CN107204457A - 一种碳掺杂铌酸钾纳米线的制备方法 - Google Patents

一种碳掺杂铌酸钾纳米线的制备方法 Download PDF

Info

Publication number
CN107204457A
CN107204457A CN201710368597.9A CN201710368597A CN107204457A CN 107204457 A CN107204457 A CN 107204457A CN 201710368597 A CN201710368597 A CN 201710368597A CN 107204457 A CN107204457 A CN 107204457A
Authority
CN
China
Prior art keywords
nano wire
potassium niobate
carbon doping
preparation
niobate nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710368597.9A
Other languages
English (en)
Other versions
CN107204457B (zh
Inventor
潘裕
李星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201710368597.9A priority Critical patent/CN107204457B/zh
Publication of CN107204457A publication Critical patent/CN107204457A/zh
Application granted granted Critical
Publication of CN107204457B publication Critical patent/CN107204457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种碳掺杂铌酸钾纳米线的制备方法,将一定量的草酸铌,草酸和乙酸钾溶于一定体积的N,N‑二甲基甲酰胺中,然后缓慢加入适量的PVP(K‑120,聚乙烯吡咯烷酮),搅拌,得到乳白色的液体;将上述乳白色的液体在一定的电压、流率及一定的相对湿度氛围下进行静电纺丝;然后将静电纺丝产品进行烧结得到一种铌酸钾纳米线。电化学实验证明本方法制备的铌酸钾纳米线作为锂离子电池负极材料具有广阔的应用前景。在整个制备过程中,操作简单,原料成本低,设备投资少,适合批量生产。

Description

一种碳掺杂铌酸钾纳米线的制备方法
技术领域
本发明属于功能材料化学领域,具体涉及到一种碳掺杂铌酸钾纳米线的制备方法。
背景技术
一些类钙钛矿结构的铌酸盐类化合物由于性能稳定、毒性低、活性高而受到研究人员的关注。铌酸盐类化合物因具有特殊的结构和一些物理与化学特性,可用作发光材料、激光倍频器、声表面波传感器、光通讯、铁电材料、压电材料和非均相催化剂等。铌酸钾类化合物是铌酸盐类化合物的一类,其具有KNbO3、KNb3O8、KNb5O13、K2Nb4O11、K2Nb6O16、K2Nb8O21、K4Nb6O17、K5.75Nb10.85O30等多种结构形式。铌酸钾化合物常见的合成方法主要有溶胶一凝胶法,固相法,和水热法。溶胶一凝胶法需要使用昂贵且不稳定的醇盐,而且操作和反应都须在干燥的惰性气体气氛中进行。而且通过其制备的粉体颗粒极易团聚。水热法制备铌酸钾化合物技术难度大,对温度高低、反应釜压力大小,和KOH的浓度都有很高的要求。固相法制得的产品颗粒粒径大,粒径均匀性差且产物中常混有杂相。Yu Huan和Longtu Li等人用静电纺丝技术制备KNbO3纳米纤维,并研究了其光催化性能(RSC Advances,2015,5,72410-72415)。2001年,Yuhao Lu首次将KNb5O13作为电极材料应用于锂离子电池中,并探讨了KNb5O13在充放电过程中可能的嵌锂机制(Yuhao Lu等人,Chem.Mater.,2011,23,3210-3216)。2015年Hideki Nakayama等人用固态反应法制备了层状结构KNb3O8,并研究了其电化学性能(Journal Power Sources,2015,287,158-163)。2013年曹慧群等人通过研磨煅烧技术得到KNb3O8纳米线(一种铌酸钾单晶纳米线及其制备方法,公开号为CN103320847A)。王威等人用静电纺丝法成功制备了(K0.5Na0.5)NbO3纳米纤维,并研究了材料的压电性能(HansJournal of Nanotechnology,2015,05,1-6)。Monica Lundberg和Margareta Sundberg用高分辨的电子光谱和粉末X射线研究了铌酸钾体系K2xNb2-x(NbO)xNb10O30组成以及晶相的变化(J.Solid State Chem.,1986,63,216-230)。上述铌酸钾材料作为锂电材料存在着导电性能差等不足。一维材料有利电子传导,通过碳掺杂制备铌酸钾纳米线,有望改善材料的电化学性能。目前尚未有用静电纺丝法制备K5.75Nb10.85O30的报道。本发明采用静电纺丝技术公开一种碳掺杂铌酸钾K5.75Nb10.85O30的制备方法,并探索了该材料作为锂离子电池负极材料的电化学性能。
发明内容
本发明所要解决的技术问题是针对现有技术,提供一种碳掺杂铌酸钾纳米线的制备方法。
本发明为解决上述技术问题所采取的技术方案为:一种碳掺杂铌酸钾纳米线的制备方法,所述制备方法采用以草酸铌、草酸、乙酸钾为主要原料,加入适量的高分子为粘合剂,在高电压条件下利用静电纺丝,将纺丝产品在马弗炉中高温烧结得到铌酸钾K5.75Nb10.85O30纳米线,将得到的铌酸钾K5.75Nb10.85O30纳米线浸泡在葡萄糖稀溶液后在马弗炉中进行烧结,得碳掺杂铌酸钾纳米线,具体包括以下步骤:
1)称取一定量的草酸铌(Nb(HC2O4)5,草酸(H2C2O4)和乙酸钾(CH3COOK)溶于一定体积的N,N-二甲基甲酰胺(DMF)中,然后缓慢加入适量的聚乙烯吡咯烷酮(PVP),搅拌3~6h,得到乳白色的液体;
2)将上述乳白色的液体在30~35kv电压和0.6~1.0mL/h流率下、相对湿度为30~50%的氛围下进行静电纺丝;
3)将上述所得的静电纺丝产品置于马弗炉中800~850℃烧结3~5h,然后自然降温至室温,得到铌酸钾K5.75Nb10.85O30纳米线;
4)将上述所得的铌酸钾纳米线浸泡在0.5mmol葡萄糖溶液中30~60min后置于马弗炉中500℃氮气氛围中烧结4~6h,得到一种碳掺杂铌酸钾纳米线。
在本发明中,优选的,步骤1)中草酸铌的浓度为0.1085mol/L,草酸的浓度为0.6mol/L,乙酸钾的浓度为0.0575mol/L,所述聚乙烯吡咯烷酮为K-120聚乙烯吡咯烷酮,分子量1390000,浓度为0.000091mol/L。
进一步的,本发明还提供了一种如所述的制备方法得到的碳掺杂铌酸钾纳米线,该纳米线作为锂离子电池负极材料,首次放电比容量为389.5mAh g-1,充电比容量为179.8mAh g-1
与现有技术相比,本发明的特点如下:
本发明制备的碳掺杂铌酸钾纳米线具有良好的导电性能,碳的质量百分含量为3~5%,作为锂离子电池负极材料,循环50次材料的库伦效率仍能保持在98%以上,其首次放电比容量为389.5mAh g-1,充电比容量为179.8mAh g-1
附图说明
图1为本发明制得的静电纺丝产品SEM图;
图2为本发明制得的铌酸钾K5.75Nb10.85O30纳米线XRD谱图和JCPDS No.38-0297卡片谱图;
图3为本发明制得的碳掺杂铌酸钾纳米线的TEM图;
图4为本发明制得的碳掺杂铌酸钾纳米线作为电池负极材料充放电循环和库伦效率图。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1
称取1.085mmol,0.584g的草酸铌(Nb(HC2O4)5,6.0mmol,0.540g草酸(H2C2O4)和0.575mmol,0564g乙酸钾(CH3COOK)溶于10mL DMF(N,N—二甲基甲酰胺)中,然后缓慢加入1.26g PVP(K-120,聚乙烯吡咯烷酮,分子量1390000),搅拌6h,得到乳白色的液体;将上述乳白色的液体在30kV的电压和0.6mL h-1流率下、相对湿度为50%的氛围下进行静电纺丝,得到静电纺丝产品,扫描电镜观察纺丝产品形貌(图1);将上述所得的静电纺丝产品置于马弗炉中800℃烧结5h,然后自然降温至室温,得到铌酸钾K5.75Nb10.85O30纳米线,铌酸钾K5.75Nb10.85O30纳米线XRD谱图和JCPDS No.38-0297卡片谱如图2所示;将得到铌酸钾K5.75Nb10.85O30纳米线浸泡在0.5mmol葡萄糖溶液中60min后,置于马弗炉中500℃氮气氛围中烧结6h,得到一种碳掺杂铌酸钾纳米线,透射电镜TEM观察其形貌(图3),元素分析测试其碳含量5%;将上述得到的碳掺杂铌酸钾纳米线作为电池负极材料测试其电化学性能。
实施例2
称取1.085mmol,0.584g的草酸铌(Nb(HC2O4)5,6.0mmol,0.540g草酸(H2C2O4)和0.575mmol,0564g乙酸钾(CH3COOK)溶于10mL DMF(N,N—二甲基甲酰胺)中,然后缓慢加入1.26g PVP(K-120,聚乙烯吡咯烷酮,分子量1390000),搅拌3h,得到乳白色的液体;将上述乳白色的液体在35kV的电压和1.0mL h-1流率下、相对湿度为30%的氛围下进行静电纺丝;将上述所得的静电纺丝产品置于马弗炉中850℃烧结3h,然后自然降温至室温,得到铌酸钾K5.75Nb10.85O30纳米线;将得到铌酸钾K5.75Nb10.85O30纳米线浸泡在0.5mmol葡萄糖溶液中30min后,置于马弗炉中500℃氮气氛围中烧结4h,得到一种碳掺杂铌酸钾纳米线,元素分析测试其碳含量3%;将上述得到的碳掺杂铌酸钾纳米线作为电池负极材料测试其电化学性能。
实施例3
称取1.085mmol,0.584g的草酸铌(Nb(HC2O4)5,6.0mmol,0.540g草酸(H2C2O4)和0.575mmol,0564g乙酸钾(CH3COOK)溶于10mL DMF(N,N—二甲基甲酰胺)中,然后缓慢加入1.26g PVP(K-120,聚乙烯吡咯烷酮,分子量1390000),搅拌4h,得到乳白色的液体;将上述乳白色的液体在33kV的电压和0.8mL h-1流率下、相对湿度为40%的氛围下进行静电纺丝;将上述所得的静电纺丝产品置于马弗炉中820℃烧结4h,然后自然降温至室温,得到铌酸钾K5.75Nb10.85O30纳米线;将得到铌酸钾K5.75Nb10.85O30纳米线浸泡在0.5mmol葡萄糖溶液中50min后,置于马弗炉中500℃氮气氛围中烧结5h,得到一种碳掺杂铌酸钾纳米线,元素分析测试其碳含量4%;将上述得到的碳掺杂铌酸钾纳米线作为电池负极材料测试其电化学性能。
将实施例1-3得到的碳掺杂铌酸钾纳米线作为电池负极材料测试其电化学性能,如图4所示,循环50次材料的库伦效率仍能保持在98%以上,其首次放电比容量为389.5mAhg-1,充电比容量为179.8mAh g-1
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种碳掺杂铌酸钾纳米线的制备方法,其特征在于,所述铌酸钾纳米线的化学式为K5.75Nb10.85O30,所述碳掺杂铌酸钾纳米线的制备方法包括以下步骤:
1)称取一定量草酸铌,草酸和乙酸钾溶于一定体积的N,N-二甲基甲酰胺中,然后缓慢加入适量的聚乙烯吡咯烷酮,搅拌3~6h,得到乳白色的液体;
2)将上述乳白色的液体在30~35kv电压和0.6~1.0mL/h流率下、相对湿度为30~50%的氛围下进行静电纺丝;
3)将上述所得的静电纺丝产品置于马弗炉中800~850℃烧结3~5h,然后自然降温至室温,得到铌酸钾K5.75Nb10.85O30纳米线;
4)将上述所得的铌酸钾纳米线浸泡在0.5mmol葡萄糖溶液中30~60min后,置于马弗炉中500℃氮气氛围中烧结4~6h,得到一种碳掺杂铌酸钾纳米线。
2.一种如权利要求1所述的碳掺杂铌酸钾纳米线的制备方法,其特征在于,步骤1)中草酸铌的浓度为0.1085mol/L,草酸的浓度为0.6mol/L,乙酸钾的浓度为0.0575mol/L,所述聚乙烯吡咯烷酮为K-120聚乙烯吡咯烷酮,分子量1390000,浓度为0.000091mol/L。
3.一种如权利要求1或2所述的制备方法得到的碳掺杂铌酸钾纳米线,其特征在于,该纳米线作为锂离子电池负极材料,首次放电比容量为389.5mAh g-1,充电比容量为179.8mAhg-1
CN201710368597.9A 2017-05-23 2017-05-23 一种碳掺杂铌酸钾纳米线的制备方法 Active CN107204457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710368597.9A CN107204457B (zh) 2017-05-23 2017-05-23 一种碳掺杂铌酸钾纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710368597.9A CN107204457B (zh) 2017-05-23 2017-05-23 一种碳掺杂铌酸钾纳米线的制备方法

Publications (2)

Publication Number Publication Date
CN107204457A true CN107204457A (zh) 2017-09-26
CN107204457B CN107204457B (zh) 2019-10-25

Family

ID=59905484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710368597.9A Active CN107204457B (zh) 2017-05-23 2017-05-23 一种碳掺杂铌酸钾纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN107204457B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400154A (zh) * 2018-11-09 2019-03-01 桂林电子科技大学 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法
CN109802130A (zh) * 2018-12-24 2019-05-24 肇庆市华师大光电产业研究院 一种锂离子一次电池用纳米负极材料及其制备方法
CN114797831A (zh) * 2022-05-10 2022-07-29 中山大学 一种掺碳铌酸钾压电催化剂的制备方法及其在全分解水制备双氧水中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992403A (zh) * 2012-10-22 2013-03-27 北京工业大学 一种制备一维纳米棒状铌酸钾粉体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992403A (zh) * 2012-10-22 2013-03-27 北京工业大学 一种制备一维纳米棒状铌酸钾粉体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU HUAN ET AL: ""Enhanced photocatalysis activity of ferroelectric KNbO3 nanofibers compared with antiferroelectric NaNbO3 nanofibers synthesized by electrospinning"", 《ROYAL SOCIETY OF CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400154A (zh) * 2018-11-09 2019-03-01 桂林电子科技大学 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法
CN109400154B (zh) * 2018-11-09 2021-06-04 桂林电子科技大学 一种双铌源碱金属铌酸盐微纳米线材料及其制备方法
CN109802130A (zh) * 2018-12-24 2019-05-24 肇庆市华师大光电产业研究院 一种锂离子一次电池用纳米负极材料及其制备方法
CN114797831A (zh) * 2022-05-10 2022-07-29 中山大学 一种掺碳铌酸钾压电催化剂的制备方法及其在全分解水制备双氧水中的应用

Also Published As

Publication number Publication date
CN107204457B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Chen et al. Microwave–hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage
Zhao et al. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries
Feng et al. Ultrathin Li4Ti5O12 nanosheets as anode materials for lithium and sodium storage
Lyu et al. Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications
Kong et al. Engineering mesoporous single crystals Co-doped Fe2O3 for high-performance lithium ion batteries
EP2571084A2 (en) Anode active material for a lithium secondary battery, method for preparing same, and lithium secondary battery including same
CN102107909B (zh) 一种介孔纳米二氧化锰的制备方法
Anh Cao et al. Controllable synthesis of carbon-coated SiO x particles through a simultaneous reaction between the hydrolysis–condensation of tetramethyl orthosilicate and the polymerization of 3-aminophenol
CN107204457B (zh) 一种碳掺杂铌酸钾纳米线的制备方法
CN107204453B (zh) 一种KNb3O8纳米棒的制备方法
CN108461734A (zh) 一种磷酸钛钠/碳复合材料的制备方法及应用
Tian et al. Superimposed effect of La doping and structural engineering to achieve oxygen-deficient TiNb2O7 for ultrafast Li-ion storage
CN102956880A (zh) 一种用于制备Li4Ti5O12-TiO2纳米复合材料的方法及其产品
CN107162055A (zh) 一种钒铌酸盐纳米线的制备方法
Zhang et al. Sacrificial template strategy toward a hollow LiNi1/3Co1/3Mn1/3O2 nanosphere cathode for advanced lithium-ion batteries
KR20140042874A (ko) 표면 불소화 b형 산화 티타늄 분말을 포함하는 리튬 이온 전지용 부극 재료와 그 제조 방법 및 그것을 사용한 리튬 이온 전지
Xu et al. Nitrogen-doped carbon-coated TiO2/TiF3 heterostructure nanoboxes with enhanced lithium and sodium storage performance
Guo et al. Molten-salt-protected pyrolysis for fabricating perovskite nanocrystals with promoted water oxidation behavior
CN109192952A (zh) 一种二硫化钴/碳纳米纤维复合材料及其制备方法
Zhu et al. Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries
CN104577090A (zh) 一种碳及氧化物复合改性钛酸锂材料的制备方法
CN110473713A (zh) 增韧的超级电容器电极复合材料及制备方法及不对称全固态超级电容器的制备方法
CN110165142A (zh) 一种原位制备纳米复合电极材料的方法
Ren et al. Hydrothermal synthesis of β-Ni (OH) 2 nanoplates as electrochemical pseudocapacitor materials
CN106887580B (zh) 一种锂离子电池负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant