CN109369180A - 一种高密度HfO2靶材的制备方法 - Google Patents

一种高密度HfO2靶材的制备方法 Download PDF

Info

Publication number
CN109369180A
CN109369180A CN201811508783.9A CN201811508783A CN109369180A CN 109369180 A CN109369180 A CN 109369180A CN 201811508783 A CN201811508783 A CN 201811508783A CN 109369180 A CN109369180 A CN 109369180A
Authority
CN
China
Prior art keywords
hfo
temperature
powder
preparation
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811508783.9A
Other languages
English (en)
Other versions
CN109369180B (zh
Inventor
白雪
刘宇阳
杨磊
桂涛
王星明
储茂友
韩沧
张恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRINM Resources and Environment Technology Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201811508783.9A priority Critical patent/CN109369180B/zh
Publication of CN109369180A publication Critical patent/CN109369180A/zh
Application granted granted Critical
Publication of CN109369180B publication Critical patent/CN109369180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了属于陶瓷靶材技术领域的一种高密度HfO2靶材的制备方法。本发明利用碱性溶剂对HfO2粉体预处理,将预处理后粉体置于马弗炉、热压炉中烧结,然后粉碎、过筛,再置于热压炉中进行三段式热压烧结,最后随炉冷却,得到HfO2靶材;所得HfO2靶材外观呈均匀灰色,相对密度达到85%~95%,具有高强度、不易开裂的特点,适用于溅射制备光学薄膜。

Description

一种高密度HfO2靶材的制备方法
技术领域
本发明属于陶瓷靶材技术领域,特别涉及一种高密度HfO2靶材的制备方法。
背景技术
HfO2薄膜具有较高的硬度,高的化学稳定性以及良好的介电性能,特别是用在光学薄膜方面,具有硬度高,折射率高,高的强激光损伤阈值,在近紫外到中红外波段的良好透过性能等特点,在制备高性能器件和高能激光方面具有重要的应用。同时,HfO2介质材料具有高K值,与Si接触有良好的热力学稳定性,是新型高K栅介质材料之一。
制备HfO2薄膜的方法主要包括化学气相沉积、磁控溅射、电子束蒸发等。其中,射频磁控溅射法发展较为成熟,可以实现低温高速沉积,制备的薄膜致密度高、强度高、性能稳定,因此常被用于制备HfO2薄膜。
利用射频磁控溅射法制备HfO2薄膜,HfO2靶材性能直接决定HfO2薄膜性能,HfO2靶材通常采用热压法制备,即在升温的过程中同时施加压力促使靶材致密化。热压法制备靶材效率高,所得靶材致密化程度高且强度较好,但是HfO2靶材在制备过程中常有致密化速率低、极易开裂、靶材强度低等问题。
发明内容
本发明的目的在于提供一种高密度HfO2靶材的制备方法,具体技术方案如下:
一种高密度HfO2靶材的制备方法具体为,利用碱性溶剂对HfO2粉体预处理,将预处理后粉体置于马弗炉、热压炉中烧结,然后粉碎、过筛,再置于热压炉中进行三段式热压烧结,最后随炉冷却,即得到HfO2靶材。
所述HfO2粉体中位粒径D50≤5μm,纯度>99.99%。
所述碱性溶剂为氨水;所述预处理为利用碱性溶剂清洗HfO2粉体,并进行烘干处理。
其中,碱性溶剂加入量至少应与HfO2粉体完全混合,混合过程中充分搅拌,优选30~60min搅拌时间,以保证去除HfO2粉体中残留的酸根离子。
所述预处理后粉体在马弗炉中的烧结温度为1000℃~1200℃,保温2~3小时,以去除HfO2粉体中残留的气体杂质元素;其中,HfO2粉体置于坩埚中再进行烧结。
所述热压炉中烧结温度为1000~1200℃,真空度≤200Pa,保温3~4小时;以进一步去除HfO2粉体中气体杂质元素,优化粉体粒度形貌。
所述热压炉中烧结优选为:在真空度≤200Pa下,先升温至500~600℃,保温30~50min,在升温过程中充氩气,在升温过程中不加压,当温度升至1000~1200℃,保温3~4小时。
所述过筛的筛网目数≥100目。
所述热压炉三段式热压烧结具体为:
低温真空烧结:真空度≤200pa,直至升温至500~600℃;
中段慢速升温烧结:开始充氩气,在1~2小时内升温至1200~1400℃,保温30~60min;然后以每30min~50min升温100℃的速度升温并缓慢施加压力;
高温氩气保护烧结:温度升至1600~1800℃,压力达到20~30MPa后,保温保压1~2h。
所述热压炉中烧结、热压炉三段式热压烧结过程中,HfO2粉体均置于石墨模具中。
所述热压炉三段式热压烧结完成后,随炉冷却具体为:热压炉温度降低1300~1400℃,逐渐缓慢泄压至常压。
对随炉冷却后坯料进行机械加工、清洗、烘干处理;其中机械加工为磨削,清洗为将坯料利用纯净水超声清洗1~2小时,烘干在鼓风干燥箱中进行。
本发明的有益效果为:
(1)本发明通过碱性溶剂、马弗炉烧结、热压炉烧结、过筛处理对HfO2粉体进行预处理,控制HfO2粉体的形貌和粒度,以提高粉体烧结性能、保障高强度、高密度HfO2靶材的制备;
(2)本发明通过将热压烧结分为三段式热压烧结,其中低温真空烧结能进一步脱除坯料中的气体和轻金属杂质,中段慢速升温烧结、高温氩气保护烧结能够提高粉体致密化速率,并在致密化速率较快的时间段均匀了坯料的温度场,从而得到晶粒细小且高致密的HfO2靶材;
(3)本发明制备方法过程中不添加任何添加剂,制备的失氧型氧化铪(HfO2)陶瓷靶材,外观呈均匀灰色,相对密度达到85%~95%,具有高强度、不易开裂的特点,适用于溅射制备光学薄膜。
附图说明
附图1为本发明HfO2真空处理粉体的XRD图谱;
附图2为实施例1中HfO2真空处理粉体粒径分布图;
附图3为实施例2中HfO2真空处理粉体粒径分布图。
具体实施方式
本发明提供了一种高密度HfO2靶材的制备方法,下面结合实施例对本发明做进一步的说明。
本发明以HfO2粉为原料,采用特定预处理工艺制备出烧结性能优异的HfO2粉体,再采用高温高压的热压成型工艺制备致密的氧化铪(HfO2)陶瓷靶材,靶材相对密度达到85%~95%;具体制备步骤如下:
(1)碱性溶剂预处理
称量纯度≥99.99%的HfO2粉体,放置在塑料桶或玻璃容器中,添加氨水,开始搅拌,直到粉体粘稠到无法搅拌为止;将粉体取出,放置在烘箱中80℃-100℃烘干8-10小时;
(2)马弗炉、热压炉烧结
将步骤(1)烘干所得物料放置于马弗炉中,在1000℃~1200℃下煅烧2~3小时,得到HfO2前处理粉体;
然后将所得HfO2前处理原料粉体,装入石墨模具中,将石墨模具放置于热压炉内,抽真空到200Pa时开始升温,温度达到500~600℃,保温
30min~50min,随后在升温过程中充氩气,在升温过程中不施加压力,当温度升至1000~1200℃,开始保温3~4小时后,关闭加热电源,开始降温,等热压炉完全冷却后,粉碎、过100目筛,得到HfO2真空处理粉体;其XRD如图1所示;
(3)热压炉三段式热压烧结
低温真空烧结:将所得HfO2真空处理粉体装入石墨模具中,将石墨模具放置于热压炉内,抽真空到200Pa时开始升温,温度达到500~600℃;
中段慢速升温:开始充氩气,1~2小时升温至1200~1400℃,保温30~60min,随后以每30min~50min升温100℃的速率缓慢升温并缓慢施加压力;
高温氩气保护烧结:温度升至1600~1800℃,压力达到20~30MPa后,开始保温保压,保温保压1~2小时。
(4)冷却、后处理
完成后,关闭加热电源,随炉冷却;等温度降至1300~1400℃,逐渐缓慢泄压,至常压;待炉内温度冷却到室温,取出HfO2坯料进行磨削、利用纯净水超声清洗1~2h、烘干,得到HfO2靶材。
实施例1
利用上述方法中步骤(1)~(2)对HfO2粉体进行碱性溶剂预处理、马弗炉烧结、热压炉烧结,得到中位粒度D50=4.76μm的HfO2真空处理粉体,粒径分布图如图2所示。
采用135x213mm的石墨模具,称取6300g HfO2真空处理粉体,平均分为3份(即2100g每片),依次装入石墨模具中,每片粉体采用石墨纸加石墨垫片的方式隔开;将装备好的石墨模具放入热压炉中,调整上下压头的位置,记录当前行程,将压头自然下降后,再次记录初始行程,抽真空至170pa时,开始升温,当温度升至572℃时,开始充氩气,随后开始缓慢升温、缓慢施加压力,当温度升至1700℃时,压力达到60~70吨,保温2~3小时,关闭电源,随炉冷却;等温度降至1300℃,逐渐缓慢泄压,至常压;待炉内温度冷却到室温,取出HfO2坯料进行磨削、利用纯净水超声清洗1~2h、烘干,得到HfO2靶材。
设计靶材出炉厚度是8mm,实际靶材出炉为7.8~8.5mm,靶材相对密度88%左右,强度好,外观完整,呈灰色失氧型靶材。
实施例2
利用上述方法中步骤(1)~(2)对HfO2粉体进行碱性溶剂预处理、马弗炉烧结、热压炉烧结,得到中位粒度D50=16.52μm的HfO2真空处理粉体,粒径分布图如图3所示。
采用135x213mm的石墨模具,称取5805g HfO2真空处理粉体,平均分为3份(即1935g每片),依次装入石墨模具中,每片粉体采用石墨纸加石墨垫片的方式隔开;将装备好的石墨模具放入热压炉中,调整上下压头的位置,记录当前行程,将压头自然下降后,再次记录初始行程,抽真空至200pa时,开始升温,当温度升至500~600℃时,开始充氩气,随后开始缓慢升温、缓慢施加压力,当温度升至1700℃~1800℃时,压力达到60~70吨,保温2~3小时,关闭电源,随炉冷却;等温度降至1300℃,逐渐缓慢泄压,至常压;待炉内温度冷却到室温,取出HfO2坯料进行磨削、利用纯净水超声清洗1~2h、烘干,得到HfO2靶材。
设计靶材出炉厚度是8mm,实际靶材出炉为8.5~9mm,靶材开裂。
对比图2、图3两种粉体制得的HfO2靶材出炉结果可知:中位粒径小于5μm的粉体烧结性能较好,靶材致密化效果良好且强度高不易开裂;通过研磨工艺可以有效控制粉体粒径。粒径较大的粉体在压制过程中,由于致密化速率低,在相同的温度和压力下,靶坯应力增大造成开裂。

Claims (9)

1.一种高密度HfO2靶材的制备方法,其特征在于,利用碱性溶剂对HfO2粉体预处理,将预处理后粉体置于马弗炉、热压炉中烧结,然后粉碎、过筛,再置于热压炉中进行三段式热压烧结,最后随炉冷却,即得到HfO2靶材。
2.根据权利要求1所述的制备方法,其特征在于,所述HfO2粉体中位粒径D50≤5μm。
3.根据权利要求1所述的制备方法,其特征在于,所述碱性溶剂为氨水;所述预处理为利用碱性溶剂清洗HfO2粉体,并进行烘干处理。
4.根据权利要求1所述的制备方法,其特征在于,所述预处理后粉体在马弗炉中的烧结温度为1000℃~1200℃,保温2~3小时;在热压炉中烧结温度为1000~1200℃,真空度≤200Pa,保温3~4小时。
5.根据权利要求1所述的制备方法,其特征在于,所述过筛的筛网目数≥100目。
6.根据权利要求1所述的制备方法,其特征在于,所述三段式热压烧结具体为:
低温真空烧结:真空度≤200pa,自室温升温至500~600℃;
中段慢速升温烧结:开始充氩气,在1~2小时内升温至1200~1400℃,保温30~60min;然后以每30min~50min升温100℃的速度升温并缓慢施加压力;
高温氩气保护烧结:温度升至1600~1800℃,压力达到20~30MPa后,保温保压1~2h。
7.根据权利要求1所述的制备方法,其特征在于,对随炉冷却后坯料进行机械加工、清洗、烘干处理;其中机械加工为磨削,清洗为将坯料利用纯净水超声清洗1~2小时,烘干在鼓风干燥箱中进行。
8.根据权利要求1所述的制备方法,其特征在于,所述HfO2靶材相对密度为85%-95%。
9.根据权利要求1~8任一项所述的制备方法,其特征在于,包括以下步骤:
(1)利用碱性溶剂对HfO2粉体预处理,将预处理后粉体装入坩埚并置于马弗炉中,于1000℃~1200℃下烧结2~3小时;然后研磨、装入石墨模具并置于热压炉中,在真空度≤200Pa下,于1000℃~1200℃下烧结3~4小时;
(2)将步骤(1)所得粉体过筛,装入石墨模具并置于热压炉中,于真空度≤200pa下,升温至500~600℃时,开始充氩气,1~2小时升温至1200~1400℃,保温30~60min,随后以每30min~50min升温100℃的速度升温,并缓慢施加压力,直至温度升至1600~1800℃,压力达到20~30MPa后,保温保压1~2小时;完成后,关闭加热电源,温度降至1300~1400℃,缓慢泄压至常压;
(3)对步骤(2)所得坯料进行机械加工、清洗、烘干,得到HfO2靶材。
CN201811508783.9A 2018-12-11 2018-12-11 一种高密度HfO2靶材的制备方法 Active CN109369180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811508783.9A CN109369180B (zh) 2018-12-11 2018-12-11 一种高密度HfO2靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811508783.9A CN109369180B (zh) 2018-12-11 2018-12-11 一种高密度HfO2靶材的制备方法

Publications (2)

Publication Number Publication Date
CN109369180A true CN109369180A (zh) 2019-02-22
CN109369180B CN109369180B (zh) 2021-06-08

Family

ID=65373111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811508783.9A Active CN109369180B (zh) 2018-12-11 2018-12-11 一种高密度HfO2靶材的制备方法

Country Status (1)

Country Link
CN (1) CN109369180B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813343A (zh) * 2023-07-04 2023-09-29 有研资源环境技术研究院(北京)有限公司 一种无机电致变色成膜材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129660A (en) * 1980-03-17 1981-10-09 Toshiba Ceramics Co High density hafnium oxide sintered body and manufacture
CN104557021A (zh) * 2015-01-14 2015-04-29 河北东同光电科技有限公司 一种高致密性二氧化钛靶材及其制备方法
CN105585317A (zh) * 2014-10-20 2016-05-18 北京有色金属研究总院 一种锡酸镉靶材及其制备方法
CN106278283A (zh) * 2016-08-04 2017-01-04 长兴鑫宇耐火材料有限公司 一种分步烧结制备氮化硼陶瓷材料的方法
CN108191434A (zh) * 2018-03-01 2018-06-22 吉林师范大学 一种高热导率、高致密性氮化硅材料的高压快速制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129660A (en) * 1980-03-17 1981-10-09 Toshiba Ceramics Co High density hafnium oxide sintered body and manufacture
CN105585317A (zh) * 2014-10-20 2016-05-18 北京有色金属研究总院 一种锡酸镉靶材及其制备方法
CN104557021A (zh) * 2015-01-14 2015-04-29 河北东同光电科技有限公司 一种高致密性二氧化钛靶材及其制备方法
CN106278283A (zh) * 2016-08-04 2017-01-04 长兴鑫宇耐火材料有限公司 一种分步烧结制备氮化硼陶瓷材料的方法
CN108191434A (zh) * 2018-03-01 2018-06-22 吉林师范大学 一种高热导率、高致密性氮化硅材料的高压快速制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊晓东: "氧化铪烧结行为研究", 《稀有金属材料与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813343A (zh) * 2023-07-04 2023-09-29 有研资源环境技术研究院(北京)有限公司 一种无机电致变色成膜材料及其制备方法

Also Published As

Publication number Publication date
CN109369180B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
JP5249091B2 (ja) 歯科用窯
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN105562694A (zh) 一种适用于增材制造零部件的热等静压三控方法
CN108623298A (zh) 一种高密度氧化铟锡管状靶材的脱脂烧结一体化制备方法
CN110922169A (zh) 一种Y2O3-MgO纳米复相红外透明陶瓷的制备方法
CN106966700A (zh) 一种氧化铟锡烧结体的短流程制备工艺
Xu et al. Microwave sintering of ZnO at ultra high heating rates
CN114031376B (zh) 一种高硬度、细晶粒zta体系复相陶瓷材料的制备方法
CN108516820A (zh) 一种氧化铟锡靶材的短流程烧结工艺
CN112876237A (zh) 一种烧结过渡金属高熵陶瓷氧化物复合材料的制备方法
CN103833403A (zh) 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN106536449A (zh) 透明金属氟化物陶瓷
CN109369180A (zh) 一种高密度HfO2靶材的制备方法
CN102653470B (zh) 铬二铝碳陶瓷靶材及其真空热压制备方法
CN109721356A (zh) 热障涂层用大尺寸氧化锆陶瓷靶材的制备方法
CN110981484A (zh) 一种热压法制备纳米级氟化镁透明陶瓷的方法
CN113582696A (zh) 一种(ZrTiCoNb)C高熵碳化物陶瓷材料及其制备方法
JP6977395B2 (ja) セシウムタングステン酸化物焼結体の製造方法、セシウムタングステン酸化物焼結体及び酸化物ターゲット
CN103755353B (zh) 一种Y-α-SiAlON透明陶瓷的快速低温制备方法
CN109354497B (zh) Ho掺杂的透明氧化钪陶瓷及其制备方法
KR101951799B1 (ko) 다결정 투명 산화이트륨 세라믹의 제조 방법 및 제조 장치
Viers et al. Study of densification mechanisms during Spark Plasma Sintering of co-precipitated Ho: Lu2O3 nanopowders: Application to transparent ceramics for lasers
CN101644531A (zh) 陶瓷致密化方法及其装置
Egorov et al. Additive Manufacturing of Ceramic Products Based on Millimeter-Wave Heating
CN108242306A (zh) 一种烧结钕铁硼磁体的新型烧结冷却工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210414

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Applicant after: Youyan resources and Environment Technology Research Institute (Beijing) Co.,Ltd.

Address before: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Applicant before: YOUYAN ENGINEERING TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.

GR01 Patent grant
GR01 Patent grant