CN109309131B - 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法 - Google Patents

石墨烯透明电极双台面碳化硅辐射探测器及其制备方法 Download PDF

Info

Publication number
CN109309131B
CN109309131B CN201811072896.9A CN201811072896A CN109309131B CN 109309131 B CN109309131 B CN 109309131B CN 201811072896 A CN201811072896 A CN 201811072896A CN 109309131 B CN109309131 B CN 109309131B
Authority
CN
China
Prior art keywords
silicon carbide
transparent electrode
graphene transparent
electrode
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811072896.9A
Other languages
English (en)
Other versions
CN109309131A (zh
Inventor
黎大兵
刘贺男
孙晓娟
贾玉萍
石芝铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201811072896.9A priority Critical patent/CN109309131B/zh
Publication of CN109309131A publication Critical patent/CN109309131A/zh
Application granted granted Critical
Publication of CN109309131B publication Critical patent/CN109309131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)

Abstract

石墨烯透明电极双台面碳化硅辐射探测器及其制备方法,属于半导体探测器领域,解决了现有碳化硅辐射探测器存在的探测效率低、漏电流大的问题。该探测器包括:碳化硅衬底;设置在碳化硅衬底上的碳化硅外延层,所述碳化硅外延层为双台面结构;设置在碳化硅外延层上的石墨烯透明电极;设置在碳化硅外延层上的二氧化硅钝化层;设置在石墨烯透明电极上的阴极金属电极和阳极金属电极;分别键合在阴极金属电极和阳极金属电极上的电极引线。本发明将石墨烯透明电极应用到辐射探测器中,采用双台面工艺,提供一种具有高有效探测区域、高探测效率、低漏电流、耐高温、耐辐射的石墨烯透明电极双台面碳化硅辐射探测器及其制备方法。

Description

石墨烯透明电极双台面碳化硅辐射探测器及其制备方法
技术领域
本发明属于半导体探测器技术领域,尤其是涉及一种石墨烯透明电极双台面碳化硅辐射探测器及其制备方法。
背景技术
碳化硅材料作为第三代宽禁带半导体材料,其4H晶型碳化硅(4H-SiC)的禁带宽度达到了3.26eV。相比于第一代半导体材料(Si等)和第二代半导体材料(GaAs等),具有禁带宽度宽、电导率高、载流子饱和漂移速率高、击穿电场大、耐高温、耐辐照等许多优异性能。碳化硅辐射探测器暗电流小、信噪比高,并且能够在高温、强辐射的环境下工作。另一方面,石墨烯是一种片层状碳原子构成的二维纳米材料,具有良好的透光性和导电性,同时还具有优异的力学性能和导热性能,作为优良的电极材料广泛应用于各种器件结构。
现有的碳化硅辐射探测器利用了碳化硅和金属电极之间的肖特基接触,其有效探测区域局限于金属电极所覆盖区域,且金属电极的厚度较厚,因此金属电极对入射光子会产生阻挡作用,使得碳化硅辐射探测器的探测效率大幅降低。并且现有的碳化硅辐射探测器采用单台面工艺,其漏电流较大。
发明内容
本发明利用石墨烯透明电极的辅助作用,同时采用在碳化硅上外延生长石墨烯的方法,将石墨烯透明电极应用到辐射探测器中,并采用双台面工艺以降低器件的漏电流,提供了一种具有高有效探测区域、高探测效率、低漏电流、耐高温、耐辐射的石墨烯透明电极双台面碳化硅辐射探测器及其制备方法,解决了现有碳化硅辐射探测器存在的探测效率低、漏电流大的问题,为石墨烯在辐射探测领域的应用提供了新思路、新方法。
本发明为解决技术问题所采用的技术方案如下:
本发明的一种石墨烯透明电极双台面碳化硅辐射探测器,包括:
碳化硅衬底;
设置在碳化硅衬底上的碳化硅外延层,所述碳化硅外延层为双台面结构;
设置在碳化硅外延层上的石墨烯透明电极;
设置在碳化硅外延层上的二氧化硅钝化层;
设置在石墨烯透明电极上的阴极金属电极和阳极金属电极;
分别键合在阴极金属电极和阳极金属电极上的电极引线。
进一步的,所述双台面结构包括依次连接的第一台面、第一侧面、第二台面、第二侧面和顶面;所述第一台面和顶面分别设置有石墨烯透明电极;所述二氧化硅钝化层覆盖在第一侧面、第二台面和第二侧面上。
进一步的,所述阴极金属电极设置在位于第一台面上的石墨烯透明电极上,所述阳极金属电极设置在位于顶面上的石墨烯透明电极上。
进一步的,所述碳化硅衬底为半绝缘型碳化硅,晶型为4H或6H,厚度为200~400μm。
进一步的,所述碳化硅外延层为n型掺杂的半导体,掺杂浓度为1014~1015cm-3,晶型为4H或6H,厚度为1~10μm。
进一步的,所述石墨烯透明电极与阴极金属电极之间的接触为欧姆接触;所述石墨烯透明电极与阳极金属电极之间的接触为肖特基接触。
进一步的,所述阴极金属电极为Ni或Ti/Ni,厚度为50~500nm;所述阳极金属电极为Ni或Ti/Ni,厚度为10~100nm。
本发明提供的一种石墨烯透明电极双台面碳化硅辐射探测器的制备方法,包括以下步骤:
步骤一、利用化学气相沉积法在碳化硅衬底上生长碳化硅外延层;
步骤二、光刻并刻蚀碳化硅外延层两次,以使碳化硅外延层形成双台面结构;
步骤三、在碳化硅外延层上生长石墨烯透明电极,光刻并刻蚀石墨烯透明电极,以使双台面结构的第一台面和顶面均覆盖石墨烯透明电极;
步骤四、在碳化硅外延层和石墨烯透明电极上沉积二氧化硅钝化层,光刻并刻蚀二氧化硅钝化层,以使双台面结构上未被石墨烯透明电极覆盖的区域均覆盖上二氧化硅钝化层;
步骤五、在第一台面和顶面上的石墨烯透明电极上分别光刻并刻蚀出电极窗口,在电极窗口中分别光刻并蒸镀阴极金属电极和阳极金属电极;
步骤六、在阴极金属电极和阳极金属电极上分别键合电极引线;
步骤七、封装。
进一步的,在进行步骤一之前还包括以下步骤:采用丙酮和乙醇清洗碳化硅衬底,再用超纯水清洗碳化硅衬底15~20次,清洗后进行烘干处理。
进一步的,步骤三中,在碳化硅外延层上生长石墨烯透明电极,生长温度为:1500℃,生长时间为:5~20min。
本发明的有益效果是:
1、本发明通过在碳化硅外延层上生长石墨烯透明电极,采用石墨烯作为透明电极代替金属电极,可以有效地增大碳化硅辐射探测器的有效探测区域,同时提高探测效率,解决现有碳化硅辐射探测器探测效率低的问题。
2、目前石墨烯辅助的碳化硅器件多应用于紫外探测器,而较少应用于辐射探测器上,因此,本发明将石墨烯透明电极应用到辐射探测器中,结合石墨烯的热导率大、迁移速率高等优良特性,从而使得利用石墨烯作为透明电极的碳化硅辐射探测器的耐高温性和响应速度也会得到进一步提高。
3、本发明利用碳化硅热分解法在碳化硅外延层上生长石墨烯透明电极,这种方法可以在碳化硅外延层外延大面积均匀的石墨烯,为石墨烯作为透明电极应用于碳化硅辐射探测器上的可行性提供了基础。
4、本发明将双台面工艺引入到碳化硅辐射探测器中,电场集中于阳极金属电极的下方,有效降低了器件的漏电流,提高了器件性能,解决了现有碳化硅辐射探测器存在的漏电流较大的问题。
5、本发明的制备方法的关键步骤包括:(1)化学气相沉积法生长碳化硅外延层;(2)光刻并刻蚀碳化硅外延层两次,以形成双台面结构;(3)在碳化硅外延层上生长石墨烯,光刻并刻蚀石墨烯;(4)沉积二氧化硅钝化层,光刻并刻蚀出电极窗口;(5)光刻并蒸镀阳极金属电极和阴极金属电极;(6)在金属电极上键合电极引线;(7)封装器件。本发明利用石墨烯作为透明电极,采用双台面工艺制造了一种新型的石墨烯透明电极双台面碳化硅辐射探测器,所采用的制备方法有效降低了探测器的漏电流,增大了探测器的有效探测区域,并改善了探测器的耐高温性和响应速率。
6、本发明为石墨烯在辐射探测领域的应用提供了新方法、新思路,本发明的制备工艺简单、用途广泛,具有广阔的应用前景。
附图说明
图1为本发明的石墨烯透明电极双台面碳化硅辐射探测器的侧视图。
图2为本发明的石墨烯透明电极双台面碳化硅辐射探测器的俯视图。
图3为本发明的石墨烯透明电极双台面碳化硅辐射探测器的制备方法流程图。
图中:1、碳化硅衬底,2、碳化硅外延层,2-1、第一台面,2-2、第一侧面,2-3、第二台面,2-4、第二侧面,2-5、顶面,3、石墨烯透明电极,4、阴极金属电极,5、阳极金属电极,6、第一电极引线,7、二氧化硅钝化层,8、第二电极引线,9、封装外壳。
具体实施方式
如图1和图2所示,本发明的一种石墨烯透明电极双台面碳化硅辐射探测器,主要包括:碳化硅衬底1、碳化硅外延层2、石墨烯透明电极3、阴极金属电极4、阳极金属电极5、第一电极引线6、二氧化硅钝化层7、第二电极引线8和封装外壳9。
碳化硅衬底1为半绝缘型碳化硅,晶型为4H或6H,厚度为200~400μm。
碳化硅外延层2为n型掺杂的半导体,掺杂浓度为1014~1015cm-3,晶型为4H或6H,厚度为1~10μm。碳化硅外延层2生长在碳化硅衬底1上,碳化硅外延层2是一种双台面结构,这种双台面结构主要包括第一台面2-1、第一侧面2-2、第二台面2-3、第二侧面2-4和顶面2-5,第一台面2-1、第一侧面2-2、第二台面2-3、第二侧面2-4和顶面2-5依次连接。
石墨烯透明电极3设置在碳化硅外延层2上,具体的是:在双台面结构的第一台面2-1和顶面2-5上分别设置有石墨烯透明电极3。二氧化硅钝化层7设置在碳化硅外延层2上,具体的是:二氧化硅钝化层7覆盖在双台面结构的第一侧面2-2、第二台面2-3和第二侧面2-4上,也就是说碳化硅外延层2的双台面结构上未被石墨烯透明电极3覆盖的区域(即双台面结构的第一侧面2-2、第二台面2-3和第二侧面2-4)均覆盖上二氧化硅钝化层7。
阴极金属电极4和阳极金属电极5设置在石墨烯透明电极3上,具体的是:阴极金属电极4设置在位于第一台面2-1上的石墨烯透明电极3上,阳极金属电极5设置在位于顶面2-5上的石墨烯透明电极3上。石墨烯透明电极3与阴极金属电极4之间的接触为欧姆接触;石墨烯透明电极3与阳极金属电极5之间的接触为肖特基接触。阴极金属电极4为Ni或Ti/Ni,厚度为50~500nm;阳极金属电极5为Ni或Ti/Ni,厚度为10~100nm。
电极引线分别为第一电极引线6和第二电极引线8,第一电极引线6键合在阴极金属电极4上,第二电极引线8键合在阳极金属电极5上。
封装外壳9具有窗口,可以使辐射射线辐照到碳化硅外延层2和石墨烯透明电极3上。
如图3所示,本发明的一种石墨烯透明电极双台面碳化硅辐射探测器的制备方法,具体包括以下步骤:
步骤一、首先采用丙酮和乙醇清洗碳化硅衬底1,再用超纯水清洗碳化硅衬底1,超纯水清洗15~20次,清洗后进行烘干处理;最后利用化学气相沉积法在碳化硅衬底1上生长碳化硅外延层2;
步骤二、光刻并刻蚀碳化硅外延层2两次,以使碳化硅外延层2形成双台面结构;
该步骤中所涉及的刻蚀工艺具体可以采用电感耦合等离子体刻蚀技术或反应离子刻蚀技术;
步骤三、在碳化硅外延层2上生长石墨烯透明电极3,光刻并刻蚀石墨烯透明电极3,以使双台面结构的第一台面2-1和顶面2-5均覆盖石墨烯透明电极3;
该步骤中所涉及的刻蚀工艺具体可以采用电感耦合等离子体刻蚀技术或反应离子刻蚀技术;
步骤四、在碳化硅外延层2和石墨烯透明电极3上沉积二氧化硅钝化层7,光刻并刻蚀二氧化硅钝化层7,以使双台面结构上未被石墨烯透明电极3覆盖的区域均覆盖上二氧化硅钝化层7;
该步骤中所涉及的刻蚀工艺具体可以采用电感耦合等离子体刻蚀技术或反应离子刻蚀技术;
该步骤中所涉及的沉积工艺具体可以采用等离子体增强化学气相淀积技术;
步骤五、在第一台面2-1和顶面2-5上的石墨烯透明电极3上分别光刻并刻蚀出电极窗口,在电极窗口中分别光刻并蒸镀阴极金属电极4和阳极金属电极5;并在1000℃下退火5min以使石墨烯透明电极3与阴极金属电极4之间形成欧姆接触,而石墨烯透明电极3与阳极金属电极5之间的接触为肖特基接触;
该步骤中所涉及的刻蚀工艺具体可以采用电感耦合等离子体刻蚀技术或反应离子刻蚀技术;
该步骤中所涉及的蒸镀工艺具体可以采用金属热蒸发技术;
步骤六、在阴极金属电极4和阳极金属电极5上分别键合电极引线;
步骤七、采用封装外壳9进行封装;封装外壳9具有窗口,可以使辐射射线辐照到碳化硅外延层2和石墨烯透明电极3上。
以下结合实施例对本发明作进一步详细说明。
实施例1
步骤一、选择半绝缘型碳化硅作为碳化硅衬底1,其晶型为4H,厚度为300μm,首先采用丙酮和乙醇清洗碳化硅衬底1,再用超纯水清洗碳化硅衬底1,超纯水清洗18次,清洗后进行烘干处理,最后利用化学气相沉积法(CVD)、以高纯N2作为n型源在碳化硅衬底1上外延生长碳化硅外延层2,碳化硅外延层2为n型掺杂的半导体,掺杂浓度为1014cm-3,晶型为4H,厚度为5μm。
步骤二、利用光刻技术和电感耦合等离子体刻蚀技术(ICP)在碳化硅外延层2上刻蚀出双台面结构;该双台面结构主要包括第一台面2-1、第一侧面2-2、第二台面2-3、第二侧面2-4和顶面2-5,第一台面2-1、第一侧面2-2、第二台面2-3、第二侧面2-4和顶面2-5依次连接。
步骤三、将步骤二所得样品置于高温生长炉中,在碳化硅外延层2上生长石墨烯透明电极3,生长的最适温度为:1500℃,生长的最适时间为:5~20min。利用光刻技术和反应离子刻蚀技术(RIE)刻蚀石墨烯透明电极3,以使双台面结构的第一台面2-1和顶面2-5均覆盖石墨烯透明电极3;
步骤四、利用等离子体增强化学气相淀积技术在碳化硅外延层2和石墨烯透明电极3上沉积二氧化硅钝化层7,利用光刻技术和反应离子刻蚀技术(RIE)刻蚀二氧化硅钝化层7,以使双台面结构上未被石墨烯透明电极3覆盖的区域均覆盖上二氧化硅钝化层7;
步骤五、在第一台面2-1和顶面2-5上的石墨烯透明电极3上分别利用光刻技术和电感耦合等离子体刻蚀技术(ICP)刻蚀出电极窗口,在电极窗口中利用光刻技术和金属热蒸发技术蒸镀阴极金属电极4:Ti/Ni,厚度为275nm,并在1000℃下退火5min以使石墨烯透明电极3与阴极金属电极4之间形成欧姆接触,同时在电极窗口中利用光刻技术和金属热蒸发技术蒸镀阳极金属电极5:Ti/Ni,厚度为55nm,石墨烯透明电极3与阳极金属电极5之间形成肖特基接触;
步骤六、利用超声键合作用在阴极金属电极4和阳极金属电极5上分别键合电极引线;
步骤七、封装器件。封装外壳9具有窗口,可以使辐射射线辐照到碳化硅外延层2和石墨烯透明电极3上。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种石墨烯透明电极双台面碳化硅辐射探测器,其特征在于,包括:
碳化硅衬底;
设置在碳化硅衬底上的碳化硅外延层,所述碳化硅外延层为双台面结构;
设置在碳化硅外延层上的石墨烯透明电极;
设置在碳化硅外延层上的二氧化硅钝化层;
设置在石墨烯透明电极上的阴极金属电极和阳极金属电极;
分别键合在阴极金属电极和阳极金属电极上的电极引线;
所述双台面结构包括依次连接的第一台面、第一侧面、第二台面、第二侧面和顶面;所述第一台面和顶面分别设置有石墨烯透明电极;所述二氧化硅钝化层覆盖在第一侧面、第二台面和第二侧面上;
所述阴极金属电极设置在位于第一台面上的石墨烯透明电极上,所述阳极金属电极设置在位于顶面上的石墨烯透明电极上;
所述碳化硅衬底为半绝缘型碳化硅,晶型为4H或6H,厚度为200~400μm;
所述碳化硅外延层为n型掺杂的半导体,掺杂浓度为1014~1015cm-3,晶型为4H或6H,厚度为1~10μm。
2.根据权利要求1所述的一种石墨烯透明电极双台面碳化硅辐射探测器,其特征在于,所述石墨烯透明电极与阴极金属电极之间的接触为欧姆接触;所述石墨烯透明电极与阳极金属电极之间的接触为肖特基接触。
3.根据权利要求1所述的一种石墨烯透明电极双台面碳化硅辐射探测器,其特征在于,所述阴极金属电极为Ni或Ti/Ni,厚度为50~500nm;所述阳极金属电极为Ni或Ti/Ni,厚度为10~100nm。
4.制备权利要求1至3中任意一项所述的一种石墨烯透明电极双台面碳化硅辐射探测器的方法,其特征在于,包括以下步骤:
步骤一、利用化学气相沉积法在碳化硅衬底上生长碳化硅外延层;
步骤二、光刻并刻蚀碳化硅外延层两次,以使碳化硅外延层形成双台面结构;
步骤三、在碳化硅外延层上生长石墨烯透明电极,光刻并刻蚀石墨烯透明电极,以使双台面结构的第一台面和顶面均覆盖石墨烯透明电极;
步骤四、在碳化硅外延层和石墨烯透明电极上沉积二氧化硅钝化层,光刻并刻蚀二氧化硅钝化层,以使双台面结构上未被石墨烯透明电极覆盖的区域均覆盖上二氧化硅钝化层;
步骤五、在第一台面和顶面上的石墨烯透明电极上分别光刻并刻蚀出电极窗口,在电极窗口中分别光刻并蒸镀阴极金属电极和阳极金属电极;
步骤六、在阴极金属电极和阳极金属电极上分别键合电极引线;
步骤七、封装。
5.根据权利要求4所述的制备方法,其特征在于,在进行步骤一之前还包括以下步骤:采用丙酮和乙醇清洗碳化硅衬底,再用超纯水清洗碳化硅衬底15~20次,清洗后进行烘干处理。
6.根据权利要求4所述的制备方法,其特征在于,步骤三中,在碳化硅外延层上生长石墨烯透明电极,生长温度为:1500℃,生长时间为:5~20min。
CN201811072896.9A 2018-09-14 2018-09-14 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法 Active CN109309131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811072896.9A CN109309131B (zh) 2018-09-14 2018-09-14 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811072896.9A CN109309131B (zh) 2018-09-14 2018-09-14 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN109309131A CN109309131A (zh) 2019-02-05
CN109309131B true CN109309131B (zh) 2020-12-08

Family

ID=65224752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811072896.9A Active CN109309131B (zh) 2018-09-14 2018-09-14 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN109309131B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933740B (zh) * 2020-07-22 2022-11-29 中国电子科技集团公司第十三研究所 紫外光电二极管及其制备方法
CN112489848A (zh) * 2020-12-07 2021-03-12 中国科学院长春光学精密机械与物理研究所 一种半导体辐射电池
CN115407387A (zh) * 2022-08-19 2022-11-29 西北核技术研究所 碳化硅自给能半导体探测器及中子束流反角监测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129708A1 (en) * 2010-04-16 2011-10-20 Institutt For Energiteknikk Thin film solar cell electrode with graphene electrode layer
CN105244405B (zh) * 2014-07-10 2017-11-07 中国科学院物理研究所 紫外探测器
CN108231919A (zh) * 2017-12-31 2018-06-29 厦门大学 一种具有石墨烯透明电极的碳化硅雪崩光电探测器

Also Published As

Publication number Publication date
CN109309131A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
JP7037142B2 (ja) ダイオード
US10629766B2 (en) Method for manufacturing ultraviolet photodetector based on Ga2O3 material
CN109309131B (zh) 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法
CN101777601B (zh) 一种制作InAs/GaSb超晶格红外光电探测器的方法
CN103928532B (zh) 一种碳化硅沟槽mos结势垒肖特基二极管及其制备方法
CN110571301B (zh) 氧化镓基日盲探测器及其制备方法
CN108346688B (zh) 具有CSL输运层的SiC沟槽结势垒肖特基二极管及其制作方法
JP6991503B2 (ja) ショットキーバリアダイオード
JP3848700B2 (ja) 炭化ケイ素半導体装置
CN113937174B (zh) 一种基于选区离子注入的碳化硅基横向pn结极紫外探测器及其制备方法
CN109935655B (zh) 一种AlGaN/SiC双色紫外探测器
CN105720110A (zh) 一种SiC环状浮点型P+结构结势垒肖特基二极管及制备方法
CN111874891B (zh) 一种基于高纯半绝缘碳化硅衬底制备周期性pn结石墨烯的方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN103137770B (zh) 一种石墨烯/Si p-n双结太阳能电池及其制备方法
EP3930010B1 (en) Method for manufacturing a uv-radiation detector device based on sic, and uv-radiation detector device based on sic
JP2000133819A (ja) 炭化けい素ショットキーバリアダイオードおよびその製造方法
CN106711273A (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
JP3986432B2 (ja) ダイヤモンド電子素子
CN109004018A (zh) 肖特基二极管及制备方法
CN206480639U (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
CN108231560B (zh) 一种控制电极制备方法及mosfet功率器件
CN103579388B (zh) 一种含有双背场结构的太阳电池
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법
CN112531007A (zh) 具有梯度深度p型区域的结势垒肖特基二极管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant