CN106711273A - 一种变掺杂变组分AlGaAsGaAs核辐射探测器 - Google Patents

一种变掺杂变组分AlGaAsGaAs核辐射探测器 Download PDF

Info

Publication number
CN106711273A
CN106711273A CN201710095563.7A CN201710095563A CN106711273A CN 106711273 A CN106711273 A CN 106711273A CN 201710095563 A CN201710095563 A CN 201710095563A CN 106711273 A CN106711273 A CN 106711273A
Authority
CN
China
Prior art keywords
gaas
layers
variable
algaas
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710095563.7A
Other languages
English (en)
Inventor
邹继军
汤彬
王盛茂
朱志甫
邓文娟
彭新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN201710095563.7A priority Critical patent/CN106711273A/zh
Publication of CN106711273A publication Critical patent/CN106711273A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种变掺杂变组分AlGaAs/GaAs核辐射探测器,该探测器结构为PIN结构,以n型GaAs作为衬底层,在GaAs衬底层上采用金属有机物化学气相沉积技术顺序生长变掺杂变组分n型AlGaAs N层、本征GaAs I层、变掺杂变组分p型AlGaAs P层和p型GaAs欧姆接触帽层;在变掺杂变组分AlGaAs/GaAs材料上沉积SiO2钝化层,在变掺杂变组分AlGaAs/GaAs材料及衬底上利用电子束蒸发技术分别形成p型和n型电极层;对形成的电极进行退火处理。本发明的优点在于:使得P区和N区内部产生内建电场,驱动产生的电子、空穴分别向两端定向运动,增加收集效率,提高探测器的灵敏度以及探测效率。该探测器可用于α射线和X射线等高能射线的探测。

Description

一种变掺杂变组分AlGaAsGaAs核辐射探测器
技术领域
本发明涉及核辐射探测器件技术领域,具体涉及一种变掺杂变组分AlGaAs/GaAs核辐射探测器。
背景技术
核辐射探测器是一种对X、γ、α和β等核辐射信号进行探测的器件。与气体、闪烁体探测器比较,半导体核辐射探测器在能量分辨、响应速度和空间分辨等方面具有一定的优势,但作为一种新型的探测技术,为了发挥其探测性能,有研究人员开展了相关研究,制备了多种GaAs核辐射探测器。2010年,美国陆军研究实验室制备了基于SI GaAs材料的X射线探测器。2012年,俄罗斯国家科学院使用外延生长的方法制备了GaAs材料的肖特基粒子探测器。2014年,莱斯特大学制备了GaAs材料的面垒型结构光电二极管测量X及γ射线。但上述探测器在一定程度上都存在漏电流较大和载流子收集效率较低的问题。为了解决上述问题,可以在器件的P区和N区采用变掺杂和变组分结构,使有源区厚度和内建电场增大,从而提高载流子收集效率,降低漏电流。这种具有内建电场作用下高收集效率变带隙AlGaAs/GaAs核辐射探测器件,在核辐射探测领域具有很好的应用前景。
发明内容
本发明的目的在于提供一种变掺杂变组分的AlGaAs/GaAs核辐射探测器,以解决上述背景技术中的不足。
本发明的技术方案为:一种变掺杂变组分AlGaAs/GaAs核辐射探测器,该探测器结构为PIN结构,以n型GaAs作为衬底层,在GaAs衬底层上采用金属有机物化学气相沉积技术顺序生长变掺杂变组分n型AlGaAs N层、本征GaAs I层、变掺杂变组分p型AlGaAs P层和p型GaAs欧姆接触帽层;而后利用等离子体增强化学气相沉积技术在变掺杂变组分AlGaAs/GaAs材料上沉积SiO2钝化层,并在变掺杂变组分AlGaAs/GaAs材料及衬底上利用电子束蒸发技术分别形成p型和n型电极层;最后对形成的电极进行退火处理。
变掺杂变组分AlGaAs/GaAs核辐射探测器,其半导体材料生长步骤:
1)选取n型GaAs材料做衬底,要求其位错密度低于103cm-2,并且均匀性好,晶向朝(100)面偏3º切割,n型掺杂浓度为(0.5~2)×1018cm-3
2)在步骤1)中获得的n型GaAs衬底层上,外延生长变掺杂变组分AlGaAs/GaAs PIN结构中的N层,N层厚度为4~8μm,从衬底往外生长时,n型掺杂浓度由(0.5~5)×1018cm-3按指数递减至(0.5~5)×1016cm-3,Al组分由0.2~0.5线性递减至0;
3)在步骤2)中获得的AlGaAs/GaAs的N层上生长厚度为1~5μm的本征GaAs层作为PIN结构中的I层;
4)在步骤3)中获得的本征GaAs I层上外延生长PIN结构中的P层,P层的厚度为4~12μm,从I层往外生长时,p型掺杂浓度由(0.5~5)×1016cm-3按指数递增至(0.5~5)×1018cm-3,Al组分由0线性递增至0.2~0.5;
5)在步骤4)中获得的AlGaAs/GaAs的P层上生长厚度为50~200nm的p型GaAs欧姆接触帽层,其掺杂浓度为(0.2~1)×1019cm-3
所述的SiO2钝化层,厚度为100~800nm。
所述的p型电极层,采用Ti/Pt/Au作为欧姆接触金属,其中Ti的厚度为40~60nm,Pt的厚度为40~60nm,Au的厚度为180~220nm;沉积金属后进行退火处理,退火温度为350~450℃,退火时间为50~70s。
所述的n型电极层,采用AuGe/Ni/Au作为欧姆接触金属,其中AuGe的厚度为80~120nm,Ni的厚度为20~40nm,Au的厚度为180~220nm;沉积金属后进行退火处理,退火温度为350~400℃,退火时间为10~20s。
所述的利用等离子体增强化学气相沉积技术沉积SiO2钝化层,其反应参数为:反应室气压2000 mTorr,并通入SiH4 、N2O 和N2气体,流量分别为4 SCCM 、710 SCCM和180SCCM,GaAs衬底温度350℃,沉积时间6~30 min。
有关本发明的机理在于:本发明中核辐射探测器当有射线照射时,射线能量在变掺杂变组分AlGaAs/GaAs核辐射探测器的PIN结构中被吸收,并产生电子空穴对,由于变掺杂变组分结构形成的内建电场,会使得产生的电子空穴对更易被两端的电极收集起来,从而实现高效核辐射探测。
本发明的优点在于:
1、本发明中核辐射探测器采用变掺杂变组分AlGaAs/GaAs结构,从而使得P区和N区内部产生内建电场。内建电场会驱动产生的电子、空穴分别向两端定向运动,这会增加收集效率,从而提高探测器的灵敏度以及探测效率。
2、本发明中核辐射探测器的P区和N区由于有内建电场的存在,工作时可以降低反偏电压的大小,甚至可以在零偏压下工作,这有利于器件漏电流的减小。
附图说明
图1~图12为本发明的较佳实施例的制备过程示意图,其中:
图1为n型GaAs衬底;
图2为外延生长N层;
图3为外延生长I层;
图4为外延生长P层;
图5为外延生长欧姆接触帽层;
图6为沉积SiO2钝化层;
图7为旋涂光刻胶层;
图8为曝光;
图9为刻蚀SiO2钝化层;
图10为去除光刻胶;
图11为沉积p型电极层;
图12为沉积n型电极层;
图13为本实施例和相同厚度的均匀掺杂GaAs PIN核辐射探测器对α射线的时间响应。
图中,1-衬底层,2-N层,3-I层,4-P层,5-欧姆接触帽层,6-SiO2钝化层,7-光刻胶层,8-p型电极层,9-n型电极层。
具体实施方式
为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明的保护范围的限定。
变掺杂变组分AlGaAs/GaAs核辐射探测器制备方法具体步骤如下:
如图1所示,首先,准备n型掺杂浓度为1×1018cm-3的GaAs衬底基材作为GaAs衬底层1,衬底要求均匀性好,位错密度低于103cm-2,晶向朝(100)面偏3º切割;
如图2所示,采用金属有机物化学气相沉积技术外延生长厚度为6μm、n型掺杂浓度从1×1018cm-3按指数递减到1×1016cm-3、Al组分含量从0.4线性下降至0的AlGaAs层为PIN结构中的N层2;如图3所示,然后生长厚度为1μm的GaAs作为I层3;如图4所示,再生长厚度为10μm、p型掺杂浓度从1×1016cm-3按指数递增到5×1018cm-3、Al组分含量从0线性上升至0.4的变带隙AlGaAs层为PIN结构中的P层4;如图5所示,最后生长一层厚度为100nm、掺杂浓度为5×1018cm-3的GaAs层作为欧姆接触帽层5。金属有机物化学气相沉积技术中采用金属有机物三甲基镓和三甲基铝作为III族源,砷烷为V族源,二乙基锌为掺杂源,高纯H2作为载气,生长过程中V/III束流比保持在12,生长温度为670℃。
如图6所示,利用等离子体增强化学气相沉积技术在欧姆接触帽层5上沉积一层厚度为100nm的SiO2钝化层6,设定反应室气压2000 mTorr,并通入SiH4 、N2O 和N2气体,流量分别为4 SCCM 、710 SCCM和180 SCCM,衬底温度350℃;如图7所示,然后利用匀胶机在SiO2钝化层6上旋涂一层厚度为1.2μm的AZ6112光刻胶层7,并将涂有光刻胶层7的样品材料放入烘烤机中,升温到100℃烘烤100s,冷却后取出放入光刻机曝光位置,在低真空状态下曝光2.5s,并选用JZ 3038正胶显影液进行显影15s,清洗显影液,吹干形成含有如图8所示的核辐射探测器的光刻掩模图像。
如图9所示,通过反应离子刻蚀技术刻蚀掉已曝光部分的SiO2钝化层6,设定反应室气压1850 mTorr 、射频功率200W,通入SF6 、CHF3 和He气体,流量分别为5.5CCM、32CCM和150 SCCM,刻蚀2min,刻蚀完后取出;如图10所示,再将顶部含有光刻胶层7和SiO2钝化层6的AlGaAs/GaAs材料用丙酮、异丙醇、去离子水各超声清洗3min。
如图11所示,通过电子束蒸发技术,在获得的探测器图案正面上依次沉积Ti/Pt/Au作为欧姆接触金属,形成p型电极层8,其中Ti的厚度为50nm,Pt的厚度为50nm,Au的厚度为200nm;沉积金属后进行p型欧姆接触进行退火,退火温度为400℃,退火时间为60s;如图12所示,通过电子束蒸发技术,在获得的探测器背面GaAs衬底层1上依次沉积AuGe/Ni/Au作为欧姆接触金属,形成n型电极层9,其中AuGe的厚度为100nm,Ni的厚度为35nm,Au的厚度为200nm;沉积金属后进行n型欧姆接触进行退火,退火温度为375℃,退火时间为15s。
如图13所示为本实施例和相同厚度的均匀掺杂GaAs PIN核辐射探测器在零偏时对α射线时间响应的对比图。从图中可以看出变掺杂变组分AlGaAs/GaAs核辐射探测器的响应电流明显高于均匀掺杂GaAs核辐射探测器,载流子收集效率提高了93%,这对提高器件整体的灵敏度和探测效率非常有利。本发明除了探测α射线以外,还可用于X射线等高能射线的探测。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种变掺杂变组分AlGaAs/GaAs核辐射探测器,其特征在于:该探测器结构为PIN结构,以n型GaAs作为衬底层,在GaAs衬底层上采用金属有机物化学气相沉积技术顺序生长变掺杂变组分n型AlGaAs N层、本征GaAs I层、变掺杂变组分p型AlGaAs P层和p型GaAs欧姆接触帽层;而后利用等离子体增强化学气相沉积技术在变掺杂变组分AlGaAs/GaAs材料上沉积SiO2钝化层,并在变掺杂变组分AlGaAs/GaAs材料及衬底上利用电子束蒸发技术分别形成p型和n型电极层;最后对形成的电极进行退火处理。
2.根据权利要求1所述的变掺杂变组分AlGaAs/GaAs核辐射探测器,其半导体材料生长步骤:
1)选取n型GaAs材料做衬底,要求其位错密度低于103cm-2,并且均匀性好,晶向朝(100)面偏3º切割,n型掺杂浓度为0.5~2×1018cm-3
2)在步骤1)中获得的n型GaAs衬底层上,外延生长变掺杂变组分AlGaAs/GaAs PIN结构中的N层,N层厚度为4~8μm,从衬底往外生长时,n型掺杂浓度由0.5~5×1018cm-3按指数递减至0.5~5×1016cm-3,Al组分由0.2~0.5线性递减至0;
3)在步骤2)中获得的AlGaAs/GaAs的N层上生长厚度为1~5μm的本征GaAs层作为PIN结构中的I层;
4)在步骤3)中获得的本征GaAs I层上外延生长PIN结构中的P层,P层的厚度为4~12μm,从I层往外生长时,p型掺杂浓度由0.5~5×1016cm-3按指数递增至0.5~5×1018cm-3,Al组分由0线性递增至0.2~0.5;
5)在步骤4)中获得的AlGaAs/GaAs的P层上生长厚度为50~200nm的p型GaAs欧姆接触帽层,其掺杂浓度为0.2~1×1019cm-3
3.根根据权利要求1所述变掺杂变组分AlGaAs/GaAs核辐射探测器,其特征在于:所述的SiO2钝化层,厚度为100~800nm。
4.根据权利要求1所述变掺杂变组分AlGaAs/GaAs核辐射探测器,其特征在于:所述的p型电极层,采用Ti/Pt/Au作为欧姆接触金属,其中Ti的厚度为40~60nm,Pt的厚度为40~60nm,Au的厚度为180~220nm;沉积金属后进行退火处理,退火温度为350~450℃,退火时间为50~70s。
5.根据权利要求1所述变掺杂变组分AlGaAs/GaAs核辐射探测器,其特征在于:所述的n型电极层,采用AuGe/Ni/Au作为欧姆接触金属,其中AuGe的厚度为80~120nm,Ni的厚度为20~40nm,Au的厚度为180~220nm;沉积金属后进行退火处理,退火温度为350~400℃,退火时间为10~20s。
6.根据权利要求1所述变掺杂变组分AlGaAs/GaAs核辐射探测器,其特征在于:所述的利用等离子体增强化学气相沉积技术沉积SiO2钝化层,其反应参数为:反应室气压2000mTorr,并通入SiH4 、N2O 和N2气体,流量分别为4 SCCM 、710 SCCM和180 SCCM,GaAs衬底温度350℃,沉积时间6~30 min。
CN201710095563.7A 2017-02-22 2017-02-22 一种变掺杂变组分AlGaAsGaAs核辐射探测器 Pending CN106711273A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710095563.7A CN106711273A (zh) 2017-02-22 2017-02-22 一种变掺杂变组分AlGaAsGaAs核辐射探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710095563.7A CN106711273A (zh) 2017-02-22 2017-02-22 一种变掺杂变组分AlGaAsGaAs核辐射探测器

Publications (1)

Publication Number Publication Date
CN106711273A true CN106711273A (zh) 2017-05-24

Family

ID=58917199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710095563.7A Pending CN106711273A (zh) 2017-02-22 2017-02-22 一种变掺杂变组分AlGaAsGaAs核辐射探测器

Country Status (1)

Country Link
CN (1) CN106711273A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596339A (zh) * 2020-05-29 2020-08-28 东华理工大学 一种半导体核辐射探测器及其制备方法和应用
CN112490318A (zh) * 2020-11-27 2021-03-12 东华理工大学 一种具有PIN微结构的AlGaAs/GaAs中子探测器
CN114883442A (zh) * 2022-05-12 2022-08-09 东华理工大学 一种CsPbBr3核辐射探测器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110000533A1 (en) * 2008-03-07 2011-01-06 National University Corporation Tohoku University Photoelectric conversion element structure and solar cell
CN102130208A (zh) * 2010-12-28 2011-07-20 中国科学院上海微系统与信息技术研究所 用分子束外延方法制作光电探测单元或焦平面器件的方法
CN102610472A (zh) * 2012-04-01 2012-07-25 南京理工大学 峰值响应在532 nm敏感的反射式GaAlAs光电阴极及其制备方法
CN102623523A (zh) * 2012-03-28 2012-08-01 中国科学院半导体研究所 一种有多色响应的量子点红外探测器
CN103903939A (zh) * 2014-04-16 2014-07-02 南京理工大学 一种蓝延伸指数掺杂透射式GaAs光电阴极及其制备方法
CN105097964A (zh) * 2015-07-21 2015-11-25 中国电子科技集团公司第三十八研究所 一种有源区高斯掺杂型pπn紫外探测器
CN206480639U (zh) * 2017-02-22 2017-09-08 东华理工大学 一种变掺杂变组分AlGaAsGaAs核辐射探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110000533A1 (en) * 2008-03-07 2011-01-06 National University Corporation Tohoku University Photoelectric conversion element structure and solar cell
CN102130208A (zh) * 2010-12-28 2011-07-20 中国科学院上海微系统与信息技术研究所 用分子束外延方法制作光电探测单元或焦平面器件的方法
CN102623523A (zh) * 2012-03-28 2012-08-01 中国科学院半导体研究所 一种有多色响应的量子点红外探测器
CN102610472A (zh) * 2012-04-01 2012-07-25 南京理工大学 峰值响应在532 nm敏感的反射式GaAlAs光电阴极及其制备方法
CN103903939A (zh) * 2014-04-16 2014-07-02 南京理工大学 一种蓝延伸指数掺杂透射式GaAs光电阴极及其制备方法
CN105097964A (zh) * 2015-07-21 2015-11-25 中国电子科技集团公司第三十八研究所 一种有源区高斯掺杂型pπn紫外探测器
CN206480639U (zh) * 2017-02-22 2017-09-08 东华理工大学 一种变掺杂变组分AlGaAsGaAs核辐射探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁小军: "GaAs基核辐射探测器理论模型及制备工艺研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596339A (zh) * 2020-05-29 2020-08-28 东华理工大学 一种半导体核辐射探测器及其制备方法和应用
CN111596339B (zh) * 2020-05-29 2023-07-25 东华理工大学 一种半导体核辐射探测器及其制备方法和应用
CN112490318A (zh) * 2020-11-27 2021-03-12 东华理工大学 一种具有PIN微结构的AlGaAs/GaAs中子探测器
CN114883442A (zh) * 2022-05-12 2022-08-09 东华理工大学 一种CsPbBr3核辐射探测器及其制备方法
CN114883442B (zh) * 2022-05-12 2023-05-12 东华理工大学 一种CsPbBr3核辐射探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN106129166B (zh) 一种GaN‑MoS2分波段探测器及其制备方法
CN106711273A (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
WO2023061235A1 (zh) 基于选区离子注入的新型碳化硅基横向pn结极紫外探测器及制备方法
CN110571301A (zh) 氧化镓基日盲探测器及其制备方法
CN105161551A (zh) 一种可以降低InAs/GaSb超晶格长波红外探测器暗电流的表面钝化方法
CN109830529A (zh) 一种提升开通速度的超高压碳化硅晶闸管及其制作方法
CN206480639U (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
CN110265500B (zh) 一种4H-SiC像素肖特基辐射探测器及其制备方法
CN109309131B (zh) 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法
CN105845746B (zh) 基于碳化硅PIN二极管结构的γ辐照闪烁体探测器
CN106684177A (zh) 一种p GaNi GaN n BN中子探测器
CN107039558B (zh) 一种基于斜向ZnO纳米线阵列调制的AlGaN/GaN紫外探测器及其制备方法
CN108400196A (zh) 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法
CN106711250B (zh) 一种变掺杂变组分的AlGaNGaN中子探测器
CN109713083A (zh) 一种原位生长Al等离激元提高AlGaN基PIN型探测器性能的方法
CN107093643B (zh) 一种氮化镓位置灵敏辐射探测器及其制备方法
CN110190148A (zh) 一种雪崩光电二极管及其制作方法
CN103078009A (zh) 基于免等离子工艺降低暗电流的光电探测器芯片制作方法
CN104051043B (zh) 3D式PIN结构α辐照电池及其制备方法
CN103928346B (zh) 外延生长形成n型重掺杂漂移层台面的umosfet器件制备方法
CN103579388B (zh) 一种含有双背场结构的太阳电池
CN209016077U (zh) 一种室温下工作的GaN核辐射探测器
CN219457618U (zh) 一种抗辐射功率半导体器件
CN110085679A (zh) n型氮化硼薄膜/p型单晶硅异质pn结原型器件及制备方法
CN219959011U (zh) 一种含透明电极的碳化硅探测器芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170524

WD01 Invention patent application deemed withdrawn after publication