍
金琦
严亚飞
韩胜男
李德东
李林
饶光辉
顾正飞
成钢
刘心宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201811333250.1A priority Critical patent/CN109400154B/zh
Publication of CN109400154A publication Critical patent/CN109400154A/zh
Application granted granted Critical
Publication of CN109400154B publication Critical patent/CN109400154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种双铌源碱金属铌酸盐微纳米线材料,以K2CO3、Na2CO3、Nb2O5、C10H5NbO20、BaCO3、Bi2O3为原料,按照化学式(1‑y)K z Na1‑ z Nb(C)x Nb(N)1‑x O3yBaBiO3进行配料,其中Nb(C)是指来自铌源C10H5NbO20的Nb元素;Nb(N)是指来自铌源Nb2O5的Nb元素;0<x≤0.1,0<y<0.1,0.4≤z≤0.6,经传统陶瓷固相烧结工艺合成的微纳米线材料。其制备方法包括以下步骤:1)原料烘干;2)原料称取,进行球磨;3)球磨之后粉料的预烧;4)预烧后粉料的第二次球磨;5)压制成圆坯;6)圆坯的保温处理。本发明的优点是,采用双铌源后,可以提高压坯粉料的结晶度和微纳米线的生长速度;同时球磨介质可使用纯净水,无需使用无水乙醇,极大节约成本、减小对环境的污染和烘干过程中的安全隐患。

Description

一种双铌源碱金属铌酸盐微纳米线材料及其制备方法
技术领域
本发明涉及微纳米材料与技术领域,具体是一种双铌源碱金属铌酸盐微纳米线材料及其制备方法。
背景技术
一维无铅钙钛矿材料,包括纳米线、纳米棒和纳米管,在环保、能源、生物医学、国防以及日常生活的各个领域展现出前所未有的应用前景。目前,人们通过多种方法合成了众多的纳米材料,如纳米线、纳米条、纳米棒、纳米带等。合成微纳米材料的方法主要有水热法、熔盐法、溶胶—凝胶法、模板法等,但是每种方法都存在一定的问题。模板生长法具有可以控制纳米材料的形状和尺寸、合成方式简单、适用批量生产等,但是模板中容易引入杂质。此外,如果不结合使用模板生长法而单纯采用液相法,生长出来的纳米线则杂乱无章排列。水热法和溶胶-凝胶法等液相法具有低温、低成本优势,及产量高和均匀性好等优点,但是存在产物长径比较低、尺寸较大,工艺复杂且产物纯度不高的技术问题。此外,水热法还存在只能用于制备对水或溶剂不敏感的化合物的技术问题。
最近,我们发明了一种固相法制备铌酸盐微纳米线的方法[江民红,严亚飞,郝崇琰,李林,饶光辉,成钢,顾正飞,刘心宇,一种碱金属铌酸盐微纳米线材料及其制备方法,申请号:201611181133.9];[江民红,金琦,严亚飞,韩胜男,李林,饶光辉,成钢,顾正飞,刘心宇,一种锂、锑掺杂的碱金属铌酸盐微纳米线材料及其制备方法,申请号:201711116853.1]。采用该固相法,在不需要额外提供气相、异质模板和催化剂的条件下,实现碱金属铌酸盐微纳米线的可控生长,使合成的碱金属铌酸盐微纳米线直接从同质基体中生长,不引入外界杂质,实现产物的纯洁。
但该现有技术存在以下技术问题:
1、由于本领域早期实验经验发现,采用纯净水作为球磨介质,会产生团聚现象,影响粉料的活性,因此,本领域常规手段是采用无水乙醇作为球磨介质,而采用无水乙醇作为球磨介质,直接产生了生产成本的提升和生产过程中的安全隐患,以及环境污染问题;
2、预烧温度较高,需要达到700-900 ℃,显然,更高的温度条件带来了更高的能源消耗、设备的要求以及生产安全问题。
因此,解决以上技术问题,可以有效降低材料的生产成本,提高生产过程的安全性。
发明内容
本发明的目的是提供一种双铌源碱金属铌酸盐微纳米线材料及其制备方法。
针对现有技术存在的问题,本发明采用了一下技术手段进行解决:
1、通过选择合适的双铌源作为原料,以及控制反应条件,达到有效提高压坯粉料的结晶度和微纳米线的生长速度的技术效果,且在实现以纯净水为球磨介质的条件下,实现微纳米线材料的制备,打破常规制备方法中,必须采用无水乙醇作为球磨介质才能得到微纳米材料的认知;
2、利用不同铌源在反应过程中的不同反应活性,控制、改变反应历程,具体为,利用C10H5NbO20可以在较低的温度下分解,产生高反应活性的铌,从而改变反应历程,最终实现降低预烧温度的技术效果。
从而实现极大地节约生产成本,减小环境污染和无水乙醇在烘干过程中存在的潜在安全问题;降低预烧温度,缩短高温段保温时间,进一步节约生产成本;并有效提高压坯粉料的结晶度和微纳米线的生长速度。
为了实现上述发明目的,本发明采用的技术方案为:
一种双铌源碱金属铌酸盐微纳米线材料,是以K2CO3、Na2CO3、Nb2O5、C10H5NbO20、BaCO3、Bi2O3为原料,按照化学式(1-y)K z Na1-z Nb(c)xNb(N)1-x O3-yBaBiO3进行配料,其中Nb(C)是指来自C10H5NbO20的Nb元素;Nb(N)是指来自Nb2O5的Nb元素;0<x≤0.1,0<y<0.1,0.4≤z≤0.6,经传统陶瓷固相烧结工艺合成的微纳米线材料。
一种 双铌源碱金属铌酸盐微纳米线材料的制备方法,包括以下步骤:
步骤(1)所有原料K2CO3、Na2CO3、Nb2O5、C10H5NbO20、BaCO3、Bi2O3在称量配料前均置于烘箱中烘干,烘干温度为120 ℃;
步骤(2)按照化学式(1-y)K z Na1-z Nb(c)xNb(N)1-x O3-yBaBiO3成分质量比称量原料,其中Nb(C)是指来自C10H5NbO20的Nb元素;Nb(N)是指来自Nb2O5的Nb元素;0<x≤0.1,0<y<0.1,0.4≤z≤0.6,装入球磨瓶中,以纯净水和氧化锆球为介质球磨24-36h;
步骤(3)将球磨之后的粉料取出、烘干、预烧,预烧温度是130℃保温3h再升温至425-550℃保温3h,预烧的升温速率为1 ℃/min;
步骤(4)然后将预烧后的粉料再次装入球磨瓶中,以纯净水和氧化锆球为球磨介质,进行第二次球磨18-24h;
步骤(5)将第二次球磨后的粉料取出、烘干、过200目筛后,在100MPa的压力下压制成直径16mm,厚3mm的圆坯;
步骤(6)将压制好的圆坯在1080-1120℃保温10-30h处理,即可制得双铌源碱金属铌酸盐微纳米线材料。
本发明双铌源碱金属铌酸盐微纳米线材料经SEM电镜检测证实为微纳米线结构。
本发明相对于现有技术,具有以下优点:
本发明采用采用了简单低成本的陶瓷工艺,即传统的固相烧结工艺进行制备。采用双铌源后,可以有效提高压坯粉料的结晶度和微纳米线的生长速度;同时球磨介质可使用纯净水,无需使用无水乙醇,极大地节约了成本,减小了对环境的污染和无水乙醇在烘干过程中存在的潜在危害;预烧温度降低了150-425℃,缩短了高温段保温时间,进一步节约了成本,易于产业化。
附图说明
图1为实施例1中制备双铌源碱金属铌酸盐微纳米线的SEM图;
图2为实施例2中制备双铌源碱金属铌酸盐微纳米线的SEM图;
图3为实施例3中制备双铌源碱金属铌酸盐微纳米线的SEM图。
具体实施方式
本发明通过实施例,结合说明书附图对本发明内容做进一步详细说明,但不是对本发明的限定。
实施例1
一种双铌源碱金属铌酸盐微纳米线材料的制备方法:
步骤(1)所有原料K2CO3、Na2CO3、Nb2O5、C10H5NbO20、BaCO3、Bi2O3在称量配料前均置于烘箱中烘干,烘干温度为120℃;
步骤(2)按照化学式(1-y)K z Na1-z Nb(c)xNb(N)1-x O3-yBaBiO3成分质量比称量原料,其中Nb(C)是指来自C10H5NbO20的Nb元素;Nb(N)是指来自Nb2O5的Nb元素;x = 0.01,y = 0.05, z= 0.54。装入球磨瓶中,以纯净水和氧化锆球为介质球磨24h;
步骤(3)将球磨之后的粉料取出、烘干、预烧,预烧温度是200℃保温3h再升温至500℃保温3h,升温速率为1min/℃;
步骤(4)然后将预烧后的粉料再次装入球磨瓶中,以纯净水和氧化锆球为球磨介质,进行第二次球磨18h;
步骤(5)将二次球磨后的粉料取出、烘干、过200目筛后,在100MPa的压力下压制成直径16mm,厚3mm的圆坯;
步骤(6)将压制好的圆坯在1112℃保温处理12h,即可制得双铌源碱金属铌酸盐微纳米线材料。
经SEM检测,所得双铌源碱金属铌酸盐微纳米线材料如图1所示。
实施例2
一种双铌源碱金属铌酸盐微纳米线材料的制备方法:
未特别说明的步骤与实施例1的制备方法相同,不同之处在于:步骤(6)中保温处理18h。
经SEM检测,所得双铌源碱金属铌酸盐微纳米线材料。
实施例3
一种双铌源碱金属铌酸盐微纳米线材料的制备方法:
未特别说明的步骤与实施例1的制备方法相同,不同之处在于:步骤(6)中保温处理24h。
经SEM检测,所得双铌源碱金属铌酸盐微纳米线材料如图3所示。

Claims (2)

1.一种双铌源碱金属铌酸盐微纳米线材料,其特征在于:所述碱金属铌酸盐微纳米线材料是以K2CO3、Na2CO3、Nb2O5、C10H5NbO20、BaCO3、Bi2O3为原料,按照化学式(1-y)K z Na1-z Nb(C) x Nb(N)1-x O3-yBaBiO3进行配料,其中Nb(C)是指来自铌源C10H5NbO20的Nb元素;Nb(N)是指来自铌源Nb2O5的Nb元素;0<x≤0.1,0<y<0.1, 0.4≤z≤0.6,经传统陶瓷固相烧结工艺合成的微纳米线材料。
2.根据权利要求1所述的双铌源碱金属铌酸盐微纳米线材料的制备方法,其特征包括以下步骤:
步骤(1)所有原料K2CO3、Na2CO3、Nb2O5、C10H5NbO20、BaCO3、Bi2O3在称量配料前均置于烘箱中烘干;所述步骤(1)烘干的温度为120℃;
步骤(2)按照化学式(1-y)K z Na1-z Nb(c)x Nb(N)1-x O3-yBaBiO3成分质量比称量原料,装入球磨瓶中,以纯净水和氧化锆球为介质球磨24-36h;
步骤(3)将球磨之后的粉料取出、烘干、预烧;所述步骤(3)预烧的温度为130℃保温3h再升温至425-550℃保温3h,预烧的升温速率为1℃/min;
步骤(4)然后将预烧后的粉料再次装入球磨瓶中,以纯净水和氧化锆球为球磨介质,进行第二次球磨18-24h;
步骤(5)将第二次球磨后的粉料取出、烘干、过200目筛后,在100MPa的压力下压制成直径16mm,厚3mm的圆坯;
步骤(6)将压制好的圆坯在一定条件下保温处理,即可制得双铌源碱金属铌酸盐微纳米线材料;所述步骤(6)保温的温度为1080-1120℃,保温时间为10-30h,升温速率为1℃/min。
CN201811333250.1A 2018-11-09 2018-11-09 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法 Active CN109400154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811333250.1A CN109400154B (zh) 2018-11-09 2018-11-09 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811333250.1A CN109400154B (zh) 2018-11-09 2018-11-09 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109400154A CN109400154A (zh) 2019-03-01
CN109400154B true CN109400154B (zh) 2021-06-04

Family

ID=65472850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811333250.1A Active CN109400154B (zh) 2018-11-09 2018-11-09 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109400154B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006045169A2 (en) * 2004-10-28 2006-05-04 Companhia Brasileira De Metalurgia E Mineração Processes for niobium oxide extrusion casting or conformation and preparation of a hydrolized and amorphous niobium oxide and use of a niobium oxide in the extruded form
CN102030530A (zh) * 2010-11-24 2011-04-27 华中科技大学 一种铌酸钾钠无铅压电铁电陶瓷的制备方法
CN106631016A (zh) * 2016-12-20 2017-05-10 桂林电子科技大学 一种铌酸钾钠体系纳米线材料及其制备方法
CN106673062A (zh) * 2016-12-20 2017-05-17 桂林电子科技大学 一种碱金属铌酸盐微纳米线材料及其制备方法
CN107204457A (zh) * 2017-05-23 2017-09-26 宁波大学 一种碳掺杂铌酸钾纳米线的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110315914A1 (en) * 2010-06-29 2011-12-29 Pixelligent Technologies, Llc Nanocomposites with high dielectric constant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006045169A2 (en) * 2004-10-28 2006-05-04 Companhia Brasileira De Metalurgia E Mineração Processes for niobium oxide extrusion casting or conformation and preparation of a hydrolized and amorphous niobium oxide and use of a niobium oxide in the extruded form
CN102030530A (zh) * 2010-11-24 2011-04-27 华中科技大学 一种铌酸钾钠无铅压电铁电陶瓷的制备方法
CN106631016A (zh) * 2016-12-20 2017-05-10 桂林电子科技大学 一种铌酸钾钠体系纳米线材料及其制备方法
CN106673062A (zh) * 2016-12-20 2017-05-17 桂林电子科技大学 一种碱金属铌酸盐微纳米线材料及其制备方法
CN107204457A (zh) * 2017-05-23 2017-09-26 宁波大学 一种碳掺杂铌酸钾纳米线的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Direct preparation of K0.5Na0.5NbO3 powders;Heng Jiang et al.;《CRYSTAL RESEARCH AND TECHNOLOGY》;20101119;第46卷(第1期);第85-89页 *
碱金属铌酸盐的合成、表征及光催化性能研究;苏婷婷;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;中国学术期刊(光盘版)电子杂志社;20150715(第5期);第75页实验步骤部分,第94-95页结论部分 *

Also Published As

Publication number Publication date
CN109400154A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN104328301B (zh) 一种颗粒增强钼基复合材料的制备方法
CN108264087B (zh) 一种单一试剂自反应制备具有定向排列Nb2O5纳米棒的方法
CN109851367B (zh) 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
CN105926029A (zh) 一种利用微波快速合成氧化锌晶须的方法
CN110627122A (zh) 固相法制备vo2相变材料的方法
CN103911662A (zh) 硅酸镓镧压电晶体的制造方法及其制品
CN102864343B (zh) 一种原位铝基复合材料孕育剂的制备方法
CN103183382B (zh) 一种由铋金属制备针状氧化铋的方法
CN109400154B (zh) 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法
CN106631016B (zh) 一种铌酸钾钠体系纳米线材料及其制备方法
CN107010654A (zh) 一种单分散氧化镓粉体及其高密度陶瓷靶材的制备方法
CN104805409B (zh) 采用磁控溅射‑掩模辅助沉积制备Ag纳米线阵列电极的方法
CN103318954A (zh) 一种固相化学反应制备三钛酸钠纳米棒的方法
CN108767268A (zh) 一种Cu纳米棒状结构催化剂的制备方法及应用
CN115353145B (zh) 一种利用真空等离子场辅助溶胶-凝胶技术制备Sn:(Ba,Ca)TiO3粉体的方法
CN108083275A (zh) 一种高目数无硫膨胀石墨的低成本大规模生产工艺
CN108735518B (zh) 一种六方片状氧化锰@氧化镍复合材料及其制备方法
CN116409827A (zh) 一种熔盐法合成纯相La2NiO4粉体的制备方法
CN107293637A (zh) 一种高性能GeSbTe基热电材料的制备方法
CN101967660B (zh) 共电脱氧法制取Nb3Al超导材料的方法
CN112265980B (zh) 富勒烯c60的配料及其制备方法
CN105692694B (zh) Ti3O5/TiO2混晶纳米纤维的制备方法
CN108706631B (zh) 一种矩形片状单斜氧化锆的制备方法
CN114230340A (zh) 一种高致密高温抗氧化钼基复合靶材及其制备方法
JP2017165605A (ja) 窒化タンタル(Ta3N5)の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190301

Assignee: Guilin Xianjingkuangbao Technology Development Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2023980046674

Denomination of invention: A dual niobium source alkali metal niobate micro nanowire material and its preparation method

Granted publication date: 20210604

License type: Common License

Record date: 20231109