CN109312127B - 纤维增强聚丙烯复合材料 - Google Patents

纤维增强聚丙烯复合材料 Download PDF

Info

Publication number
CN109312127B
CN109312127B CN201780036193.8A CN201780036193A CN109312127B CN 109312127 B CN109312127 B CN 109312127B CN 201780036193 A CN201780036193 A CN 201780036193A CN 109312127 B CN109312127 B CN 109312127B
Authority
CN
China
Prior art keywords
cellulose
range
composite
propylene copolymer
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780036193.8A
Other languages
English (en)
Other versions
CN109312127A (zh
Inventor
T·卢默斯托弗
M·耶拉贝克
L·索布查克
A·海德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordic Chemical
Original Assignee
Nordic Chemical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordic Chemical filed Critical Nordic Chemical
Publication of CN109312127A publication Critical patent/CN109312127A/zh
Application granted granted Critical
Publication of CN109312127B publication Critical patent/CN109312127B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition

Abstract

本发明涉及一种新型复合材料,其包含基于纤维素的纤维和基于聚合物的纤维,以及涉及由所述复合材料制成的模制品。

Description

纤维增强聚丙烯复合材料
技术领域
本发明涉及一种新型复合材料,其包含基于纤维素的纤维和基于聚合物的纤维,以及涉及由所述复合材料制成的模制品。
背景技术
增强复合材料是众所周知的并且经常应用于汽车工业中。在汽车工业中,趋向于减少材料的碳足迹。这导致传统的基于化石的热塑性塑料(例如聚丙烯)与从天然纤维或木材获得的可再生增强材料的组合。对于可见和不可见应用的注塑汽车内饰部件而言,这种方法听起来很诱人,但是有几个障碍可能会阻碍它们的成功使用。一个主要缺点是,这种复合材料的冲击强度差,对于木纤维来说甚至比其它天然纤维(如大麻或亚麻)或人造纤维素纤维(如
Figure BDA0001900329410000011
)更为明显。相当高的平均粒径(大颗粒作为促进裂纹萌生的缺陷)和低纵横比的不利组合导致中等至差的机械性能曲线,特别是当涉及冲击强度时。即使在这种复合材料中使用具有高橡胶含量的多相聚丙烯共聚物作为基质,在添加已经处于低填料水平的木纤维时,基材的优异冲击强度也会劣化。通过向这种复合材料中添加特定的聚乙烯,来抑制PP/木纤维复合材料的弹性体相的空化,从而提高冲击强度,该努力获得了改善的冲击强度(参见,例如,本申请人的未公开的欧洲专利申请15181060.3),但是获得显著效果所需的聚乙烯的量相当高。
因此,本领域仍然需要重量轻、易于加工并具有改善的断裂伸长率和韧性的复合材料,特别是与仅包含基于纤维素的纤维(CF)作为增强纤维材料的复合材料相比。
发明内容
本发明的发现是提供一种复合材料,所述复合材料包含:在复合材料总重量中占50~94重量%的聚丙烯基材,所述聚丙烯基材根据ISO1133测量的熔体流动速率MFR2(230℃,2.16kg)在3.0~140.0g/10min范围内,其中,所述聚丙烯基材是i)多相丙烯共聚物(HECO),其包含分散有弹性体丙烯共聚物(EC)的(半结晶)聚丙烯(PP)作为基质;或ii)丙烯均聚物(hPP);以及在复合材料总重量中占5~30重量%的基于纤维素的纤维(CF);以及在复合材料总重量中占1~20重量%的基于聚合物的纤维(PF)。
因此,本发明特别涉及一种复合材料,包含:
a)在复合材料总重量中占50~94重量%的聚丙烯基材,所述聚丙烯基材根据ISO1133测量的熔体流动速率MFR2(230℃,2.16kg)在3.0~140.0g/10min范围内,其中,所述聚丙烯基材是:
i)多相丙烯共聚物(HECO),其包含分散有弹性体丙烯共聚物(EC)的(半结晶)聚丙烯(PP)作为基质;或
ii)丙烯均聚物(hPP);和
b)在复合材料总重量中占5~30重量%的基于纤维素的纤维(CF);和
c)在复合材料总重量中占1~20重量%的基于聚合物的纤维(PF),所述基于聚合物的纤维(PF)的熔融温度为210℃以上。
在一个实施方案中,多相丙烯共聚物(HECO)具有a)在5.0~120.0g/10min范围内的熔体流动速率MFP2(230℃,2.16kg),和/或b)在多相丙烯共聚物(HECO)总重量中占15.0~50.0重量%的二甲苯冷可溶(XCS)部分(25℃),和/或c)在多相丙烯共聚物(HECO)中为30.0摩尔%以下的共聚单体含量。
在另一个实施方案中,多相丙烯共聚物(HECO)的非晶部分(AM)具有a)在多相丙烯共聚物(HECO)的非晶部分(AM)中为30.0~60.0摩尔%范围内的共聚单体含量,和/或b)在1.8~4.0dl/g范围内的特性粘度(IV)。
在另一个实施方案中,丙烯均聚物(hPP)具有a)在5.0~120.0g/10min范围内的熔体流动速率MFR2(230℃,2.16kg),和/或b)根据ISO11357-3测量的至少150℃的熔融温度,和/或c)在丙烯均聚物(hPP)总重量中为低于4.5重量%的二甲苯冷可溶物(XCS)含量。
在一个实施方案中,基于纤维素的纤维(CF)选自木材、亚麻、大麻(hem)、黄麻、秸杆、稻、硬质纤维板、纸板、纸、纸浆、原纤维素(raw cellulose)、纤维素、乙酸纤维素、三乙酸纤维素、丙酸纤维素、乙酸丙酸纤维素、乙酸丁酸纤维素、硝酸纤维素、甲基纤维素、乙基纤维素、乙基甲基纤维素、羟乙基纤维素、羟丙基纤维素(HPC)、羟乙基甲基纤维素、羟丙基甲基纤维素(HPMC)、乙基羟乙基纤维素、羧甲基纤维素(CMC),以及任何它们的混合物。
在另一个实施方案中,基于纤维素的纤维(CF)的体积矩平均(volume momentmean)(D[4.3])直径为1~1200μm。
在另一个实施方案中,基于聚合物的纤维(PF)选自聚乙烯醇(PVA)纤维、聚对苯二甲酸乙二醇酯(PET)纤维、聚酰胺(PA)纤维及它们的混合物,优选聚乙烯醇(PVA)纤维。
在一个实施方案中,基于聚合物的纤维(PF)具有i)在10~30μm范围内的纤维平均直径,和/或ii)0.4N/tex~1.7N/tex的韧度。
在一个实施方案中,基于聚合物的纤维(PF)根据ISO11357-3的熔融温度Tm为42℃以上,优选42~200℃,高于聚丙烯基材根据ISO11357-3的熔融温度Tm。
在另一个实施方案中,复合材料不含密度为935~970kg/m3的聚乙烯(PE)。
在一个实施方案中,复合材料包含助粘剂(AP),以复合材料总重量计,优选助粘剂(AP)含量为0.1~6.0重量%。
在另一个实施方案中,助粘剂(AP)选自酸改性的聚烯烃、酸酐改性的聚烯烃和改性的苯乙烯嵌段共聚物。
在另一个实施方案中,助粘剂(AP)是马来酸酐官能化的聚丙烯。
本发明还涉及包含本发明中定义的复合材料的模制品。模制品优选为汽车制品。
现在更详细地定义本发明。
具体实施方式
复合材料
如上所述,复合材料必须包含聚丙烯基材、基于纤维素的纤维(CF)和基于聚合物的纤维(PF)。
此外,复合材料可包括助粘剂(AP)、α成核剂(NU)和/或添加剂(A)。在一个实施方案中,复合材料包含助粘剂(AP)。在该实施方案中,基于复合材料的总重量,优选聚丙烯基材、基于纤维素的纤维(CF)、基于聚合物的纤维(PF)和助粘剂(AP)一起构成复合材料的至少80重量%,更优选至少85重量%,更优选至少90重量%,如至少95重量%。
因此,在一个具体实施方案中,复合材料由聚丙烯基材、基于纤维素的纤维(CF)、基于聚合物的纤维(PF)、助粘剂(AP)和可选的α成核剂(NU)和/或添加剂(A)组成。
在一个优选的实施方案中,基于纤维素的纤维(CF)和基于聚合物的纤维(PF)的重量比[(CF)/(PF)]在0.25~30.0范围内,更优选在1.0~20.0范围内,更优选在2.0~10.0范围内。
作为前段的替代或补充,优选聚丙烯基材(PBM)和基于纤维素的纤维(CF)的重量比[(PBM)/(CF)]在0.25~30.0范围内,更优选在0.5~20.0范围内,更优选在1.25~10.0范围内,如在2.5~4.3范围内。
作为前段的替代或补充,优选聚丙烯基材(PBM)和基于聚合物的纤维(PF)的重量比[(PBM)/(PF)]在2.5~94.0范围内,更优选在5.0~19.8范围内,更优选在11.2~17.8范围内,如在12.2~16.8范围内。
在一个优选的实施方案中,基于复合材料的总重量,基于纤维素的纤维(CF)和基于聚合物的纤维(PF)的总重量在6.0~50.0重量%范围内,优选在10.0~40.0重量%的范围,更优选15.0~35.0重量%的范围,最优选20.0~30.0重量%的范围。
因此,聚丙烯基材(PBM)与基于纤维素的纤维(CF)和基于聚合物的纤维(PF)之和的重量比[(PBM)/(CF+PF)]优选在1.0~15.7范围内,更优选在1.0~10.0范围内,还更优选在2.0~4.0范围内。
如果存在,基于纤维素的纤维(CF)与助粘剂(AP)的重量比[(CF)/(AP)]在0.8~300.0范围内,更优选在4.0~15.0范围内,更优选在6.0~12.0范围内。
作为前段的替代或补充,基于聚合物的纤维(PF)与助粘剂(AP)的重量比[(PF)/(AP)]优选在0.1~200.0范围内,更优选在0.8~5.0范围内,还更优选在1.5~4.0范围内。
特别优选地,复合材料包含:
a)聚丙烯基材,基于复合材料的总重量,所述聚丙烯基材为50.0~94.0重量%,更优选63.0~90.0重量%,还更优选66.0~84.0重量%,还更优选68.0~82.0重量%,以及最优选70.0~81.0重量%,所述聚丙烯基材根据ISO1133测量的熔体流动速率MFR2(230℃,2.16kg)在3.0~140.0g/10min范围内,其中,所述聚丙烯基材是:
i)多相丙烯共聚物(HECO),其包含分散有弹性体丙烯共聚物(EC)的(半结晶)聚丙烯(PP)作为基质;或
ii)丙烯均聚物(hPP);和
b)基于纤维素的纤维(CF),基于复合材料的总重量,所述基于纤维素的纤维(CF)为5.0~30.0重量%、更优选8.6~28.0重量%、还更优选14.0~26.0重量%、还更优选15.5~23.0重量%、最优选16.0~23.0重量%;和
c)熔融温度为210℃以上的基于聚合物的纤维(PF),基于复合材料的总重量,所述基于聚合物的纤维(PF)为1.0~20.0重量%,更优选1.4~9.0重量%,还更优选2.0~8.0重量%,还更优选2.5~7.5重量%,最优选3.0~7.0重量%。
在一个实施方案中,复合材料包含助粘剂(AP)。
因此,特别优选复合材料包含以下,优选由以下组成:
a)聚丙烯基材,基于复合材料的总重量,所述聚丙烯基材为50.0~94.0重量%,更优选60.0~89.0重量%,还更优选60.0~82.8重量%,还更优选65.5~80.6重量%,最优选67.0~79.4重量%,所述聚丙烯基材根据ISO1133测量的熔体流动速率MFR2(230℃,2.16kg)在3.0~140.0g/10min范围内,其中,聚丙烯基材是:
i)多相丙烯共聚物(HECO),其包含分散有弹性体丙烯共聚物(EC)的(半结晶)聚丙烯(PP)作为基质;或
ii)丙烯均聚物(hPP);和
b)基于纤维素的纤维(CF),基于复合材料的总重量,所述基于纤维素的纤维(CF)为5.0~30.0重量%、更优选8.6~26.0重量%、还更优选14.0~26.0重量%、还更优选15.5~23.0重量%、最优选16.0~23.0重量%;和
c)熔融温度为210℃以上的基于聚合物的纤维(PF),基于复合材料的总重量,所述基于聚合物的纤维(PF)为1.0~20.0重量%,更优选1.4~8.0重量%,还更优选2.0~8.0重量%,还更优选2.5~7.5重量%,最优选3.0~7.0重量%;和
d)可选的助粘剂(AP),基于复合材料的总重量,所述助粘剂(AP)为至多6.0重量%,更优选0.1~6.0重量%,还更优选0.1~6.0重量%,还更优选0.2~4.0重量%,最优选0.2~3.0重量%。
复合材料可另外包含α成核剂(NU)和/或添加剂(A)。根据本发明,α成核剂(NU)不是添加剂(A)。因此,优选地,基于复合材料的总重量,复合材料含有至多5.0重量%、优选1.0×10-5~4.0重量%、更优选2.0×10-5~2.0重量%的α成核剂(NU),和/或基于复合材料的总重量,含有至多8.0重量%、优选0.1~6.0重量%、更优选0.5~4.0重量%的添加剂(A)。
优选地,基于复合材料的总重量,聚丙烯基材、基于纤维素的纤维(CF)、基于聚合物的纤维(PF)和可选的助粘剂(AP)、α成核剂(NU)和添加剂(A)的总和为100.0重量%。
在一个实施方案中,复合材料不含聚乙烯(PE)。特别是,优选复合材料不含密度为935~970kg/m3的聚乙烯(PE)。因此,优选复合材料不含高密度聚乙烯(HDPE)。
优选地,复合材料的密度为900~1100kg/cm3,更优选为925~1080kg/m3,更优选为930~1070kg/cm3
特别优选地,复合材料的熔体流动速率MFR2(190℃,5kg)在0.5~45.0g/10min范围内,更优选在0.8~42.0g/10min范围内,还更优选在1.0~41.0g/10min范围内,如在1.2~40.0g/10min范围内。
优选地,复合材料的拉伸模量为至少1200MPa,更优选为1200~3200MPa,还更优选为2150~2900MPa。
另外或替代地,复合材料的夏比缺口冲击强度(23℃)至少为1.5kJ/m2,更优选在1.5~100.0kJ/m2范围内,甚至更优选在1.8~80.0kJ/m2范围内,最优选在1.8~70.0kJ/m2范围内。优选地,与仅包含基于纤维素的纤维(CF)作为增强纤维材料(即,不含基于聚合物的纤维(PF))的相同复合材料相比,本发明的复合材料的夏比缺口冲击强度(23℃)更高,例如至少高100%,优选高100~6000%,更优选高110~5500%,如高120~5000%。
例如,如果复合材料的聚丙烯基材是丙烯均聚物(hPP),该复合材料的夏比缺口冲击强度(23℃)优选至少1.5kJ/m2,更优选在1.5~100.0kJ/m2范围内,甚至更优选在1.8~80.0kJ/m2范围内,最优选在1.8~70.0kJ/m2范围内。在该实施方案中,与仅包含基于纤维素的纤维(CF)作为增强纤维材料(即,不含基于聚合物的纤维(PF))的相同复合材料相比,本发明的复合材料的夏比缺口冲击强度(23℃)更高,例如至少高100%,优选高100~6000%,更优选高110~5000%,如高120~4500%。
如果复合材料的聚丙烯基材是多相丙烯共聚物(HECO),则复合材料的夏比缺口冲击强度(23℃)优选为至少1.5kJ/m2,更优选在1.5~100.0kJ/m2范围内,甚至更优选在5.5~80.0kJ/m2范围内,最优选在6.0~70.0kJ/m2范围内。在该实施方案中,与仅包含基于纤维素的纤维(CF)作为增强纤维材料(即,不含基于聚合物的纤维(PF))的相同复合材料相比,本发明的复合材料的夏比缺口冲击强度(23℃)更高,例如至少高100%,优选高100~6000%,更优选高110~1000%,如高120~500%。
另外或可替代地,该复合材料的夏比缺口冲击强度(-20℃)至少为1.3kJ/m2,更优选在1.3~80.0kJ/m2范围内,如在1.4~60.0kJ/m2范围内。优选地,与仅包含基于纤维素的纤维(CF)作为增强纤维材料(即,不含基于聚合物的纤维(PF))的相同复合材料相比,本发明的复合材料的夏比缺口冲击强度(-20℃)更高,例如至少高100%,优选高100~6000%,更优选高110~5800%,如高120~5200%。
例如,如果复合材料的聚丙烯基材是丙烯均聚物(hPP),该复合材料的夏比缺口冲击强度(-20℃)优选至少1.3kJ/m2,更优选在1.3~80.0kJ/m2范围内,最优选在1.4~60.0kJ/m2范围内。在该实施方案中,与仅包含基于纤维素的纤维(CF)作为增强纤维材料(即,不含基于聚合物的纤维(PF))的相同复合材料相比,本发明的复合材料的夏比缺口冲击强度(-20℃)更高,例如至少高100%,优选高100~6000%,更优选高110~5800%,如高130~5200%。
如果复合材料的聚丙烯基材是多相丙烯共聚物(HECO),则复合材料的夏比缺口冲击强度(-20℃)优选为至少1.3kJ/m2,更优选在1.3~80.0kJ/m2范围内,最优选在3.0~60.0kJ/m2范围内。在该实施方案中,与仅包含基于纤维素的纤维(CF)作为增强纤维材料(即,不含基于聚合物的纤维(PF))的相同复合材料相比,本发明的复合材料的夏比缺口冲击强度(-20℃)更高,例如至少高100%,优选高100~6000%,更优选高110~2000%,如高120~1000%。
在下文中,更详细地定义了复合材料的各个组分。
聚丙烯基材
根据本发明的复合材料必须含有聚丙烯基材,所述聚丙烯基材根据ISO1133测量的熔体流动速率MFR2(230℃,2.16kg)在3.0~140.0g/10min范围内。优选地,聚丙烯基材的熔体流动速率MFR2(230℃,2.16kg)在5.0~120.0g/10min范围内,更优选在5.5~100.0g/10min范围内,还更优选在6.0~80.0g/10min范围内,如在7.0~65.0g/10min范围内。
优选地,聚丙烯基材是多相丙烯共聚物(HECO),其包含分散有弹性体丙烯共聚物(EC)的(半结晶)聚丙烯(PP)作为基质;或丙烯均聚物(hPP)。
如果聚丙烯基材是多相丙烯共聚物(HECO),多相丙烯共聚物(HECO)包含分散有弹性体丙烯共聚物(EC)的聚丙烯(PP)作为基质。本发明中使用的表述“多相丙烯共聚物”或“多相”表示弹性体丙烯共聚物(EC)(细)分散在(半结晶)聚丙烯(PP)中。换言之,(半结晶)聚丙烯(PP)构成基质,其中弹性体丙烯共聚物(EC)在基质中(即,在(半结晶)聚丙烯(PP)中)形成内含物(inclusion)。因此,基质含有不是基质的一部分的(细)分散的内含物,并且所述内含物含有弹性体丙烯共聚物(EC)。根据本发明的术语“内含物”应优选代表基质和内含物在多相丙烯共聚物(HECO)内形成不同的相,例如,所述内含物通过高分辨率显微镜如电子显微镜或原子力显微镜可见,或通过动态热机械分析(DMTA)可见。具体地,在DMTA中,可以通过存在至少两种不同的玻璃化转变温度,来鉴定多相结构的存在。
优选地,多相丙烯共聚物(HECO)的熔体流动速率MFR2(230℃,2.16kg)在3.0~140.0g/10min范围内,更优选在5.0~120.0g/10min范围内,更优选在5.5~100.0g/10min范围内,还更优选在6.0~80.0g/10min范围内,如在7.0~65.0g/10min范围内。在一个实施方案中,多相丙烯共聚物(HECO)的熔体流动速率MFR2(230℃,2.16kg)在5.0~75.0g/10min范围内,甚至更优选在5.0~50.0g/10min范围内,更优选5.0~30.0g/10min范围内,最优选在6.0~25.0g/10min范围内,如在7.0~20.0g/10min范围内。
如上所述,优选地,本发明的多相丙烯共聚物(HECO)包含:
(a)(半结晶)聚丙烯(PP)作为基质(M),和
(b)弹性体丙烯共聚物(EC)。
优选地,基于多相丙烯共聚物(HECO),多相丙烯共聚物(HECO)具有30.0摩尔%以下、更优选10.0~30.0摩尔%、还更优选12.0~25.0摩尔%、还更优选14.0~22.0摩尔%的共聚单体含量,优选乙烯和/或C4-C12α-烯烃含量,更优选乙烯含量。
优选地,多相丙烯共聚物(HECO)的二甲苯冷可溶(XCS)部分(25℃)在15.0~50.0重量%范围内,更优选在22.0~50.0重量%范围内,还更优选在25.0~45.0重量%范围内,最优选在26.0~38.0重量%范围内。
优选地,基于多相丙烯共聚物(HECO)的非晶部分(AM),多相丙烯共聚物(HECO)的非晶部分(AM)的共聚单体含量,优选乙烯和/或C4-C12α-烯烃含量,更优选乙烯含量在30.0~60摩尔%范围内,更优选在35.0~55.0摩尔%范围内,还更优选在38.0~54.0摩尔%范围内,还更优选在40.0~52.0摩尔%范围内。
在优选的实施方案中,多相丙烯共聚物(HECO)的非晶部分(AM)的特性粘度(IV)相当高。相当高的特性粘度值(IV)改善了冲击强度。因此,特别优选多相丙烯共聚物(HECO)的非晶部分(AM)的特性粘度高于1.8dl/g,更优选至少2.0dl/g。另一方面,特性粘度(IV)不应过高,否则流动性降低。因此,多相丙烯共聚物(HECO)的非晶部分(AM)的特性粘度优选在1.8~4.0dl/g范围内,更优选在2.0~3.6dl/g范围内,甚至更优选在2.0~3.2dl/g范围内。
(半结晶)聚丙烯(PP)优选为(半结晶)无规丙烯共聚物(R-PP)或(半结晶)丙烯均聚物(H-PP),特别优选后者。
本发明中使用的表述“丙烯均聚物”涉及基本上由(即,大于99.55摩尔%,更优选至少99.70摩尔%)丙烯单元组成的聚丙烯。在优选的实施方案中,在丙烯均聚物中仅可检测到丙烯单元。
在(半结晶)聚丙烯(PP)是(半结晶)无规丙烯共聚物(R-PP)的情况下,优选(半结晶)无规丙烯共聚物(R-PP)包含可与丙烯共聚的单体,例如共聚单体(co-monomer)如乙烯和/或C4-C12α-烯烃,特别是乙烯和/或C4-C8α-烯烃,例如1-丁烯和/或1-己烯。优选地,本发明的(半结晶)无规丙烯共聚物(R-PP)包含可与丙烯共聚的单体,特别是由可与丙烯共聚的单体组成,该单体选自乙烯、1-丁烯和1-己烯。更具体地,本发明的(半结晶)无规丙烯共聚物(R-PP)除丙烯外还包含衍生自乙烯和/或1-丁烯的单元。在优选的实施方案中,(半结晶)无规丙烯共聚物(R-PP)仅包含衍生自乙烯和丙烯的单元。
此外,优选地,(半结晶)无规丙烯共聚物(R-PP)的共聚单体含量优选在大于0.4摩尔%~1.5摩尔%范围内,更优选在大于0.3摩尔%~1.2摩尔%范围内,更优选在0.4~1.0摩尔%范围内。
术语“无规”表示(半结晶)无规丙烯共聚物(R-PP)的共聚单体无规地分布在丙烯共聚物中。根据IUPAC(聚合物科学中的基本术语表;IUPAC推荐,1996)理解术语无规。
如下所述,多相丙烯共聚物(HECO)可以通过共混(半结晶)聚丙烯(PP)和弹性体丙烯共聚物(EC)来制备。然而,优选在连续步骤方法中,使用串联配置的反应器并在不同反应条件下操作,来生产多相丙烯共聚物(HECO)。通常,在至少一个第一反应器中生产(半结晶)聚丙烯(PP),随后在至少一个第二反应器中生产弹性体丙烯共聚物(EC)。
此外,优选地,多相丙烯共聚物(HECO)的(半结晶)聚丙烯(PP),如(半结晶)丙烯均聚物(H-PP)具有适中的熔体流动速率MFR2(230℃)。因此,优选地,多相丙烯共聚物(HECO)的(半结晶)聚丙烯(PP),如(半结晶)丙烯均聚物(H-PP)根据ISO1133测量的熔体流动速率MFR2(230℃)为3.0~140.0g/10min,优选在5.0~120.0g/10min范围内,更优选在5.5~100.0g/10min范围内,还更优选在6.0~80.0g/10min范围内,如在7.0~65.0g/10min范围内。
术语“半结晶”表示聚合物不是非晶的。因此,优选本发明的半结晶聚丙烯(PP)的二甲苯可溶部分(XCS)不大于10重量%,在(半结晶)丙烯均聚物(H-PP)的情况下,二甲苯可溶部分(XCS)甚至更低,即,不超过6.0重量%。
因此,优选地,(半结晶)丙烯均聚物(H-PP)的二甲苯可溶部分(XCS)低于5.0重量%,更优选在0.5~4.5重量%范围内,如在1.0~3.5重量%范围内。
优选地,本发明的(半结晶)聚丙烯(PP)的熔融温度Tm高于135℃,更优选高于140℃。在(半结晶)丙烯均聚物(H-PP)的情况下,熔融温度Tm高于150℃,如至少156℃。上限不超过168℃,如不超过167℃。
多相丙烯共聚物(HECO)的第二组分是弹性体丙烯共聚物(EC)。
优选地,所述弹性体丙烯共聚物(EC)包含衍生自以下的单元:
-丙烯和
-乙烯和/或C4~C12α-烯烃。
弹性体丙烯共聚物(EC)包含以下单元,优选由以下单元组成:衍生自(i)丙烯和(ii)乙烯和/或至少另一种C4-C12α-烯烃(如C4-C10α-烯烃)的单元,更优选衍生自以下的单元:(i)丙烯和(ii)乙烯和/或至少另一种α-烯烃,所述α-烯烃选自1-丁烯、1-戊烯、1-己烯、1-庚烯和1-辛烯。弹性体丙烯共聚物(EC)可另外含有衍生自共轭二烯(如丁二烯)或非共轭二烯的单元,但优选弹性体丙烯共聚物(EC)仅由衍生自(i)丙烯和(ii)乙烯和/或C4-C12α-烯烃的单元组成。合适的非共轭二烯(如果使用的话)包括直链和支链的非环二烯,如1,4-己二烯、1,5-己二烯、1,6-辛二烯、5-甲基-1,4-己二烯、3,7-二甲基-1,6-辛二烯、3,7-二甲基-1,7-辛二烯,以及二氢月桂烯和二氢-罗勒烯的混合异构体,以及单环脂环族二烯,如1,4-环己二烯、1,5-环辛二烯、1,5-环十二碳二烯(1,5-cyclododecadiene)、4-乙烯基环己烯、1-烯丙基-4-异亚丙基环己烷、3-烯丙基环戊烯、4-环己烯和1-异丙烯基-4-(4-丁烯基)环己烷。
因此,弹性体丙烯共聚物(EC)至少包含衍生自丙烯和乙烯的单元,并且可包含衍生自前一段中定义的另外的α-烯烃的其它单元。然而,特别优选弹性体丙烯共聚物(EC)仅包含衍生自丙烯和乙烯和可选的共轭二烯(如丁二烯)或如前段所定义的非共轭二烯(如1,4-己二烯)的单元。因此,特别优选乙烯丙烯非共轭二烯单体聚合物(EPDM)和/或乙烯丙烯橡胶(EPR)作为弹性体丙烯共聚物(EC),最优选后者。
在本发明中,弹性体丙烯共聚物(EP)中衍生自丙烯的单元含量在很大程度上等于二甲苯冷可溶(XCS)部分中可检测到的丙烯含量。因此,基于弹性体丙烯共聚物(EC),弹性体丙烯共聚物(EC)的共聚单体含量(如乙烯含量)在30.0~60摩尔%范围内,更优选在35.0~55.0摩尔%范围内,还更优选在38.0~54.0摩尔%范围内,更优选在40.0~52.0摩尔%范围内。
如上所述,可以通过共混(半结晶)聚丙烯(PP)和弹性体丙烯共聚物(EC),来制备多相丙烯共聚物(HECO)。然而,优选在连续步骤方法中,使用串联配置的反应器并在不同反应条件下操作,来生产多相丙烯共聚物(HECO)。因此,在特定反应器中制备的每个部分可具有其自己的分子量分布和/或共聚单体含量分布。
本发明的多相丙烯共聚物(HECO)优选在连续聚合方法中,即在本领域已知的多阶段方法中生产,其中,(半结晶)聚丙烯(PP)至少在一个淤浆反应器中生产,优选在淤浆反应器和可选地在随后的气相反应器中生产,并且随后在至少一个(即,一个或两个)气相反应器中生产弹性体丙烯共聚物(EC)。
因此,优选以连续聚合方法生产多相丙烯共聚物(HECO),包括以下步骤:
(a)在第一反应器(R1)中聚合丙烯和可选的至少一种乙烯和/或C4~C12α-烯烃,得到(半结晶)聚丙烯(PP)的第一聚丙烯部分,优选所述第一聚丙烯部分是丙烯均聚物,
(b)将第一聚丙烯部分转移到第二反应器(R2)中,
(c)在所述第一聚丙烯部分的存在下,在第二反应器(R2)中聚合丙烯和可选的至少一种乙烯和/或C4~C12α-烯烃,由此获得第二聚丙烯部分,优选所述第二聚丙烯部分是第二丙烯均聚物,所述第一聚丙烯部分和所述第二聚丙烯部分形成(半结晶)聚丙烯(PP),即,多相丙烯共聚物(HECO)的基质,
(d)将步骤(c)的(半结晶)聚丙烯(PP)转移到第三反应器(R3)中,
(e)在步骤(c)中获得的(半结晶)聚丙烯(PP)的存在下,在第三反应器(R3)中聚合丙烯和至少一种乙烯和/或C4~C12α-烯烃,由此获得第一弹性体丙烯共聚物部分,第一弹性体丙烯共聚物部分分散在(半结晶)聚丙烯(PP)中,
(f)将分散有第一弹性体丙烯共聚物部分的(半结晶)聚丙烯(PP)转移到第四反应器(R4)中,以及
(g)在步骤(e)中获得的混合物的存在下,在第四反应器(R4)中聚合丙烯和至少一种乙烯和/或C4~C12α-烯烃,由此获得第二弹性体丙烯共聚物部分,第一弹性体丙烯共聚物部分和第二弹性体丙烯共聚物部分一起形成弹性体丙烯共聚物(EC);
(半结晶)聚丙烯(PP)和弹性体丙烯共聚物(EC)形成多相丙烯共聚物(HECO)。
当然,在第一反应器(R1)中可以生产第二聚丙烯部分,并且在第二反应器(R2)中可以获得第一聚丙烯部分。对于弹性体丙烯共聚物相也是如此。因此,在第三反应器(R3)中可以生产第二弹性体丙烯共聚物部分,而在第四反应器(R4)中生产第一弹性体丙烯共聚物部分。
优选地,在第二反应器(R2)和第三反应器(R3)之间,以及可选地在第三反应器(R3)和第四反应器(R4)之间,闪蒸出单体。
术语“连续聚合方法”表示多相丙烯共聚物(HECO)在至少两个(如三个或四个)串联连接的反应器中生产。因此,本发明方法至少包括第一反应器(R1)和第二反应器(R2),更优选包括第一反应器(R1)、第二反应器(R2)、第三反应器(R3)和第四反应器(R4))。术语“聚合反应器”表明发生主要聚合。因此,在该方法由四个聚合反应器组成的情况下,该定义不排除整个方法包括例如预聚合反应器中的预聚合步骤的选项。术语“由……组成”仅是就主要聚合反应器而言的一个封闭式描述。
第一反应器(R1)优选是淤浆反应器(SR),并且可以是以本体或浆料操作的任何连续的或简单的间歇式搅拌罐反应器或环管反应器。本体是指在包含至少60%(w/w)单体的反应介质中的聚合。根据本发明,淤浆反应器(SR)优选是(本体)环管反应器(LR)。
第二反应器(R2)可以如第一反应器一样是淤浆反应器,如环管反应器,或可选地是气相反应器(GPR)。
第三反应器(R3)和第四反应器(R4)优选为气相反应器(GPR)。
这种气相反应器(GPR)可以是任何机械混合反应器或流化床反应器。优选地,气相反应器(GPR)包括机械搅拌的流化床反应器,其气体速度为至少0.2米/秒。因此,优选地,气相反应器是流化床型反应器,优选具有机械搅拌器。
因此,在优选的实施方案中,第一反应器(R1)是淤浆反应器(SR),如环管反应器(LR),而第二反应器(R2)、第三反应器(R3)和第四反应器(R4)是气相反应器(GPR)。因此,对于本发明方法,使用串联连接的至少四个(优选四个)聚合反应器,即淤浆反应器(SR)(如环管反应器(LR))、第一气相反应器(GPR-1)、第二气相反应器(GPR-2)和第三气相反应器(GPR-3)。如果需要,则在淤浆反应器(SR)之前放置预聚合反应器。
在另一个优选的实施方案中,第一反应器(R1)和第二反应器(R2)是淤浆反应器(SR),如环管反应器(LR),而第三反应器(R3)和第四反应器(R4)是气相反应器(GPR)。因此,对于本发明方法,使用串联连接的至少四个(优选四个)聚合反应器,即两个淤浆反应器(SR)(如两个环管反应器(LR))、第一气相反应器(GPR-1)和第二气相反应器(GPR-2))。如果需要,则在第一淤浆反应器(SR)之前放置预聚合反应器。
优选地,多阶段方法是“环路-气相”方法,例如由北欧化工,丹麦开发的方法(称为
Figure BDA0001900329410000131
技术),例如描述在专利文献中,例如EP0887379、WO92/12182、WO2004/000899、WO2004/111095、WO99/24478、WO99/24479或WO00/68315。
另一种合适的淤浆-气相方法是巴塞尔(Basell)的
Figure BDA0001900329410000132
方法。
优选地,在如上定义的制备多相丙烯共聚物(HECO)的本发明方法中,步骤(a)的第一反应器(R1),即淤浆反应器(SR)(如环管反应器(LR))的条件可以如下:
-温度在50~110℃范围内,优选在60~100℃之间,更优选在68~95℃之间,
-压力在20~80巴范围内,优选在40~70巴之间,
-可以以本来已知的方式加入氢,以控制摩尔质量。
随后,将步骤(a)的反应混合物转移到第二反应器(R2),即气相反应器(GPR-1),即步骤(c),由此步骤(c)中的条件优选如下:
温度在50℃至130℃范围内,优选在60℃至100℃之间,
压力在5巴至50巴范围内,优选在15巴至35巴之间,
可以以本身已知的方式加入氢以控制摩尔质量。
第三反应器(R3)和第四反应器(R4),优选第二气相反应器(GPR-2)和第三气相反应器(GPR-3)中的条件类似于第二反应器(R2)。
在三个反应器区域中停留时间可变化。
在制备聚丙烯的方法的一个实施方案中,在本体反应器(例如,环管反应器)中的停留时间为0.1~2.5小时,例如0.15~1.5小时,在气相反应器中的停留时间通常为0.2~6.0小时,如0.5~4.0小时。
如果需要,聚合反应可以在第一反应器(R1)中(即,在淤浆反应器(SR)中,如在环管反应器(LR)中)在超临界条件下以已知方式进行,和/或在气相反应器(GPR)中以冷凝模式进行。
优选地,该方法还包括用催化剂体系的预聚合,如下面详细描述的,所述催化剂体系包括齐格勒-纳塔主催化剂、外部供体和可选的助催化剂。
在一个优选的实施方案中,预聚合在液体丙烯中以本体淤浆聚合进行,即液相主要包含丙烯,其内溶有少量其它反应物和可选的惰性组分。
预聚合反应通常在10~60℃,优选15~50℃,更优选20~45℃的温度下进行。
预聚合反应器中的压力并不是关键的,但必须足够高,以使反应混合物保持为液相。因此,压力可以是20~100巴,例如30~70巴。
优选地,将催化剂组分全部引入预聚合步骤。然而,在固体催化剂组分(i)和助催化剂(ii)可以分别进料的情况下,可以仅将一部分助催化剂引入预聚合阶段,并且将剩余部分引入随后的聚合阶段。同样在这种情况下,需要将足够多的助催化剂引入预聚合阶段,以使其中获得充分的聚合反应。
也可以将其他组分添加到预聚合阶段。因此,如本领域已知的,可以将氢加入到预聚合阶段以控制预聚物的分子量。此外,可以使用抗静电添加剂,来防止颗粒彼此粘附或粘附到反应器的壁上。
预聚合条件和反应参数的精确控制在本领域的技术范围内。
根据本发明,多相丙烯共聚物(HECO)是在催化剂体系的存在下通过如上所述的多阶段聚合方法获得的,该催化剂体系包含作为组分(i)的齐格勒-纳塔主催化剂,其含有低级醇与邻苯二甲酸酯的酯交换产物。
主催化剂可以是“非邻苯二甲酸”齐格勒-纳塔主催化剂或“邻苯二甲酸”齐格勒-纳塔主催化剂。首先描述“非邻苯二甲酸”齐格勒-纳塔主催化剂,接着描述“邻苯二甲酸”齐格勒-纳塔主催化剂。
“非邻苯二甲酸”齐格勒-纳塔主催化剂包含IUPAC第4~6族过渡金属的化合物(TC)如钛,第2族金属化合物(MC)如镁,和内部供体(ID),该内部供体是非邻苯二甲酸化合物,优选为非邻苯二甲酸酯,更优选为非邻苯二甲酸二羧酸的二酯,下文作更详细描述。因此,“非邻苯二甲酸”齐格勒-纳塔主催化剂完全不含不期望的邻苯二甲酸化合物。此外,“非邻苯二甲酸”齐格勒-纳塔主催化剂不含任何外部载体材料,如二氧化硅或MgCl2,该催化剂是自负载的。
“非邻苯二甲酸”齐格勒-纳塔主催化剂可以由其获得方式而被进一步限定。因此,“非邻苯二甲酸”齐格勒-纳塔主催化剂优选通过包括以下步骤的方法获得:
a)
a1)提供至少含第2族金属烷氧基化合物(Ax)的溶液,所述第2族金属烷氧基化合物(Ax)是可选地在有机液体反应介质中,第2族金属化合物(MC)和醇(A)的反应产物,所述醇(A)除了包含羟基部分之外还包含至少一个醚部分;
或者
a2)提供至少含第2族金属烷氧基化合物(Ax')的溶液,所述第2族金属烷氧基化合物(Ax')是可选地在有机液体反应介质中,第2族金属化合物(MC)与醇(A)和式ROH的一元醇(B)的醇混合物的反应产物;
或者
a3)提供第2族烷氧基化合物(Ax)与第2族金属烷氧基化合物(Bx)的混合物的溶液,所述第2族金属烷氧基化合物(Bx)是可选地在有机液体反应介质中,第2族金属化合物(MC)与一元醇(B)的反应产物;以及
b)将来自步骤a)的所述溶液添加到至少一种第4~6族过渡金属的化合物(TC)中,以及
c)获得固体催化剂组分颗粒,
以及,在步骤c)之前的任一步骤中,添加非邻苯二甲酸内部电子供体(ID)。
优选地,将内部供体或其前体添加至步骤a)的溶液。
根据上述方法,取决于物理条件,特别是步骤b)和c)中使用的温度,“非邻苯二甲酸”齐格勒-纳塔主催化剂可以通过沉淀法或通过乳化(液/液两相体系)-固化法获得。
在两种方法(沉淀方法或乳化-固化法)中,催化剂化学都相同。
在沉淀方法中,进行步骤a)的溶液与步骤b)中的至少一种过渡金属化合物(TC)的混合,并将整个反应混合物保持在至少50℃,更优选保持在55~110℃的范围内,更优选保持在70~100℃的范围内,以确保催化剂组分以固体颗粒的形式完全沉淀(步骤c)。
在步骤b)中的乳化-固化法中,通常将步骤a)的溶液在较低的温度例如-10℃至低于50℃、优选-5~30℃的条件下添加到至少一种过渡金属化合物(TC)中。在搅拌乳液期间,温度通常保持在-10℃至低于40℃,优选为-5~30℃。乳液分散相的液滴形成活性“非邻苯二甲酸”齐格勒-纳塔主催化剂组合物。液滴的固化(步骤c)适当地通过将乳液加热至70~150℃、优选80~110℃的温度来进行。
优选地,在本发明中,使用通过乳化–固化法制备的“非邻苯二甲酸”齐格勒-纳塔主催化剂。
在一个优选实施方式中,在步骤a)中使用a2)或a3)的溶液,即(Ax')的溶液或(Ax)和(Bx)的混合物的溶液。
优选第2族金属(MC)为镁。
在催化剂制备方法的第一步骤a)中,镁烷氧基化合物(Ax)、(Ax')和(Bx)可以通过使镁化合物与如上所述的醇反应来原位制备,或者所述镁烷氧基化合物可以是单独制备的镁烷氧基化合物或者它们甚至可以作为市售的现有镁烷氧基化合物购得,并就此在本发明的催化剂制备方法中使用。
醇(A)的示例性例子是二元醇的单醚(乙二醇单醚(glycol monoethers))。优选的醇(A)是C2~C4乙二醇单醚,其中醚部分包含2至18个碳原子,优选4至12个碳原子。其优选的例子是2-(2-乙基己氧基)乙醇、2-丁氧基乙醇、2-己氧基乙醇和1,3-丙二醇-单丁醚、3-丁氧基-2-丙醇,其中特别优选2-(2-乙基己氧基)乙醇和1,3-丙二醇-单丁醚、3-丁氧基-2-丙醇。
一元醇(B)的示例性例子是如式ROH所示的,其中R是直链或支链的C6~C10烷基残基。最优选的一元醇是2-乙基-1-己醇或辛醇。
优选地,分别使用镁烷氧基化合物(Ax)和(Bx)的混合物或醇(A)和(B)的混合物,并且分别采用如下摩尔比:Bx:Ax或B:A为8:1至2:1,更优选5:1至3:1。
镁烷氧基化合物可是如上所述的醇与镁化合物(其选自二烷基镁、烷基镁醇盐(alkyl magnesium alkoxide)、镁二醇盐(magnesium dialkoxide)、烷氧基镁卤化物以及烷基镁卤化物)的反应产物。烷基可以是相似的或者不同的C1~C20烷基,优选C2~C10烷基。在使用烷基-烷氧基镁化合物时,典型的烷基-烷氧基镁化合物是乙基丁氧基镁(ethylmagnesium butoxide)、丁基戊氧基镁(butyl magnesium pentoxide)、辛基丁氧基镁(octyl magnesium butoxide)和辛基辛氧基镁(octyl magnesium octoxide)。优选使用二烷基镁。最优选的二烷基镁是丁基辛基镁或丁基乙基镁。
此外,除了醇(A)和醇(B)之外,镁化合物还可以与式R”(OH)m的多元醇(C)反应,以获得所述镁烷氧基化合物。优选的多元醇(如果使用的话)是醇,其中R”是直链、环状或支链的C2~C10烃残基,并且m是2至6的整数。
因此,步骤a)的镁烷氧基化合物选自镁二醇盐、二芳氧基镁、烷氧基镁卤化物、芳氧基镁卤化物、烷基镁醇盐、芳基镁醇盐和烷基芳氧基镁。此外,还可使用镁二卤化物和镁二醇盐的混合物。
为制造本申请的催化剂所采用的溶剂可以选自具有5~20个碳原子(更优选5~12个碳原子)的芳香族的和脂肪族的直链烃、支链烃和环烃,或者它们的混合物。适宜的溶剂包括苯、甲苯、异丙基苯、二甲苯、戊烷、己烷、庚烷、辛烷和壬烷。特别优选己烷和戊烷。
通常Mg化合物以在如上所述的溶剂中为10~50重量%的溶液形式提供。典型的市售镁化合物(尤其是二烷基镁溶液)是在甲苯或庚烷中为20-40重量%的溶液。
用于制备镁烷氧基化合物的反应可以在40℃~70℃的温度下进行。根据所使用的镁化合物和醇来选择最合适的温度。
优选地,第4~6族过渡金属化合物为钛化合物,最优选为卤化钛,如TiCl4
优选地,在制备本发明所用的催化剂中使用的内部供体(ID)选自非邻苯二甲酸羧(二)酸的(二)酯、1,3-二醚、它们的衍生物和它们的混合物。特别优选的供体是单不饱和二羧酸的二酯,特别是选自丙二酸酯、马来酸酯、琥珀酸酯、柠康酸酯、戊二酸酯、环己烯-1,2-二羧酸酯和苯甲酸酯的酯以及它们的任何衍生物和/或混合物。优选例子是,例如取代的马来酸酯和柠康酸酯,最优选柠康酸酯。
在乳化方法中,液-液两相体系可以通过简单的搅拌和可选地添加(其他的)溶剂和添加剂,例如湍流最小化剂(TMA)和/或乳化剂和/或乳化稳定剂如表面活性剂来形成,它们以本领域已知的方式用于促进乳液的形成和/或稳定。优选地,表面活性剂是丙烯酸聚合物(acrylic polymer)或甲基丙烯酸聚合物。特别优选的是无支链的C12~C20(甲基)丙烯酸酯,例如聚(十六烷基)-甲基丙烯酸酯和聚(十八烷基)-甲基丙烯酸酯以及它们的混合物。优选地,湍流最小化剂(TMA)(如果使用的话)选自具有6至20个碳原子的α-烯烃单体的α-烯烃聚合物,如聚辛烯、聚壬烯、聚癸烯、聚十一碳烯或聚十二碳烯或它们的混合物。最优选其是聚癸烯。
通过沉淀法或乳化-固化法获得的固体颗粒产物可用芳香族烃和/或脂肪族烃(优选用甲苯、庚烷或戊烷)洗涤至少一次,优选洗涤至少两次,最优选洗涤至少三次。催化剂可以通过蒸发或用氮气冲洗来进一步干燥,或者它可以在没有任何干燥步骤的情况下被浆化成油状液体。
最终获得的理想的“非邻苯二甲酸”齐格勒-纳塔主催化剂呈颗粒形式,该颗粒通常具有5~200μm、优选10~100μm的平均粒径。颗粒是致密的,具有低孔隙率,并且其表面积低于20g/m2,更优选低于10g/m2。通常,Ti的量为催化剂组合物的1~6重量%,Mg为催化剂组合物的10~20重量%,供体为催化剂组合物的10~40重量%。
制备催化剂的详细说明公开在WO 2012/007430、EP 2610271、EP 261027和EP2610272中,它们作为参考并入本文。
“邻苯二甲酸”齐格勒-纳塔主催化剂通过以下步骤制备:
a)将MgCl2和C1-C2醇的喷雾结晶的或乳液固化的加合物与TiCl4反应,
b)在所述C1-C2醇和所述式(I)的邻苯二甲酸二烷基酯发生酯交换以形成内部供体的条件下,使阶段a)的产物与式(I)的邻苯二甲酸二烷基酯反应,
Figure BDA0001900329410000181
其中R1’和R2’独立地为至少C5的烷基,
c)洗涤阶段b)的产物,或
d)可选地,使步骤c)的产物与额外的TiCl4反应。
“邻苯二甲酸”齐格勒-纳塔主催化剂如在专利申请WO 87/07620、WO 92/19653、WO92/19658和EP 0491 566中所定义的那样制备。这些文件的内容在此引入作为参考。
首先,形成MgCl2和C1-C2醇的加合物(式MgCl2*nROH),其中R为甲基或乙基,n为1~6。优选地,将乙醇用作醇。
将首先被熔化、然后喷雾结晶或乳液固化的加合物用作催化剂载体。
下一步,式MgCl2*nROH(其中R为甲基或乙基(优选乙基),n为1~6)的喷雾结晶的或乳液固化的加合物与TiCl4接触,以形成钛化载体,接下来的步骤如下:
·将下述物质添加到所述钛化载体,以形成第一产物:
(i)式(I)的邻苯二甲酸二烷基酯,其中R1’和R2’独立地为至少C5-烷基,比如至少C8-烷基,
或优选地
(ii)式(I)的邻苯二甲酸二烷基酯,其中R1’和R2’相同并且为至少C5-烷基,比如至少C8-烷基,
或更优选地
(iii)式(I)的邻苯二甲酸二烷基酯,其选自邻苯二甲酸丙基己酯(PrHP)、邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二异癸酯(DIDP)和邻苯二甲酸双十三烷基酯(DTDP),还更优选式(I)的邻苯二甲酸二烷基酯为邻苯二甲酸二辛酯(DOP),比如邻苯二甲酸二异辛酯或邻苯二甲酸二乙基己酯,特别是邻苯二甲酸二乙基己酯,
·使所述第一产物经受合适的酯交换条件,即,温度高于100℃,优选100~150℃,更优选130~150℃,使得所述甲醇或乙醇与所述式(I)的邻苯二甲酸二烷基酯的所述酯基进行酯交换,以形成优选至少80摩尔%,更优选90摩尔%,最优选95摩尔%的式(II)的邻苯二甲酸二烷基酯:
Figure BDA0001900329410000191
其中R1和R2是甲基或乙基,优选乙基,
式(II)的邻苯二甲酸二烷基酯为内部供体,以及
·回收所述酯交换产物,作为主催化剂组合物(组分(i))。
在一个优选实施方案中,式MgCl2*nROH的加合物(其中R是甲基或乙基,n是1~6)被熔化,然后熔化物优选通过气体注入冷却的溶剂或冷却的气体,由此将加合物结晶成形态上有利的形式,例如如WO 87/07620中所述。
该结晶加合物优选用作催化剂载体,并与WO92/19658和WO92/19653中所述的可用于本发明的主催化剂反应。
通过萃取除去催化剂残余物,得到钛化载体和内部供体的加合物,其中衍生自酯醇的基团已经改变。
当载体上保留足够的钛时,它将充当主催化剂的活性元素。
否则,在上述处理之后重复钛化,以确保足够的钛浓度从而确保活性。
优选地,本发明使用的“邻苯二甲酸”齐格勒-纳塔主催化剂所含有的钛至多2.5重量%,优选至多2.2重量%,更优选至多2.0重量%。其供体含量优选为4~12重量%,更优选为6~10重量%。
更优选地,通过使用乙醇作为醇和邻苯二甲酸二辛酯(DOP)作为式(I)的邻苯二甲酸二烷基酯,产生邻苯二甲酸二乙酯(DEP)作为内部供体化合物,制得本发明使用的“邻苯二甲酸”齐格勒-纳塔主催化剂。
还更优选地,本发明使用的“邻苯二甲酸”齐格勒-纳塔主催化剂是如实施例部分中所述的催化剂;特别是使用邻苯二甲酸二辛酯作为式(I)的邻苯二甲酸二烷基酯。
为了制备本发明的多相丙烯共聚物(HECO),除了特定的齐格勒-纳塔主催化剂(“非邻苯二甲酸”或“邻苯二甲酸”)之外,所使用的催化剂体系优选包含有机金属助催化剂作为组分(ii)。
因此,助催化剂优选选自由三烷基铝(比如三乙基铝(TEA))、二烷基氯化铝和烷基铝倍半氯化物组成的组。
所用催化剂体系的组分(iii)是由式(IIIa)或(IIIb)表示的外部供体。式(IIIa)由以下定义:
Si(OCH3)2R2 5 (IIIa)
其中R5表示具有3~12个碳原子的支链烷基,优选具有3~6个碳原子的支链烷基或具有4~12个碳原子的环烷基,优选具有5~8个碳原子的环烷基。
特别优选地,R5选自异丙基、异丁基、异戊基、叔丁基、叔戊基、新戊基、环戊基、环己基、甲基环戊基和环庚基。
式(IIIb)由以下定义:
Si(OCH2CH3)3(NRxRy) (IIIb)
其中Rx和Ry可以相同或不同,代表具有1~12个碳原子的烃基。
Rx和Ry独立地选自具有1~12个碳原子的直链脂族烃基、具有1~12个碳原子的支链脂族烃基和具有1~12个碳原子的环状脂族烃基。特别优选Rx和Ry独立地选自甲基、乙基、正丙基、正丁基、辛基、癸基、异丙基、异丁基、异戊基、叔丁基、叔戊基、新戊基、环戊基、环己基、甲基环戊基和环庚基。
更优选Rx和Ry相同,还更优选Rx和Ry都是乙基。
更优选地,外部供体为式(IIIa)所示的,比如二环戊基二甲氧基硅烷[Si(OCH3)2(环戊基)2]、二异丙基二甲氧基硅烷[Si(OCH3)2(CH(CH3)2)2]。
最优选外部供体是二环戊基二甲氧基硅烷[Si(OCH3)2(环戊基)2]。
在另一个实施方案中,齐格勒-纳塔主催化剂可以通过在催化剂体系存在下聚合乙烯基化合物进行改性,该催化剂体系包括特定的齐格勒-纳塔主催化剂(组分(i))、外部供体(组分(iii)和可选的助催化剂(组分(iii)),该乙烯基化合物具有下式:
CH2=CH-CHR3R4
其中R3和R4一起形成5元或6元饱和、不饱和或芳香族环或独立地表示包含1~4个碳原子的烷基,并且改性催化剂用于制备本发明的多相丙烯共聚物[HECO]。聚合的乙烯基化合物可以作为α成核剂。
关于催化剂的改性,参考国际申请WO 99/24478、WO 99/24479,特别是WO 00/68315,关于催化剂改性以及聚合反应的反应条件,通过引用并入本文。
或者,聚丙烯基材是丙烯均聚物(hPP)。
如果聚丙烯基材是丙烯均聚物(hPP),则丙烯均聚物(hPP)被概括地理解并因此涵盖其中混合不同均聚物的实施方案。更确切地说,术语“丙烯均聚物(hPP)”也可以包括其中混合两种以上(如三种)熔体流动速率不同的丙烯均聚物的实施方案。因此,在一个实施方案中,术语“丙烯均聚物(hPP)”只涵盖具有一种特定的熔体流动速率的一种丙烯均聚物,优选该特定的熔体流动速率在如下定义范围内。在另一个实施方案中,术语“丙烯均聚物(hPP)”代表两种或三种(优选两种)熔体流动速率不同的丙烯均聚物的混合物。优选地,该两种或三种丙烯均聚物的熔体流动速率在如下定义的范围内。根据本发明,如果两种丙烯均聚物的熔体流动速率MFR2(230℃)之间的差异至少为5g/10min,优选至少10g/10min,如至少15g/10min,则两者熔体流动是不同的。
在本发明中使用的表述“丙烯均聚物(hPP)”涉及基本上由丙烯单元组成(即,由超过99.5摩尔%、还更优选至少99.7摩尔%、如至少99.8重量%的丙烯单元组成)的聚丙烯。在一个优选的实施方式中,在丙烯均聚物中仅能检测到丙烯单元。
本发明的丙烯均聚物(hPP)的熔体流动速率MFR2(230℃)必须在3.0~140.0g/10min范围内。优选地,丙烯均聚物(hPP)的熔体流动速率MFR2(230℃,2.16kg)在5.0~120.0g/10min范围内,更优选在5.5~100.0g/10min范围内,还更优选在6.0~80.0g/10min范围内,例如在7.0~65.0g/10min范围内。
丙烯均聚物(hPP)优选是全同立构丙烯均聚物。因此,优选地,丙烯均聚物(hPP)具有相当高的五元组浓度,即,高于90摩尔%,更优选高于92摩尔%,还更优选高于93摩尔%,还更优选高于95摩尔%,如高于99摩尔%。
优选地,丙烯均聚物(hPP)根据ISO11357-3测量的熔融温度Tm为至少150℃,更优选至少155℃,更优选在150~168℃范围内,还更优选在155~167℃范围内,最优选在160~167℃范围内。
此外,丙烯均聚物(hPP)具有相当低的二甲苯冷可溶物(XCS)含量,即低于4.5重量%,更优选低于4.0重量%,还更优选低于3.7重量%。因此,优选地,二甲苯冷可溶物(XCS)含量在0.5~4.5重量%范围内,更优选在1.0~4.0重量%范围内,还更优选在1.5~3.5重量%范围内。
另外或可替代地,丙烯均聚物(hPP)的密度为850~1000kg/cm3,更优选为875~950kg/m3,更优选为890~925kg/cm3
在一个实施方案中,丙烯均聚物(hPP)在23℃ISO179-leA的夏比缺口冲击强度为1.0~10.0kJ/m2,优选1.0~8.0kJ/m2,最优选1.5~5.0kJ/m2
本发明的复合材料适用的丙烯均聚物(H-PP)可从各种市售来源获得,并且可以如本领域已知的那样制备。例如,丙烯均聚物(hPP)可以在单中心催化剂或齐格勒-纳塔催化剂的存在下制备,优选后者。
丙烯均聚物(hPP)的聚合可以是本体聚合,优选在所谓的环管反应器中进行。或者,丙烯均聚物(hPP)的聚合是两阶段或更多阶段聚合,在淤浆相操作的环管反应器与一个以上气相反应器的组合中进行,例如在
Figure BDA0001900329410000221
聚丙烯方法中应用的那样。
优选地,在制备如上定义的丙烯均聚物(hPP)的方法中,用于本体反应器的步骤条件可以如下:
-温度在40~110℃范围内,优选在60~100℃之间,70~90℃之间,
-压力在20~80巴范围内,优选在30~60巴之间,
-可以以本身已知的方式加入氢,以控制摩尔质量。
随后,可以将来自本体(本体)反应器的反应混合物转移到气相反应器中,其中条件优选如下:
-温度在50~130℃范围内,优选在60~100℃之间,
-压力在5~50巴范围内,优选在15~35巴之间,
-可以以本身已知的方式加入氢,以控制摩尔质量。
两个反应器区域中的停留时间可以不同。在制备丙烯聚合物的方法的一个实施方案中,在本体反应器(例如,环管反应器)中的停留时间为0.5~5小时,例如0.5~2小时,在气相反应器中的停留时间通常为1~8小时。
如果需要,聚合可以在超临界条件下以已知方式在本体(优选环管)反应器中进行,和/或在气相反应器中以冷凝模式进行。
如上所述,丙烯均聚物(hPP)优选使用齐格勒-纳塔体系获得。
因此,使用齐格勒-纳塔催化剂,特别是高产率的齐格勒-纳塔催化剂(称作第四代和第五代类型,以区别于低产率的,称作第二代齐格勒-纳塔催化剂)实施上述方法。根据本发明,使用的合适的齐格勒-纳塔催化剂包括:催化剂组分、助催化剂组分和至少一种电子供体(内部和/或外部电子供体,优选至少一种外部供体)。优选地,催化剂组分是Ti-Mg系催化剂组分,并且通常助催化剂是Al-烷基系化合物。合适的催化剂特别公开在US5,234,879、WO92/19653、WO92/19658和WO99/33843中。
优选的外部供体是已知的硅烷系供体,例如二环戊基二甲氧基硅烷,二乙基氨基三乙氧基硅烷或环己基甲基二甲氧基硅烷。
如果需要,通过在催化剂体系的存在下聚合乙烯基化合物,来改性齐格勒-纳塔催化剂体系,其中乙烯基化合物具有下式:
CH2=CH-CHR3R4
其中,R3和R4一起形成5元或6元饱和、不饱和或芳族环,或者独立地代表包含1~4个碳原子的烷基。如果需要,可以使用如此改性的催化剂用于丙烯均聚物(hPP)的制备,以实现聚合物、组合物(Co)以及由此整个模制品的α-成核(BNT技术)。
如上所述,用于丙烯均聚物(hPP)的方法的一个实施方案是环路相法或环路-气相法,例如由北欧化工开发的,称为
Figure BDA0001900329410000231
技术,描述于例如EP0887379A1和WO92/12182中。
基于纤维素的纤维(CF)
本发明的复合材料必须包含基于纤维素的纤维(CF)。基于纤维素的纤维(CF)可以是增强(高纵横比)纤维或非增强的(低纵横比)。纵横比定义为纤维颗粒的长度与有效直径的比率。优选地,基于纤维素的纤维(CF)的纵横比在2.0~13.0范围内,更优选在2.5~7.0范围内,还更优选在3.0~5.0范围内。
优选地,基于纤维素的纤维(CF)的体积矩平均(D[4.3])直径在1~1200μm之间,更优选在40~1000μm之间,更优选在100~600μm之间。
纤维素可以源自任何来源,包括树林/森林和农业副产品。因此,优选地,基于纤维素的纤维(CF)选自木材、亚麻、大麻、黄麻、秸杆、稻、硬质纤维板、纸板、纸、纸浆、原纤维素、纤维素、乙酸纤维素、三乙酸纤维素、丙酸纤维素、乙酸丙酸纤维素、乙酸丁酸纤维素、硝酸纤维素、甲基纤维素、乙基纤维素、乙基甲基纤维素、羟乙基纤维素、羟丙基纤维素(HPC)、羟乙基甲基纤维素、羟丙基甲基纤维素(HPMC)、乙基羟乙基纤维素、羧甲基纤维素(CMC),以及它们的任何混合物。基于纤维素的纤维(CF)特别选自木粉,纸,纸浆,原纤维素和纤维素。最优选地,基于纤维素的纤维(CF)是木粉。
基于聚合物的纤维(PF)
本发明的复合材料必须包含熔融温度为210℃以上的基于聚合物的纤维(PF)。
优选地,基于聚合物的纤维(PF)赋予本发明复合材料改善的断裂伸长率和韧性,特别是与仅包含基于纤维素的纤维(CF)作为增强纤维材料的复合材料相比。
在本申请含义中的术语“基于聚合物的纤维(PF)”是指不是基于纤维素的纤维。换言之,基于聚合物的纤维(PF)不同于基于纤维素的纤维(CF)。此外,本申请含义中的术语“基于聚合物的纤维(PF)”是指不是聚丙烯的纤维,如聚丙烯纤维。
一个特殊的要求是,基于聚合物的纤维(PF)的熔融温度Tm为210℃以上。优选地,基于聚合物的纤维(PF)的熔融温度Tm在210~350℃范围内,更优选在210~300℃范围内。
因此,基于聚合物的纤维(PF)根据ISO11357-3的熔融温度Tm为42℃以上,优选42~200℃,高于聚丙烯基材根据ISO11357-3的熔融温度Tm。更优选地,基于聚合物的纤维(PF)根据ISO11357-3的熔融温度Tm为50℃以上,甚至更优选50~200℃,最优选50~180℃,例如50~120℃,高于聚丙烯基材根据ISO11357-3的熔融温度Tm。
在一个实施方案中,基于聚合物的纤维(PF)的平均直径为10~30μm,优选12~24μm。
在一个实施方案中,基于聚合物的纤维(PF)的韧度为至少0.4N/tex~1.7N/tex,更优选至少0.6N/tex~1.4N/tex,最优选至少0.7N/tex~1.2N/tex。
例如,基于聚合物的纤维(PF)选自聚乙烯醇(PVA)纤维、聚对苯二甲酸乙二醇酯(PET)纤维、聚酰胺(PA)纤维及其混合物。优选地,基于聚合物的纤维(PF)是聚乙烯醇(PVA)纤维。
PVA纤维是本领域公知的,并且优选通过湿法纺丝法或干法纺丝法生产。
PVA本身是按如下合成的:在催化剂如乙酸锌的存在下,由乙炔[74-86-2]或乙烯[74-85-1]通过与乙酸(乙烯的情况下,以及与氧气)反应,形成乙酸乙烯酯[108-05-4],然后在甲醇中聚合。所得聚合物用氢氧化钠进行甲醇分解,由此PVA从甲醇溶液中沉淀出来。
用于制造纤维的PVA通常具有不小于1000,优选不小于1200,更优选不小于1500的聚合度。最优选地,PVA具有约1700的聚合度,例如1500~2000。乙酸乙烯酯的水解度通常为至少99摩尔%。
PVA纤维的机械性能根据制造纤维的条件(例如纺丝方法、拉伸方法)以及缩醛化条件以及原料PVA的制造条件而变化。
PVA纤维可以是(多)长丝或短纤维的形式。
PVA纤维的特征在于高强度、低伸长率和高模量。合适的PVA纤维的韧度优选0.4N/tex~1.7N/tex,更优选0.6N/tex~1.4N/tex,最优选0.7N/tex~1.2N/tex。
此外,这种PVA纤维的杨氏模量优选在3.0~35.0N/tex范围内,优选在10.0~30.0N/tex范围内,更优选在15.0~25.0N/tex范围内(ISO 5079)。
合适的PVA纤维的纤维平均直径为10~30μm,优选12~24μm,甚至更优选12~20μm,最优选12~18μm。
在一个实施方案中,PVA纤维的密度为1100~1400kg/m3,优选为1200~1400kg/m3
适用于本发明的PVA纤维进一步用所谓的施胶剂进行表面处理。这可以用已知的方法完成,例如将纤维浸入其中放有施胶剂的罐中,夹住,然后在热空气烘箱中干燥,或者用热辊或热板干燥。
施胶剂的例子包括聚烯烃树脂、聚氨基甲酸乙酯树脂、聚酯树脂、丙烯酸树脂、环氧树脂、淀粉、植物油、改性聚烯烃。与聚乙烯醇纤维有关的施胶剂的量在本领域技术人员的公知常识范围内,并且相对于100重量份的聚乙烯醇纤维,该施胶剂的量可以是例如0.1~10重量份。
表面处理剂可以掺入施胶剂中,以改善聚乙烯醇纤维和聚丙烯组合物之间的润湿性或粘合性。
表面处理剂的例子包括硅烷偶联剂、钛酸酯偶联剂、铝偶联剂、铬偶联剂、锆偶联剂、硼烷偶联剂,并且优选硅烷偶联剂或钛酸酯偶联剂,更优选硅烷偶联剂。
助粘剂(AP)
为了改善聚丙烯基材(即多相丙烯共聚物(HECO)或丙烯均聚物(hPP))、基于纤维素的纤维(CF)和基于聚合物的纤维(PF)之间的相容性,可以使用助粘剂(AP)。
助粘剂(AP)优选包含(更优选是)改性的(官能化的)聚合物,并且可选地,具有反应性极性基团的低分子量化合物。
最优选改性的α-烯烃聚合物,特别是丙烯均聚物和共聚物,如乙烯和丙烯彼此或与其它α-烯烃的共聚物,因为它们与本发明复合材料的聚合物高度相容。也可以用改性聚乙烯和改性苯乙烯嵌段共聚物,如改性聚(苯乙烯-b-丁二烯-b-苯乙烯)(SBS)或聚(苯乙烯-b-(乙烯-共聚丁烯)-b-苯乙烯)(SEBS)。
就结构而言,优选改性聚合物选自接枝共聚物或嵌段共聚物。
在本文中,优选含有衍生自极性化合物的基团的改性聚合物,特别选自酸酐、羧酸、羧酸衍生物,伯胺和仲胺、羟基化合物、恶唑啉和环氧化物,以及离子化合物。
所述极性化合物的具体例子是不饱和环酐和它们的脂肪族二酯,以及二酸衍生物。特别地,可以使用马来酸酐和选自C1~C10直链和支链的马来酸二烷基酯、C1~C10直链和支链的富马酸二烷基酯、衣康酸酐、C1~C10直链和支链的衣康酸二烷基酯、马来酸、富马酸、衣康酸的化合物及它们的混合物。
特别优选马来酸酐官能化的聚丙烯作为助粘剂(AP)。
基于极性改性聚合物的总重量,改性聚合物(如改性聚丙烯)中衍生自极性基团(例如,马来酸酐)的基团的量优选为0.1~5.0重量%,更优选0.2~5.0重量%,最优选0.3~4.0重量%,如0.4~3.0重量%。
特别优选助粘剂(AP)是改性丙烯共聚物或改性丙烯均聚物,特别优选后者。
在一个实施方案中,助粘剂(AP)是含有如上定义的极性基团的改性(无规)丙烯共聚物。在一个具体实施方案中,助粘剂(AP)是用马来酸酐接枝的(无规)丙烯共聚物。因此,在一个具体的优选实施方案中,助粘剂(AP)是用马来酸酐接枝的(无规)丙烯乙烯共聚物,其中更优选基于无规丙烯乙烯共聚物的总量,乙烯含量在1.0~8.0重量%范围内,更优选在1.5~7.0重量%范围内。
在极性改性(无规)丙烯共聚物或改性丙烯均聚物中,基于极性改性(无规)丙烯共聚物的总重量,所需的衍生自极性基团的基团的量优选为0.1~5.0重量%,更优选0.2~5.0重量%,最优选0.3~4.0重量%,如0.4~3.0重量%。
助粘剂(AP)根据ISO1133测量的熔体流动速率MFR2(190℃;2.1kg)的优选值为1.0~500.0g/10min,如在1.0~150.0g/10min范围内。
改性聚合物,即助粘剂(AP),可以通过例如在自由基生成剂(如有机过氧化物)的存在下聚合物与马来酸酐的反应性挤出以简单的方式生产,如EP0572028中所公开的。
助粘剂(AP)是本领域已知的并且可商购获得。一个合适的例子是BYK的SCONATPPP 8112FA。
α成核剂(NU)
根据本发明,α成核剂(NU)不属于如下定义的添加剂(A)类。
该复合材料可含有α成核剂(NU)。甚至更优选地,本发明不含β成核剂。因此,α成核剂(NU)优选选自由以下组成的组:
(i)一元羧酸盐和多元羧酸盐,例如苯甲酸钠或叔丁基苯甲酸铝,以及
(ii)二亚苄基山梨糖醇(例如1,3:2,4-二亚苄基山梨糖醇)和C1~C8-烷基取代的二亚苄基山梨糖醇衍生物,例如甲基二亚苄基山梨糖醇、乙基二亚苄基山梨糖醇或二甲基二亚苄基山梨糖醇(例如1,3:2,4二(甲基亚苄基)山梨糖醇),或者经取代的诺尼醇(nonitol)衍生物,例如1,2,3-三脱氧基-4,6:5,7-双-O-[(4-丙苯基)亚甲基]-诺尼醇,以及
(iii)磷酸二酯盐,例如2,2'-亚甲基双(4,6-二叔丁基苯基)磷酸钠或羟基-双[2,2'-亚甲基-双(4,6-二叔丁基苯基)磷酸]铝,以及
(iv)乙烯基环烷烃聚合物或乙烯基烷烃聚合物,以及
(v)它们的混合物。
优选地,复合材料含有乙烯基环烷聚烃合物和/或乙烯基烷烃聚合物作为α成核剂。如上所述,即由于多相丙烯共聚物(HECO)的制备,该α成核剂(NU)被包括。
这样的添加剂和成核剂通常可商购,并且描述于例如Hans Zweifel的“塑料添加剂手册(Plastic Additives Handbook)”,第5版,2001年中。
添加剂(A)
本发明的复合材料可包含添加剂(A)。典型的添加剂有酸清除剂、抗氧化剂、着色剂、光稳定剂、增塑剂、滑爽剂、抗刮划剂、分散剂、加工助剂、润滑剂、颜料。
这些添加剂可商购,例如描述于Hans Zweifel的“塑料添加剂手册(PlasticAdditives Handbook)”,第6版,2009年(第1141~1190页)中。
此外,根据本发明的术语“添加剂”还包括载体材料,特别是如下定义的聚合载体材料(PCM)。
优选地,基于复合材料的重量,复合材料包含其量不超过10重量%(优选不超过5重量%)的不同于复合材料中所包含的聚合物(即聚丙烯基材、基于纤维素的纤维(CF)、基于聚合物的纤维(PF)和可选的助粘剂(AP))的其他聚合物。如果存在其他聚合物,则该聚合物通常是添加剂(A)的聚合载体材料(PCM)。
优选地,基于复合材料的总重量,复合材料包含的聚合载体材料(PCM)的量不超过10.0重量%,优选的量不大于5.0重量%,更优选的量不大于2.5重量%,如在1.0~10.0重量%范围内,优选在1.0~5.0重量%范围内,甚至更优选在1.0~2.5重量%范围内。
聚合载体材料(PCM)是用于添加剂(A)的载体聚合物,以确保复合材料中的均匀分布。聚合载体材料(PCM)不限于特定的聚合物。聚合载体材料(PCM)可以是乙烯均聚物、由乙烯和α-烯烃共聚单体(如C3~C8α-烯烃共聚单体)得到的乙烯共聚物、丙烯均聚物,和/或由丙烯和α-烯烃共聚单体(如乙烯和/或C4~C8α-烯烃共聚单体)得到的丙烯共聚物。
根据优选的实施方案,聚合载体材料(PCM)是聚丙烯均聚物。
方法
可以使用树脂配混领域中公知和常用的各种配混和共混方法,对本发明的复合材料进行造粒和配混。
制品/应用
本发明的复合材料优选用于制造模制品,优选注模制品。甚至更优选的是,用于生产洗衣机或洗碗机的零件以及汽车制品,尤其是汽车内部制品和外部制品,例如保险杠、侧饰件、踏板辅助件、车身面板、扰流板、仪表板、内部饰件等。
本发明还提供制品,如注模制品,其包含本发明的复合材料,优选包含至少60重量%,更优选至少80重量%,还更优选至少95重量%的本发明的复合材料,如由本发明的复合材料组成。因此,本发明特别涉及洗衣机或洗碗机的零件以及汽车制品,尤其涉及汽车内部制品和外部制品,如保险杠、侧饰件、脚踏板、车身面板、扰流板、仪表板、内部饰件等,其包含本发明的复合材料,优选包含至少60重量%,更优选至少80重量%,还更优选至少95重量%的本发明的复合材料,如由本发明的复合材料组成。
现在将通过下面提供的实施例进一步详细描述本发明。
实施例
1.定义/测量方法
除非另外定义,术语和测定方法的以下定义适用于本发明的上述一般性描述以及以下实施例。
通过NMR光谱定量微观结构
定量的核磁共振(NMR)光谱用于定量聚合物的共聚单体含量。针对1H和13C,分别使用在400.15MHz和100.62MHz下运行的Bruker Advance III 400NMR光谱仪记录溶液状态的定量13C{1H}NMR光谱。通过使用13C最佳的10mm延伸温度探头,在125℃的条件下,对于所有气氛使用氮气,来记录所有光谱。将约200mg的材料与乙酰丙酮铬(III)(Cr(乙酰丙酮)3)一起溶于3ml的1,2-四氯乙烷-d2(TCE-d2)中,得到在溶剂中的65mM弛豫剂溶液(Singh,G.,Kothari,A.,Gupta,V.,Polymer Testing 28 5(2009),475)。为了确保均匀溶液,在热区中进行初始样品制备之后,将NMR管在旋转炉中进一步加热至少1小时。在插入磁体后,将该管在10Hz处旋转。选择这种设置主要是为了高分辨率和精确定量乙烯含量定量所需。在不利用NOE的情况下,使用最佳尖顶角、1s再循环延迟和双水平WALTZ16解耦系统来采用标准单脉冲激发(Zhou,Z.,Kuemmerle,R.,Qiu,X.,Redwine,D.,Cong,R.,Taha,A.,Baugh,D.,Winniford,B.,J.Mag.Reson.187(2007)225;Busico,V.,Carbonniere,P.,Cipullo,R.,Pellecchia,R.,Severn,J.,Talarico,G.,Macromol.Rapid Commun.2007,28,1128)。对每个光谱均获得总共6144(6k)个瞬态。
对定量的13C{1H}NMR谱进行处理、积分,并使用专有的计算机程序由积分来确定相关的量化性质。使用溶剂化学位移,所有化学位移均间接参考在30.00ppm处的乙烯嵌段(EEE)的中心亚甲基。即使在这个结构单元不存在的情况下,这种方法也允许可比参照。观察到与乙烯的结合相对应的特征信号(Cheng,H.N.,Macromolecules 17(1984),1950)。
在观察到对应于2,1赤型区域缺陷的特征信号(如在L.Resconi,L.Cavallo,A.Fait,F.Piemontesi,Chem.Rev.2000,100(4),1253;在Cheng,H.N.,Macromolecules1984,17,1950;以及在W-J.Wang和S.Zhu,Macromolecules 2000,33 1157中所描述)时,需要对区域缺陷对所测特性的影响进行校正。没有观察到对应于其他类型的区域缺陷的特征信号。
通过贯穿13C{1H}光谱中的全部光谱区域的多重信号的积分,使用Wang等(Wang,W-J.,Zhu,S.,Macromolecules 33(2000),1157)的方法,来对共聚单体分数进行定量。选择这种方法的原因在于它的稳健性(robust nature)和需要时对存在的区域缺陷的解释计算能力。对积分区域进行微调,以增加对整个范围内的所遇到的共聚单体含量的适用性。
对于其中仅观察到PPEPP序列中的孤立乙烯的体系,修改Wang等人的方法,以减少已知不存在的位点的非零积分的影响。这种方法减少了对这种体系的乙烯含量的过高估算,并且通过减少用于确定绝对乙烯含量的位点的数量来实现:
E=0.5(Sββ+Sβγ+Sβδ+0.5(Sαβ+Sαγ))
通过使用这组位点,相应的积分方程变成:
E=0.5(IH+IG+0.5(IC+ID))
使用Wang等人的文章(Wang,W-J.,Zhu,S.,Macromolecules 33(2000),1157)中所用的相同符号。用于绝对丙烯含量的方程式未进行修改。
共聚单体结合的摩尔百分比由摩尔分数计算:
E[摩尔%]=100×fE
共聚单体结合的重量百分比由摩尔分数计算:
E[重量%]=100×(fE×28.06)/((fE×28.06)+((1-fE)×42.08))
使用Kakugo等人的分析方法(Kakugo,M.,Naito,Y.,Mizunuma,K.,Miyatake,T.,Macromolecules 15(1982)1150),来测定三元组水平下的共聚单体序列分布。选择这种方法的原因在于它的稳健性,以及积分区域微调以增加对较宽范围的共聚单体含量的适用性。
DSC分析、熔融温度(Tm)和熔化热(Hf)、结晶温度(Tc)和结晶热(Hc):用TA仪器Q2000差示扫描量热仪(DSC)在5~7mg样品上进行测定。DSC根据ISO 11357/第3部分/方法C2,在温度范围为-30℃至+225℃、扫描速率为10℃/min的加热/冷却/加热循环中运行。结晶温度和结晶热(Hc)由冷却步骤确定,而熔融温度和熔化热(Hf)由第二加热步骤确定。
密度根据ISO 1183-1-方法A(2004)测量。依据ISO 1872-2:2007,通过压缩模塑法(compression moulding)来完成样品制备。
MFR2(230℃)根据ISO 1133(230℃,2.16kg负载)测量。
MFR2(190℃)根据ISO 1133(190℃,5kg或2.1kg负载)测量。
二甲苯冷可溶物(XCS,重量%):二甲苯冷可溶物(XCS)的含量依据ISO 16152(第一版;2005-07-01)在25℃下测量。
非晶含量(AM)通过分离上述二甲苯冷可溶部分(XCS)并用丙酮沉淀非晶部分来测量。将沉淀物过滤并在90℃的真空烘箱中干燥。
Figure BDA0001900329410000301
其中,
“AM%”是非晶部分,
“m0”是初始聚合物量(g)
“m1”是沉淀物的重量(g)
“v0”是初始体积(ml)
“v1”是分析样品的体积(ml)
特性粘度根据1999年10月的DIN ISO 1628/1(在135℃的条件下,在萘烷中)来测量。
夏比缺口冲击强度根据ISO 179/1eA在23℃和-20℃下,通过使用根据ENISO19069-2制备的注模试样(80×10×4mm3)测定。
夏比无缺口冲击强度根据ISO 179/1eU在23℃下,通过使用根据EN ISO 19069-2制备的注模试样(80×10×4mm3)测定。
拉伸模量使用EN ISO 1873-2中所述的注模试样(狗骨形状,4mm厚度),依据ISO527-3(十字头速度=1mm/分钟;23℃)来测量。
屈服伸长率使用EN ISO 1873-2中所述的注模试样(狗骨形状,4mm厚度),依据ISO527-3(十字头速度=50mm/分钟;23℃)来测量。
拉伸强度使用EN ISO 1873-2中所述的注模试样(狗骨形状,4mm厚度),依据ISO527-2(十字头速度=50mm/分钟;23℃)来测量。
断裂伸长率使用EN ISO 1873-2中所述的注模试样(狗骨形状,4mm厚度),依据ISO527-4(十字头速度=50mm/分钟;23℃)来测量。
平均纤维直径和平均纤维长度通过使用光学显微镜测定。将样品在真空下包埋在Struers CaldoFix树脂中。使用粒径低至0.04μm的研磨介质,在Struers LaboPol-5机器上进行磨蚀/抛光。使用Olympus光学显微镜以明场模式分析由此制备的样品。测量基质中纤维的纤维横截面的尺寸,以获得平均纤维直径(通常测量约30根单根纤维,并且用纤维横截面的最短尺寸来获得纤维直径)。相对地,在约30根单根纤维上测量平均纤维长度,并且使用纤维横截面的最长尺寸来获得纤维长度。
通过配备有自动干粉分散单元的Horiba Partica LA 950V2(堀场制作所有限公司,日本)激光衍射粒度分析仪,测定基于纤维素的纤维(CF)(如木粉纤维)的粒径和粒径分布。进行三次平行测量,给出的结果是它们的平均值。计算体积矩平均(D[4.3])并将其用作基于纤维素的纤维(CF)(如木粉纤维)的平均粒径。
在扫描电子显微镜(SEM)的帮助下测定基于纤维素的纤维(CF)(如木粉纤维)的纵横比。SEM显微照片由Jeol JSM 6380LA装置拍摄。在图像分析软件(Image Pro Plus)的帮助下测量SEM显微照片上的颗粒,并且手动分别测量颗粒的长度和直径。分析至少500个在数张显微照片上的颗粒,以降低评价的标准偏差,并计算其纵横比。
热挠曲温度B根据ISO75-2在0.45MPa下测定。
2.实施例
HECO的制备
催化剂
首先,在大气压下,在反应器中,在惰性条件下将0.1摩尔的MgCl2×3EtOH悬浮在250ml的癸烷中。将该溶液冷却至-15℃,在将温度保持在所述水平的同时,加入300ml的冷TiCl4。然后,将浆料的温度缓慢升到20℃。在此温度下,将0.02摩尔的邻苯二甲酸二辛酯(DOP)加入到该浆料中。在添加邻苯二甲酸酯后,在90分钟期间内将温度升至135℃,并将浆料静置60分钟。然后,加入另外300ml的TiCl4,并且将温度保持在135℃下120分钟。此后,从液体中将催化剂滤出,并在80℃下,用300ml庚烷洗涤催化剂6次。然后,将固体催化剂组分过滤并干燥。催化剂及其制备概念在例如专利公开EP491566、EP 591224和EP 586390中被概括地描述。
催化剂被进一步改性(催化剂的VCH改性)。
在惰性条件下,在室温下将35ml矿物油(矿脂(Paraffinum Liquidum)PL68)加入到125ml不锈钢反应器中,然后加入0.82g三乙基铝(TEAL)和0.33g二环戊基二甲氧基硅烷(供体D)。10分钟后,加入5.0g如上制备的催化剂(Ti含量为1.4重量%),并且另外20分钟后,加入5.0g乙烯基环己烷(VCH)。在30分钟内将温度升至60℃并保持在该温度下20小时。最后,将温度降至20℃,分析油/催化剂混合物中未反应的VCH的浓度,结果为200ppm重量。
表1:HECO的聚合
Figure BDA0001900329410000321
Figure BDA0001900329410000331
从各个反应器获得的产物的性质自然不是在均质材料上测量,而是在反应器样品(点样品)上测量。最终树脂的性质在均质材料上测量,MFR2是在挤出混合工艺中由其制成的粒料上测量,如下所述。
在双螺杆挤出机中,将HECO与由巴斯夫股份有限公司(BASF AG)提供的0.1重量%的四(3-(3’,5’-二叔丁基-4-羟基苯基)丙酸)季戊四醇酯(CAS号:6683-19-8,商品名Irganox 1010)、由巴斯夫股份有限公司提供的0.1重量%的三(2,4-二叔丁基苯基)磷酸酯(CAS号:31570-04-4,商品名Irgafos 168)以及由禾大聚合物添加剂(Croda PolymerAdditives)提供的0.05重量%的硬脂酸钙(CAS号:1592-23-0)混合。
表2:HECO的性质
HECO
H-PP(第1和第2反应器) [重量%] 65
H-PP的MFR<sub>2</sub>(第1和第2反应器) [g/10min] 55
H-PP的Tm(第1和第2反应器) [℃] 165
EPR(第3和第4反应器) [重量%] 35
EPR的C2(第3和第4反应器) [摩尔%] 47
AM的C2 [摩尔%] 47.9
AM的IV [dl/g] 2.5
XCS(最终) [重量%] 32
C2(总) [摩尔%] 18.3
MFR<sub>2</sub>(230℃)(最终) [g/10min] 11
AM 非晶部分
C2 乙烯含量
MFR2 是MFR2(230℃;2.16kg)
表3:例子
Figure BDA0001900329410000341
Figure BDA0001900329410000351
“hPP”是市售聚丙烯均聚物“HJ325MO”,其含有成核添加剂和抗静电添加剂,由北欧化工提供(CAS号:9003-07-0)。该聚合物是CR(可控流变学)等级,具有窄分子量分布,密度为905kg/m3(ISO1183)并且MFR2为50g/10min(230℃;2.16kg;ISO1133);XCS为2.2重量%,熔融温度为164℃,在23℃下的夏比缺口冲击强度为2.0kJ/m2
“CF”是Rettenmaier und
Figure BDA0001900329410000352
的市售纤维素产品Arbocel C320,其体积矩平均(D[4.3])直径为467μm,纵横比为4。
“PF”是市售短切PVA纤维Mewlon 2000T-750F HM1(高模量),平均纤维长度为4mm,韧度为1N/tex,杨氏模量为21.5N/tex,熔融温度Tm为240℃,对PP具有特定表面处理,由日本Unitika提供。
“AP”是德国BYK有限公司的乙烯聚丙烯共聚物(用马来酸酐官能化)“TPPP8112FA”,其MFR2(190℃)大于80g/10min,马来酸酐含量为1.4重量%。
“NIS”是缺口冲击强度。
“UNIS”是无缺口冲击强度。
“HDF”是热挠曲温度B。
为了配混,使用与ECON EUP50水下造粒机(UP)连接的平行同向旋转双螺杆挤出机Brabender DSE20。DSE20的螺杆直径(d)为20mm,长度为800mm。
对于两种聚丙烯基材(即,hPP和HECO),即使只加入少量PF纤维(即PVA纤维),其在+23℃和-20℃时的缺口冲击强度也得到显著改善。在没有助粘剂(AP)的复合材料中,这种改进甚至更加显著。对于包含助粘剂(AP)的复合材料,其总体最终机械性能更加平衡,因为在助粘剂(AP)存在下拉伸强度显著增加。此外,对于所有本发明实施例,拉伸屈服伸长率和拉伸断裂伸长率也得到改善,表明这些混合复合材料具有更具延展性的材料性能。当向复合材料中添加5重量%的PVA纤维时,拉伸模量增加约300MPa。

Claims (14)

1.复合材料,包含:
a)在复合材料总重量中占50~90重量%的聚丙烯基材,所述聚丙烯基材根据ISO1133在230℃、2.16kg负载下测量的熔体流动速率MFR2在3.0~140.0 g/10min范围内,其中,所述聚丙烯基材是:
i)多相丙烯共聚物(HECO),其包含分散有弹性体丙烯共聚物(EC)的半结晶聚丙烯(PP)作为基质;或
ii)丙烯均聚物(hPP);
b)在复合材料总重量中占5~30重量%的基于纤维素的纤维(CF);
c)在复合材料总重量中占1~8重量%的基于聚合物的纤维(PF),所述基于聚合物的纤维(PF)的熔融温度为210℃以上,其中,所述基于聚合物的纤维(PF)选自聚乙烯醇(PVA)纤维、聚对苯二甲酸乙二醇酯(PET)纤维、聚酰胺(PA)纤维及它们的混合物;和
d)在复合材料总重量中占0.1~6.0重量%的助粘剂(AP)。
2.根据权利要求1所述的复合材料,其中,多相丙烯共聚物(HECO)具有:
a)在5.0~120.0 g/10min范围内的在230℃、2.16kg负载下测量的熔体流动速率MFR2,和/或
b)在多相丙烯共聚物(HECO)总重量中占15.0~50.0重量%的在25℃下测量的二甲苯冷可溶(XCS)部分,和/或
c)在多相丙烯共聚物(HECO)中为30.0摩尔%以下的共聚单体含量。
3.根据前述权利要求中任一项所述的复合材料,其中,多相丙烯共聚物(HECO)的非晶部分(AM)具有:
a)在多相丙烯共聚物(HECO)的非晶部分(AM)中为30.0~60.0摩尔%范围内的共聚单体含量,和/或
b)在1.8~4.0 dl/g范围内的特性粘度(IV)。
4.根据权利要求1或2所述的复合材料,其中,丙烯均聚物(hPP)具有:
a)在5.0~120.0 g/10min范围内的在230℃、2.16kg负载下测量的熔体流动速率MFR2,和/或
b)根据ISO11357-3测量的至少150℃的熔融温度,和/或
c)在丙烯均聚物(hPP)总重量中为低于4.5重量%的二甲苯冷可溶物(XCS)含量。
5.根据权利要求1或2所述的复合材料,其中,基于纤维素的纤维(CF)选自木材、亚麻、大麻、黄麻、秸杆、硬质纤维板、纸板、纸、纸浆、纤维素、乙酸纤维素、三乙酸纤维素、丙酸纤维素、乙酸丙酸纤维素、乙酸丁酸纤维素、硝酸纤维素、甲基纤维素、乙基纤维素、乙基甲基纤维素、羟乙基纤维素、羟丙基纤维素(HPC)、羟乙基甲基纤维素、羟丙基甲基纤维素(HPMC)、乙基羟乙基纤维素、羧甲基纤维素(CMC),以及它们的任何混合物。
6.根据权利要求1或2所述的复合材料,其中,基于纤维素的纤维(CF)的体积矩平均(D[4.3])直径为1~1200μm。
7.根据权利要求1或2所述的复合材料,其中,所述基于聚合物的纤维(PF)为聚乙烯醇(PVA)纤维。
8.根据权利要求1或2所述的复合材料,其中,所述基于聚合物的纤维(PF)具有:
i)在10~30μm范围内的纤维平均直径,和/或
ii)0.4 N/tex~1.7 N/tex的韧度。
9.根据权利要求1或2所述的复合材料,其中,所述基于聚合物的纤维(PF)根据ISO11357-3的熔融温度Tm为42℃以上,高于聚丙烯基材根据ISO11357-3的熔融温度Tm
10.根据权利要求1或2所述的复合材料,其中,复合材料不含密度为935~970 kg/m3的聚乙烯(PE)。
11.根据权利要求1所述的复合材料,其中,助粘剂(AP)选自酸改性的聚烯烃、酸酐改性的聚烯烃和改性的苯乙烯嵌段共聚物。
12.根据权利要求1或11所述的复合材料,其中,助粘剂(AP)是马来酸酐官能化的聚丙烯。
13.模制品,其包含前述权利要求中任一项所述的复合材料。
14.根据权利要求13所述的模制品,其为汽车制品。
CN201780036193.8A 2016-06-29 2017-06-27 纤维增强聚丙烯复合材料 Active CN109312127B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16176871.8 2016-06-29
EP16176871.8A EP3263641B1 (en) 2016-06-29 2016-06-29 Fiber reinforced polypropylene composite
PCT/EP2017/065849 WO2018002046A1 (en) 2016-06-29 2017-06-27 Fiber reinforced polypropylene composite

Publications (2)

Publication Number Publication Date
CN109312127A CN109312127A (zh) 2019-02-05
CN109312127B true CN109312127B (zh) 2021-05-07

Family

ID=56289428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780036193.8A Active CN109312127B (zh) 2016-06-29 2017-06-27 纤维增强聚丙烯复合材料

Country Status (13)

Country Link
US (1) US20190315954A1 (zh)
EP (1) EP3263641B1 (zh)
JP (1) JP6682015B2 (zh)
KR (1) KR101999499B1 (zh)
CN (1) CN109312127B (zh)
BR (1) BR112018073365A2 (zh)
CA (1) CA3026017C (zh)
EA (1) EA038904B1 (zh)
ES (1) ES2865425T3 (zh)
MX (1) MX2018014149A (zh)
UA (1) UA121283C2 (zh)
WO (1) WO2018002046A1 (zh)
ZA (1) ZA201807205B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205559B (zh) 2016-08-03 2022-10-21 博里利斯股份公司 纤维增强的聚丙烯复合材料
JP7022302B2 (ja) * 2017-12-01 2022-02-18 トヨタ紡織株式会社 繊維複合材及び繊維複合材の製造方法
WO2020011825A1 (en) * 2018-07-13 2020-01-16 Borealis Ag Heterophasic polypropylene composition with improved balance of properties
EP3604425A1 (en) * 2018-07-31 2020-02-05 Borealis AG Foamed polypropylene composition comprising polymeric fibers
WO2020102970A1 (en) * 2018-11-20 2020-05-28 Borouge Compounding Shanghai Co., Ltd. Fiber-reinforced polypropylene composition with high oil resistance
ES2948965T3 (es) * 2019-10-23 2023-09-22 Borealis Ag Composición de polipropileno con una capacidad de procesamiento y resistencia al impacto mejoradas
KR102396230B1 (ko) 2020-08-27 2022-05-10 주식회사 애니켐 중공 천연섬유 강화 열가소성 수지복합체로 된 경량 저탄소 친환경 복합시트
WO2023097415A1 (en) * 2021-11-30 2023-06-08 Borouge Compounding Shanghai Co., Ltd. Filled polyolefin composition with improved impact strength and low clte
CN115947992B (zh) * 2022-12-28 2024-02-20 上海日之升科技有限公司 一种小麦秸秆粉聚丙烯木塑复合材料及其制备方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145892A (en) * 1985-12-19 1992-09-08 Chisso Corporation Polypropylene resin composition
FI80055C (fi) 1986-06-09 1990-04-10 Neste Oy Foerfarande foer framstaellning av katalytkomponenter foer polymerisation av olefiner.
FR2603996A1 (fr) 1986-09-17 1988-03-18 Primat Didier Dispositif de lecture optique sans objectif
US5234879A (en) 1990-12-19 1993-08-10 Neste Oy Method for the modification of catalysts intended for the polymerization of olefins
FI86866C (fi) 1990-12-19 1992-10-26 Neste Oy Foerfarande foer modifiering av katalysatorer avsedda foer polymerisation av olefiner
FI86867C (fi) 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
FI88047C (fi) 1991-05-09 1993-03-25 Neste Oy Pao tvenne elektrondonorer baserad katalysator foer polymerisation av olefiner
FI88048C (fi) 1991-05-09 1993-03-25 Neste Oy Grovkornig polyolefin, dess framstaellningsmetod och en i metoden anvaend katalysator
IT1260495B (it) 1992-05-29 1996-04-09 Himont Inc Concentrati adatti alla preparazione di poliolefine funzionalizzate e processo di funzionalizzazione mediante detti concentrati
JPH0924705A (ja) * 1995-07-11 1997-01-28 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
FI111848B (fi) 1997-06-24 2003-09-30 Borealis Tech Oy Menetelmä ja laitteisto propeenin homo- ja kopolymeerien valmistamiseksi
FI980342A0 (fi) 1997-11-07 1998-02-13 Borealis As Polymerroer och -roerkopplingar
FI974175A (fi) 1997-11-07 1999-05-08 Borealis As Menetelmä polypropeenin valmistamiseksi
AU1761199A (en) 1997-12-23 1999-07-19 Borealis Technology Oy Soluble magnesium dihalide complex, preparation and use
FI991057A0 (fi) 1999-05-07 1999-05-07 Borealis As Korkean jäykkyyden propeenipolymeerit ja menetelmä niiden valmistamiseksi
US20020161072A1 (en) * 2001-01-22 2002-10-31 Philip Jacoby Wood fiber-filled polypropylene
CA2438076A1 (en) * 2001-03-29 2002-10-10 Exxonmobil Chemical Patents Inc. Ionomer laminates and articles formed from ionomer laminates
US6743507B2 (en) * 2002-06-07 2004-06-01 Rayonier Products And Financial Services Company Cellulose fiber reinforced composites having reduced discoloration and improved dispersion and associated methods of manufacture
US20060052541A1 (en) 2002-06-25 2006-03-09 Erling Hagen Polyolefin with improved scratch resistance and process for producing the same
EP1484343A1 (en) 2003-06-06 2004-12-08 Universiteit Twente Process for the catalytic polymerization of olefins, a reactor system and its use in the same process
US20060264544A1 (en) * 2005-05-17 2006-11-23 Arnold Lustiger Cloth-like fiber reinforced polypropylene compositions and method of making thereof
JP4818662B2 (ja) * 2005-08-26 2011-11-16 ダイセルポリマー株式会社 熱可塑性樹脂組成物
WO2008072514A1 (ja) * 2006-12-11 2008-06-19 Kuraray Co., Ltd. 熱可塑性樹脂組成物
JP2010215887A (ja) * 2009-02-20 2010-09-30 Daicel Polymer Ltd 熱可塑性材料組成物
ES2525554T3 (es) 2010-07-13 2014-12-26 Borealis Ag Componente catalizador
JP2013107987A (ja) * 2011-11-21 2013-06-06 Mitsubishi Paper Mills Ltd セルロース複合熱可塑性樹脂及びその成形体
EP2799489B1 (en) * 2011-12-28 2019-06-05 Toyobo Co., Ltd. Resin composition
EP2610271B1 (en) 2011-12-30 2019-03-20 Borealis AG Preparation of phthalate free ZN PP catalysts
EP2610270B1 (en) 2011-12-30 2015-10-07 Borealis AG Catalyst component
EP2610272B1 (en) 2011-12-30 2017-05-10 Borealis AG Catalyst component
WO2016065614A1 (en) * 2014-10-31 2016-05-06 3M Innovative Properties Company Thermoplastic composite, method for preparing thermoplastic composite, and injection-molded product
CN105462073B (zh) * 2016-01-28 2018-03-20 苏州润佳工程塑料股份有限公司 一种具有柔性触感的聚丙烯材料
CN111205559B (zh) * 2016-08-03 2022-10-21 博里利斯股份公司 纤维增强的聚丙烯复合材料

Also Published As

Publication number Publication date
JP2019521208A (ja) 2019-07-25
EP3263641A1 (en) 2018-01-03
MX2018014149A (es) 2019-03-14
EA038904B1 (ru) 2021-11-08
CA3026017A1 (en) 2018-01-04
BR112018073365A2 (pt) 2019-03-06
US20190315954A1 (en) 2019-10-17
CN109312127A (zh) 2019-02-05
EA201990028A1 (ru) 2019-06-28
CA3026017C (en) 2019-11-12
WO2018002046A1 (en) 2018-01-04
ZA201807205B (en) 2019-07-31
JP6682015B2 (ja) 2020-04-15
UA121283C2 (uk) 2020-04-27
KR20190006024A (ko) 2019-01-16
KR101999499B1 (ko) 2019-07-11
ES2865425T3 (es) 2021-10-15
EP3263641B1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
CN109312127B (zh) 纤维增强聚丙烯复合材料
CN111205559B (zh) 纤维增强的聚丙烯复合材料
KR101992592B1 (ko) 섬유 강화 폴리프로필렌 복합체
KR20190034343A (ko) 섬유 강화 폴리프로필렌 복합체
RU2679149C1 (ru) Композиционный материал с наполнителем на основе целлюлозы
KR20200037840A (ko) 보강된 폴리머 조성물

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant