CN109355682A - 一种生产铝钇合金的方法 - Google Patents

一种生产铝钇合金的方法 Download PDF

Info

Publication number
CN109355682A
CN109355682A CN201811458461.8A CN201811458461A CN109355682A CN 109355682 A CN109355682 A CN 109355682A CN 201811458461 A CN201811458461 A CN 201811458461A CN 109355682 A CN109355682 A CN 109355682A
Authority
CN
China
Prior art keywords
raw material
aluminium
alcl
yittrium alloy
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811458461.8A
Other languages
English (en)
Other versions
CN109355682B (zh
Inventor
田明生
沈利
许晶
于水
柴永成
高宝堂
田建民
王进国
郭凤伟
郭有军
郭艳萍
李福宝
潘丽红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Huayun New Materials Co Ltd
BAOTOU ALUMINUM Co Ltd
Original Assignee
Inner Mongolia Huayun New Materials Co Ltd
BAOTOU ALUMINUM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Huayun New Materials Co Ltd, BAOTOU ALUMINUM Co Ltd filed Critical Inner Mongolia Huayun New Materials Co Ltd
Priority to CN201811458461.8A priority Critical patent/CN109355682B/zh
Publication of CN109355682A publication Critical patent/CN109355682A/zh
Application granted granted Critical
Publication of CN109355682B publication Critical patent/CN109355682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明提供了一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到铝钇合金。本发明仅利用现有的预焙阳极铝电解槽,在不增加任何设备投入的情况下,实现用铝电解槽工业化连续生产铝钇合金。本发明具有Y2O3原料利用率高,铝钇合金中钇含量高、成分均匀、生产成本低的特点。

Description

一种生产铝钇合金的方法
技术领域:
本发明涉及一种铝钇合金的制备方法,特别是涉及一种用铝电解槽制备铝钇合金的制备方法。
背景技术:
钇是铝合金重要的微合金化元素,其对铝合金尤其是含镁的铝合金具有相当强的细化作用,同时还可提高合金再结晶温度,增加铝合金的强度和韧性。目前,铝钇合金的主要生产方法有对掺法、热还原法、熔盐电解法等。
对掺法即使用纯铝和纯钇为原料,在熔融状态下按一定比例掺配,形成铝钇合金。但由于钇的熔点高达1500℃,为了使钇在铝熔体中充分溶解,就需要将制备合金的容器或坩埚加热至该温度以上。这就对耐火材料提出了非常高的要求,实现难度大。同时,更高的温度使铝的氧化烧损加大,加之单质钇价格极其昂贵,直接导致该生产方法的成本非常高;该方法也不容易获得成分均匀的合金。
热还原法即利用铝、钙等元素还原钇的氧化物或卤化物的方法进行铝钇合金的制备,对于此类方法,为了帮助反应进行,其包含数种其它化合物。反应完毕后,加入的化合物会进入合金熔体并且分离困难,导致合金中杂质多,严重影响合金质量。
熔盐电解法即在特定的熔盐电解质体系中,利用电解法生产铝钇合金的方法。在这其中,具有代表性的方法之一为在含冰晶石-氯化物的熔盐电解体系中生产铝钇合金。但由于冰晶石-氯化物的熔盐电解体系存在环境污染的问题已被弃用,现代大型预焙阳极铝电解槽均为冰晶石-氟化物,因此该方法不具备工业化推广价值。在冰晶石-氟化物熔盐电解体系中生产铝钇合金的方法亦有两种:一种采用氯化钇等钇的卤化物做原料,但该方法的问题是钇的卤化物价格较贵,导致制造成本较高,基本不具备应用价值。
另外一种就是采用Y2O3(氧化钇)为原料,在现有的大型预焙阳极铝电解槽冰晶石-氟化物熔盐体系中生产铝钇合金的方法。该方法目前主要存在的问题为Y2O3熔点较高,在冰晶石-氟化物熔体系中熔解度较低,导致Y2O3原料容易下沉至熔体底部形成沉淀,造成Y2O3原料的浪费;同时提高了熔盐体系的电压并影响电流效率。此外,Y2O3原料的加入会导致熔盐体系电导率的下降,造成电解能耗的增加。
发明内容:
为克服背景技术中存在的诸多不足,本发明的目的在于提供一种在保证现有大型预焙阳极铝电解槽正常铝电解生产情况下,以Y2O3为原料制备铝钇合金的方法,及利用该方法制得的铝钇合金。该方法具有Y2O3原料利用率高、铝钇合金成分均匀、生产成本低的特点;同时该方法能够制备出钇的质量百分含量达到6%的铝钇合金。
本发明的目的由如下技术方案实施:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到铝钇合金。
具体的,用铝电解槽进行制备,其具体包括如下步骤:(1)在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF3 68~92%,n为2.1~2.9的常数;KF 1~7%;CaF2 1~7%;MgF21~7%;LiF 2~5%;AL2O3为2~6%;LiCl0.1~0.5%,上述各组分质量百分含量之和为100%;(2)当电解质成份在上述范围内时,向所述铝电解槽内按比例加入AlCl3、Y2O3原料,检测并维持电解工艺技术条件:电解温度为900~950℃,平均电压为3.5~4.2V,得到铝钇合金。
具体的,添加所述AlCl3原料与所述Y2O3原料的质量比为1.2~2:1。
具体的,每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内。
具体的,Y2O3原料的单位小时加料量为:
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数。
具体的,AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3(2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数。
具体的,Y2O3原料与AlCl3原料混合均匀后加入电解槽中。
具体的,所述铝电解槽为预焙阳极铝电解槽。
具体的,所述AlCl3原料为无水AlCl3;所述LiCl原料为无水LiCl。
利用所述的一种生产铝钇合金的方法,制备得到钇的质量百分含量达到6%的铝钇合金。
Y2O3原料利用率指的是生产出的铝钇合金中钇的总量与加入到电解槽中Y2O3原料中钇的总量的百分比。
本发明的优点:本发明通过在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料微调正在运行的铝电解槽的电解质成份,而后加入一定配比关系下的AlCl3、Y2O3原料,实现铝钇合金的连续电解生产,不需要增加其他设备,降低设备投入成本。
本发明通过加入AlCl3原料,提高Y2O3在现有冰晶石-氟化物电解质体系中的熔解度,降低Y2O3原料沉淀至电解槽槽底的风险,进而提高了Y2O3原料的利用率。通过微调铝电解槽的电解质成份,降低了Y2O3原料加入后电解质电导率下降带来的负面影响,维持了原有电解电流效率的水平。因此,利用本发明方法能有效的提高制备铝钇合金过程中Y2O3原料利用率和电解电流效率,降低设备运行成本。
该方法具有Y2O3原料利用率高、铝钇合金成分均匀、生产成本低的特点;同时该方法能够制备出钇的质量百分含量达到6%的铝钇合金。
具体实施方式:
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为6.32%的铝钇合金。其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF368%,n为2.1~2.9的常数;KF7%;CaF27%;MgF27%;LiF5%;AL2O35.9%;LiCl0.1%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为7800kg,n为2.21,通过式(1)计算得到WY2O3≤6.49kg,本实施例中选择确定Y2O3原料单位小时加料量为6.49kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为6.49kg,A选择确定为2,通过式(2)计算得到WAlCl3=12.98kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按20批次加料;每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为6.32%的铝钇合金。
本实施例获得的铝钇合金成份均匀;Y2O3原料利用率为91.8%,原料损失较小;电流效率为91.2%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
实施例2:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到铝钇合金中钇的质量百分含量为5.22%,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF373%,n为2.1~2.9的常数;KF6%;CaF26%;MgF26%;LiF4%;AL2O34.9%;LiCl0.1%,上述各组分的质量百分含量之和为100%;;本实施例中n为2.68;
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为7800kg,n为分子比2.68,通过式(1)计算得到WY2O3≤5.36kg,本实施例中选择确定Y2O3原料单位小时加料量为5.36kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为5.36kg,A选择确定为2,通过式(2)计算得到WAlCl3=10.72kg;
其他步骤与实施例1相同,在此不再累述。
本实施例中,获得的铝钇合金中钇的质量百分含量为5.22%,成份均匀;Y2O3原料利用率为91.7%,原料损失较小;电流效率为91.2%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
本实施例与实施例1的不同之处在于,本实施例分子比n为2.68,较实施例1有较大幅度的升高;而分子比越小,电解质酸性越强,越有助于Y2O3原料在电解质中的熔解;因此,本实施例中电解质对Y2O3原料熔解能力的下降导致Y2O3原料利用率有所降低。
实施例3:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到铝钇合金中钇的质量百分含量为6.32%,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF372%,n为2.1~2.9的常数;KF7%;CaF27%;MgF2 7%;LiF1%;AL2O3为5.9%;LiCl为0.1%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
其他步骤与实施例1相同,在此不再累述。
本实施例中,获得的铝钇合金中钇的质量百分含量为6.32%,成份均匀;Y2O3原料利用率为91.8%,原料损失较小;而电流效率为90.8%,降低较为明显。这是由于Y2O3原料加入后,电解质黏度增加,电导率下降明显。而调整后的电解质成份中LiF的质量百分含量为1%,没有满足LiF质量百分比含量在2~5%的要求,导致电解电流效率出现一定的降低。
实施例4:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到的质量百分含量为4.87%的铝钇合金,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF380%,n为2.1~2.9的常数;KF3%;CaF25%;MgF2 5%;LiF 3%;AL2O3为3.5%;LiCl 0.5%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为7800kg,n为2.21,通过式(1)计算得到WY2O3≤6.49kg,本实施例中选择确定Y2O3原料单位小时加料量为5kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为5kg,A选择确定为2,通过式(2)计算得到WAlCl3=10kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按20批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为4.87%的铝钇合金。
本实施例获得的铝钇合金中钇的质量百分含量较实施例1的含量有了大幅度的下降,这是由于Y2O3原料采用了本发明所限的加料量范围内较低的值,而加入量的降低导致了最终铝钇合金中钇的质量百分含量的降低。
本实施例获得的铝钇合金成份均匀;Y2O3原料利用率为91.8%,原料损失较小;电流效率为91.2%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
实施例5:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为6.15%的铝钇合金。其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF375%,n为2.1~2.9的常数;KF5%;CaF26%;MgF2 6%;LiF 4%;AL2O3为3.7%;LiCl 0.3%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为7800kg,n为2.21,通过式(1)计算得到WY2O3≤6.49kg,本实施例中选择确定Y2O3原料单位小时加料量为6.49kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为6.49kg,A选择确定为1.4,通过式(2)计算得到WAlCl3=9.09kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按20批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为6.15%的铝钇合金。
本实施例获得的铝钇合金成份均匀;电流效率为91.2%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
而Y2O3原料利用率降低至90.8%,这是由于AlCl3原料是Y2O3原料在电解质中熔解的关键辅助原料,降低AlCl3原料的加入比例,虽然亦能保证正常的铝钇合金生产,但Y2O3原料利用率也不可避免的受到了一定的影响,进而影响最后铝钇合金中钇的质量百分含量。
实施例6:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为4.91%的铝钇合金,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF385%,n为2.1~2.9的常数;KF3%;CaF22%;MgF2 4%;LiF 2%;AL2O3为3.8%;LiCl 0.2%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为7800kg,n为2.21,通过式(1)计算得到WY2O3≤6.49kg,本实施例中选择确定Y2O3原料单位小时加料量为6.49kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为6.49kg,A选择确定为0.8,通过式(2)计算得到WAlCl3=5.19kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按20批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为4.91%的铝钇合金。
本实施例Y2O3原料利用率降低至71.3%;平均电压上升为3.971V,电流效率降低至89.8%,该电解槽出现异常状况;这是由于AlCl3原料是Y2O3原料在电解质中熔解的关键辅助原料。本实施例中AlCl3原料的加入比例远远低于本发明所述的范围,导致Y2O3原料利用率大幅度下降。同时,多余未能熔解的Y2O3原料下降至电解槽底部形成沉淀,增加了铝电解槽的工作电压,降低了电解电流效率,使电解槽出现异常状况。
实施例7:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为1.26%的铝钇合金,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF392%,n为2.1~2.9的常数;KF1%;CaF21%;MgF2 1%;LiF 2.8%;AL2O3为2%;LiCl 0.2%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为7800kg,n为2.21,通过式(1)计算得到WY2O3≤6.49kg,本实施例中选择确定Y2O3原料单位小时加料量为6.49kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为6.49kg,A选择确定为2,通过式(2)计算得到WAlCl3=12.98kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按4批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为1.26%的铝钇合金。
本实施例获得的铝钇合金中钇的质量百分含量较实施例1的含量有了大幅度的下降,这是由于在可以添加Y2O3原料的时间区间内,仅仅添加了4个小时,Y2O3原料的加入量的降低导致了最终铝钇合金中钇的质量百分含量的降低。
Y2O3原料利用率为91.8%,原料损失较小;电流效率为91.2%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
实施例8:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为6.35%的铝钇合金,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为石墨阴极,电解槽槽型为摇篮形槽,电解槽系列电流为200kA;铝电解槽的主要工艺技术条件:平均电压为3.667V、电解温度为927℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF389.5%,n为2.1~2.9的常数;KF2%;CaF22%;MgF2 2%;LiF 2%;AL2O3为2%;LiCl 0.5%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为7800kg,n为2.21,通过式(1)计算得到WY2O3≤6.49kg,本实施例中选择确定Y2O3原料单位小时加料量为6.49kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为6.49kg,A选择确定为2,通过式(2)计算得到WAlCl3=12.98kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按22批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为6.35%的铝钇合金。
本实施例中获得的铝钇合金中钇的质量百分含量为6.35%,成分均匀;Y2O3原料利用率为82.9%,原料损失较小;电流效率为91.2%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
本实施例虽然Y2O3原料每日加料量较实施例1有所增加,但最终获得的铝钇合金中钇的质量百分含量未有明显提升。这是由于该实施例的添加时间超出了本发明要求的时间区间,这就导致部分加入的Y2O3原料尚未反应生成钇元素的情况下,被出铝操作中的真空包抽走,导致了Y2O3原料利用率的下降。
实施例9:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为2.91%的铝钇合金,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为炭阳极,阴极为半石墨阴极,电解槽槽型为长方形槽,电解槽系列电流为320kA;铝电解槽的主要工艺技术条件:平均电压为3.942V、电解温度为943℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF378%,n为2.1~2.9的常数;KF4%;CaF23%;MgF2 5%;LiF 4%;AL2O3为5.6%;LiCl 0.4%,上述各组分的质量百分含量之和为100%;本实施例中n为2.21。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为11800kg,n为2.72,通过式(1)计算得到WY2O3≤7.98kg,本实施例中选择确定Y2O3原料单位小时加料量为6kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为6kg,A选择确定为1.6,通过式(2)计算得到WAlCl3=9.6kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按16批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为2.91%的铝钇合金。
本实施例中获得的铝钇合金中成份均匀;Y2O3原料利用率为91.3%,原料损失较小;电流效率为91%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
实施例10:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为1.54%的铝钇合金,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为石墨阳极,阴极为石墨阴极,电解槽槽型为圆形槽,电解槽系列电流为500kA;铝电解槽的主要工艺技术条件:平均电压为3.715V、电解温度为938℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF386%,n为2.1~2.9的常数,KF4%;CaF22%;MgF2 2%;LiF 3%;AL2O3为2.7%;LiCl 0.3%,上述各组分的质量百分含量之和为100%;本实施例中n为2.51。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为15600kg,n为2.51,通过式(1)计算得到WY2O3≤11.43kg,本实施例中选择确定Y2O3原料单位小时加料量为8kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为8kg,A选择确定为1.2,通过式(2)计算得到WAlCl3=9.6kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按10批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为1.54%的铝钇合金。
本实施例中获得的铝钇合金成份均匀;Y2O3原料利用率为90.8%,原料损失较小;电流效率为91.1%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
实施例11:一种生产铝钇合金的方法,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到钇的质量百分含量为3.79%的铝钇合金,其具体包括如下步骤:
本实施例所用的电解槽为预焙阳极铝电解槽,采用的阳极为半石墨阳极,阴极为半石墨阴极,电解槽槽型为方形槽,电解槽系列电流为600kA;铝电解槽的主要工艺技术条件:平均电压为3.992V、电解温度为932℃;
步骤1:在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF382%,n为2.1~2.9的常数;KF5%;CaF23%;MgF2 2%;LiF 3%;AL2O3为4.8%;LiCl 0.2%,上述各组分的质量百分含量之和为100%;本实施例中n为2.31。
步骤2:每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内,具体加料方法如下:
2.1确定Y2O3原料的单位小时加料量
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数;
本实施例中,W电解质为17000kg,n为2.31,通过式(1)计算得到WY2O3≤13.54kg,本实施例中选择确定Y2O3原料单位小时加料量为13kg;
2.2计算AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3 (2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数;
本实施例中,WY2O3为13kg,A选择确定为1.8,通过式(2)计算得到WAlCl3=23.4kg;
2.3按步骤2.1-2.2计算结果,将AlCl3、Y2O3原料单位小时加料量均匀混合并加入到铝电解槽中,完成一批次加料;
2.4本实施例中按18批次加料,每批次加料重复步骤2.1-2.3加料方式;
2.5每日重复步骤2.1-2.4加料方式加料电解,得到钇的质量百分含量为3.79%的铝钇合金。
本实施例中获得的铝钇合金成份均匀;Y2O3原料利用率为91.6%,原料损失较小;电流效率为91.3%,电流效率与加料前基本保持一致;电解槽平均电压和电解温度均未出现较大波动。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种生产铝钇合金的方法,其特征在于,在保证现有铝电解槽正常铝电解生产情况下,加入LiCl原料调节铝电解槽中电解质成份,然后向所述铝电解槽内按比例加入AlCl3原料和Y2O3原料电解得到铝钇合金。
2.根据权利要求1所述的一种生产铝钇合金的方法,其特征在于,用铝电解槽进行制备,其具体包括如下步骤:(1)在正在生产的铝电解槽中,使用LiCl原料调节其电解质成份,使其质量百分比含量符合nNaF·AlF3 68~92%,n为2.1~2.9的常数;KF 1~7%;CaF2 1~7%;MgF2 1~7%;LiF 2~5%;AL2O3为2~6%;LiCl 0.1~0.5%,上述各组分质量百分含量之和为100%;(2)当电解质成份在上述范围内时,向所述铝电解槽内按比例加入AlCl3、Y2O3原料,检测并维持电解工艺技术条件:电解温度为900~950℃,平均电压为3.5~4.2V,得到铝钇合金。
3.根据权利要求2所述的一种生产铝钇合金的方法,其特征在于,添加所述AlCl3原料与所述Y2O3原料的质量比为1.2~2:1。
4.根据权利要求3所述的一种生产铝钇合金的方法,其特征在于,每日至少添加一次AlCl3原料和Y2O3原料,每日添加AlCl3原料和Y2O3原料的时间在铝电解槽出铝后至下一次出铝前2小时内。
5.根据权利要求4所述的一种生产铝钇合金的方法,其特征在于,Y2O3原料的单位小时加料量为:
其中,WY2O3为Y2O3原料的单位小时加料量(kg),W电解质为电解槽内电解质的质量(kg),n为所述电解质中NaF与AlF3物质的量的比,其为2.1~2.9的常数。
6.根据权利要求5所述的一种生产铝钇合金的方法,其特征在于,AlCl3原料的单位小时加料量:
WAlCl3=A×WY2O3(2)
其中,WAlCl3为AlCl3原料的单位小时加料量,WY2O3为Y2O3原料的单位小时加料量(kg),A为介于1.2~2的常数。
7.根据权利要求6所述的一种生产铝钇合金的方法,其特征在于,Y2O3原料与AlCl3原料混合均匀后加入电解槽中。
8.根据权利要求1所述的一种生产铝钇合金的方法,其特征在于,所述铝电解槽为预焙阳极铝电解槽。
9.根据权利要求1所述的一种生产铝钇合金的方法,其特征在于,所述AlCl3原料为无水AlCl3;所述LiCl原料为无水LiCl。
10.利用权利要求1-9所述的一种生产铝钇合金的方法,制备得到钇的质量百分含量达到6%的铝钇合金。
CN201811458461.8A 2018-11-30 2018-11-30 一种生产铝钇合金的方法 Active CN109355682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811458461.8A CN109355682B (zh) 2018-11-30 2018-11-30 一种生产铝钇合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811458461.8A CN109355682B (zh) 2018-11-30 2018-11-30 一种生产铝钇合金的方法

Publications (2)

Publication Number Publication Date
CN109355682A true CN109355682A (zh) 2019-02-19
CN109355682B CN109355682B (zh) 2020-11-10

Family

ID=65330821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811458461.8A Active CN109355682B (zh) 2018-11-30 2018-11-30 一种生产铝钇合金的方法

Country Status (1)

Country Link
CN (1) CN109355682B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2811340C1 (ru) * 2023-08-17 2024-01-11 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Способ электролитического получения сплавов алюминия с иттрием

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855087A (en) * 1972-10-11 1974-12-17 Shinetsu Chemical Co Method for producing rare earth metal-containing alloys
JPH06172887A (ja) * 1992-12-08 1994-06-21 Mitsubishi Kasei Corp アルミニウム合金の製造方法
CN1375577A (zh) * 2001-12-29 2002-10-23 中国科学院长春应用化学研究所 富钇稀土铝中间合金制备方法
CN101724769A (zh) * 2008-10-13 2010-06-09 北京有色金属研究总院 一种稀土铝合金及其制备方法和装置
CN101886197A (zh) * 2010-07-09 2010-11-17 哈尔滨工程大学 一种铝锂钐合金及其熔盐电解制备方法
CN104109882A (zh) * 2013-04-19 2014-10-22 北京有色金属研究总院 用于制备稀土金属及其合金的电解槽及电解工艺
CN105543902A (zh) * 2016-02-25 2016-05-04 周俊和 一种在铝电解槽内生产合金铝的工艺
CN107557817A (zh) * 2017-08-31 2018-01-09 中国恩菲工程技术有限公司 电解制备铝钪合金的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855087A (en) * 1972-10-11 1974-12-17 Shinetsu Chemical Co Method for producing rare earth metal-containing alloys
JPH06172887A (ja) * 1992-12-08 1994-06-21 Mitsubishi Kasei Corp アルミニウム合金の製造方法
CN1375577A (zh) * 2001-12-29 2002-10-23 中国科学院长春应用化学研究所 富钇稀土铝中间合金制备方法
CN101724769A (zh) * 2008-10-13 2010-06-09 北京有色金属研究总院 一种稀土铝合金及其制备方法和装置
CN101886197A (zh) * 2010-07-09 2010-11-17 哈尔滨工程大学 一种铝锂钐合金及其熔盐电解制备方法
CN104109882A (zh) * 2013-04-19 2014-10-22 北京有色金属研究总院 用于制备稀土金属及其合金的电解槽及电解工艺
CN105543902A (zh) * 2016-02-25 2016-05-04 周俊和 一种在铝电解槽内生产合金铝的工艺
CN107557817A (zh) * 2017-08-31 2018-01-09 中国恩菲工程技术有限公司 电解制备铝钪合金的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI YAMING等: "Study on electrochemical preparation of Al-Li-Y alloys from Y2O3 in LiCl-KCl-AlCl3 molten salts", 《JOURNAL OF RARE EARTHS》 *
厉衡隆等: "《铝冶炼生产技术手册 下》", 31 July 2011, 冶金工业出版社 *
黄莹: "熔盐体系中镧系元素双峰效应及Al-Li-Y合金制备机理研究", 《哈尔滨工程大学硕士学位论文》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2811340C1 (ru) * 2023-08-17 2024-01-11 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Способ электролитического получения сплавов алюминия с иттрием

Also Published As

Publication number Publication date
CN109355682B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN101654796B (zh) 熔盐电解法制备铝锂合金的方法
CN109023431B (zh) 制备钛铝合金的方法
US7744814B2 (en) Method for producing a magnesium-lanthanum praseodymium cerium intermediate alloy
CN103603014B (zh) 一种以钾冰晶石作为补充体系的电解铝的方法
US9611151B2 (en) Electrolyte supplement system in aluminium electrolysis process and method for preparing the same
CN105648465A (zh) 一种熔盐电解制备碳化钨的方法
CN109136995B (zh) 一种生产稀土金属及合金的方法
CN104746106B (zh) 一种制备铝‑钪中间合金的熔盐电解方法
CN103556023A (zh) 镧铈-镁中间合金及其生产方法
CN102817044A (zh) 一种铝用电解质及其使用方法
CN102732914A (zh) 铝电解过程中的电解质及其补充体系的制备方法
CN109355682A (zh) 一种生产铝钇合金的方法
CN102703932A (zh) 铝电解过程中的电解质补充体系及其制备方法
CN113373481B (zh) 采用富钾氧化铝的低炭渣量和高电流效率的铝电解方法
CN101270482A (zh) 一种铝电解槽的启动方法
CN105803490B (zh) 一种用于铝电解的电解质组合物
CN106521559B (zh) 一种低硅电解铝液及其制备方法
CN115305507A (zh) 熔盐电解氧化铝生产金属铝的方法
CN102912382B (zh) 一种在氟氯化物熔盐体系中电解制备铝-镁合金的方法
CN107630234B (zh) 一种利用氯盐氧化物体系熔盐电解制备铝钪中间合金的方法
CN112779564A (zh) 一种酸法氧化铝电解铝体系及其应用
CN115849419B (zh) 一种载氟氧化铝的生产方法及生产的载氟氧化铝的应用
CN110344084A (zh) 一种熔盐电解生产铝锂中间合金的方法
CN117802538A (zh) 一种四元熔盐体系及其电解制备稀土金属及其合金的方法
CN102628131B (zh) 一种铝镥镱合金及其熔盐电解制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant