CN108231919A - 一种具有石墨烯透明电极的碳化硅雪崩光电探测器 - Google Patents

一种具有石墨烯透明电极的碳化硅雪崩光电探测器 Download PDF

Info

Publication number
CN108231919A
CN108231919A CN201711495476.7A CN201711495476A CN108231919A CN 108231919 A CN108231919 A CN 108231919A CN 201711495476 A CN201711495476 A CN 201711495476A CN 108231919 A CN108231919 A CN 108231919A
Authority
CN
China
Prior art keywords
layer
type
transparent electrode
silicon carbide
graphene transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711495476.7A
Other languages
English (en)
Inventor
洪荣墩
吴正云
林鼎渠
张志威
孙存志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201711495476.7A priority Critical patent/CN108231919A/zh
Publication of CN108231919A publication Critical patent/CN108231919A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种具有石墨烯透明电极的碳化硅雪崩光电探测器,涉及半导体光电探测器。设有衬底,在衬底上依次设有同质的第一N型外延缓冲层、N型外延吸收层、第二N型外延倍增层和P+型欧姆接触层;在P+型欧姆接触层表面通过电热分解法生长的多层石墨烯透明电极层,采用光刻掩膜技术和ICP刻蚀工艺刻蚀一高度从石墨烯层表面到第一N型外延缓冲层表面,使得P+型欧姆接触层、第二N型外延倍增层和N型外延吸收层为圆台,通过等离子体增强化学气相沉积法生长一致密的SiOx/Si3N4保护钝化层。在N+型衬底的背面溅射N型欧姆接触电极,并在SiOx/Si3N4保护钝化层上通过光刻工艺刻蚀出焊盘窗口并制备石墨烯透明电极层的焊盘。

Description

一种具有石墨烯透明电极的碳化硅雪崩光电探测器
技术领域
本发明涉及半导体光电探测器,尤其是涉及探测波长为200~400nm的一种具有石墨烯透明电极的碳化硅雪崩光电探测器。
背景技术
制备具有高性能的日盲型(探测波长250~280nm)紫外光电探测器,在许多特殊领域有重大价值,如导弹尾气检测、高压漏电监测、火焰传感器、非视距紫外通信等。波长小于250nm的深紫外探测在荧光拉曼光谱检测的应用也很重要;此外,300nm到400nm的近紫外波段的探测也非常广泛,特别是在医学成像和核能探测方面,探测微弱紫外信号的紫外探测器已成为近年来国际上光电探测领域的研究热点。紫外光电探测器是一种利用光电效应原理将紫外信号转变成电学信号的器件,具有广阔的应用前景,是光电探测领域的前沿研究方向之一。目前,紫外光电倍增管(PMT)具有内部增益高、灵敏度高等优点,用于检测微弱紫外信号有悠久的历史,但是紫外PMT体积大、易碎、对磁场较敏感、量子效率低(小于40%),高压工作高(通常300~900V),且需要外部制冷系统。而半导体紫外雪崩光电探测器相对来说应用性和可靠性更强,其主要特点如下:(1)对红外和可见波段是“可见光盲”或者“日盲型”,可以在红外和可见光背景下工作;(2)外界噪声干扰小,可在室温下工作,无需像红外光电探测器需工作在低温环境下;(3)具有结构相对简单、可靠性好、体积小等优点。
4H-SiC是第三代宽带隙半导体的核心材料之一,是一种间接带隙半导体,做发光器件效率不高,但是一种做光电探测器极佳半导体材料。其具有大禁带宽度、高临界击穿电场、高饱和电子速度、高电子迁移率和高热导率等优点,为制备高性能紫外光电探测器的热门材料([1]王玉霞,何海平,汤洪高.宽带隙半导体材料SiC研究进展及其应用.硅酸盐学报,2002,30(3):372-381)。另外,4H-SiC材料的空穴和电子的离化系数比高达50,这使得4H-SiC材料很适合做雪崩光电探测器(APD),具有较小的倍增噪声。然而,对于碳化硅雪崩光电探测器,其雪崩击穿电压很高,器件功较耗大。此外,由于P型欧姆接触电极的设计困难,如电极金属与碳化硅表面接触的不一致性导致的界面电场分布不均匀以及电极对光信号的阻隔作用进一步降低了器件的探测性。因此,设计一种新型结构的雪崩光电探测器,特别是具有新型欧姆接触结构的雪崩光电探测器,对紫外光电探测器的实际应用有重要意义。研究表明,具有二维蜂窝状晶体结构的石墨烯具有卓越的力学、电学、光学和热学性质。石墨烯的载流子的迁移率可达20000cm2/V·S,远远超过其它半导体材料的迁移率,其在紫外和可见光波段的透光率高于96%,在所有材料中强度最大(断裂强度可达42N/M,抗拉强度约为125Gp,杨氏弹性模量可达1.0TPa),且具有非常好的导热特性。因此石墨烯可作为导电性良好的且性能稳定的半导体器件透明电极材料([2]Andrea C.Ferrari and DenisM.Basko,Ramanspectroscopy as a versatile tool for studying the properties ofgraphene,Nature nanotechnology,2014,8:235-246)。此外,通过高温加热或者电热分解法都可以在碳化硅表面直接生长制备高质量的多层石墨烯材料,避免了传统转移石墨烯材料的高密度缺陷问题。因此具有石墨烯透明电极的碳化硅紫外雪崩光电探测器的性能将会有显著的提高,在紫外探测研究领域具有重要的意义。
发明内容
本发明的目的在于提供为通过电热分解法在碳化硅外延芯片上直接生长多层石墨烯透明电极,具有更高光入射效率、更低功耗以及性能更稳定的的一种具有石墨烯透明电极的4H-SiC雪崩光电探测器。
本发明设有衬底,在衬底上依次设有同质的第一N型外延缓冲层、N-型外延吸收层、第二N型外延倍增层和P+型欧姆接触层;所述第一N型外延缓冲层的掺杂浓度为3~5×1018/cm3,厚度为100~200nm;所述N-型外延吸收层的掺杂浓度为2×1014~1×1015/cm3的轻掺杂层,厚度为1.0~1.5μm;所述第二N型外延倍增层的掺杂浓度为5×1017~2×1018/cm3,厚度为0.1~0.25μm;所述P+型欧姆接触电极层的掺杂浓度为1~2×1019/cm3,厚度为0.2~0.3μm;在P+型欧姆接触层表面通过电热分解法生长的多层石墨烯透明电极层,采用光刻掩膜技术和ICP刻蚀工艺刻蚀一高度从石墨烯层表面到第一N型外延缓冲层表面,使得P+型欧姆接触层、第二N型外延倍增层和N-型外延吸收层为圆台,圆台的斜面和水平面的夹角θ小于等于10°,使得4H-SiC雪崩光电探测器件的边缘终端为倾斜的台面,圆台的下底面直径比上底面直径大约5μm,圆台的下底面直径可为105~505μm,上表面直径可为100~500μm。石墨烯欧姆透明电极层的设计保证了上述器件内部电场分布比较均匀,有效地抑制电场集边效应,防止器件局部提前击穿。紧接着,通过等离子体增强化学气相沉积法(PECVD)生长一致密的SiOx/Si3N4保护钝化层,所述SiOx/Si3N4保护钝化层的厚度可为0.3~0.5μm,可以起到器件钝化保护作用和对固定波长范围进行光增透的作用。最后,在N+型衬底的背面溅射N型欧姆接触电极,并在SiOx/Si3N4保护钝化层上通过光刻工艺刻蚀出焊盘窗口并制备石墨烯透明电极层的焊盘。
所述衬底可采用4H-SiCN+型衬底。
本发明的工作原理是:采用热分解法在碳化硅外延结构的P+型欧姆接触层表面上生长的石墨烯电极层。采用外部直接加热方式或者外加大电流方式在SiC晶体上产生高热量,利用Si和C原子的饱和蒸气压不同的原理,使得SiC表面的Si原子升华,留下的C原子在晶体表面重新排列组合生成具有高透过率、良好欧姆接触性能的石墨烯电极。通过半导体平面工艺制备成光电探测器后,在器件两端加上一反向偏置电压,将会在P+N结处形成空间耗尽层。当反向电压达到器件击穿电压值时,P+N结处的电场达到了雪崩击穿电场,器件空间耗尽层穿通至第一N型层,起到充分吸收光子并转化成光生载流子的作用,光生载流子漂移到P+N结处的空间耗尽层高电场区域产生雪崩倍增效应,此时该探测器的处于雪崩击穿电压和高载流子倍增的状态,具有高探测率和高紫外/可见抑制比的特性。另外,采用石墨烯做为透明电极的SiC紫外雪崩光电探测器调高了紫外光子的入射效率、改善了器件的欧姆接触、形成了器件上的均匀外加电场,降低器件局部击穿的可能性,进一步有效提高4H-SiC雪崩光电探测器的雪崩光电探测性能。
与现有的半导体紫外雪崩光电探测器相比,本发明具有以下突出的优点:
(1)设计石墨烯做为透明电极的SiC紫外雪崩光电探测器调高了紫外光子的入射效率、改善了器件的欧姆接触、形成了器件上的均匀外加电场;
(2)设计器件的边缘终端为倾斜的台面并采用SiOx/Si3N4作为终端的钝化层,有效地抑制电场集边效应,进一步防止器件局部提前击穿,提高器件的探测灵敏度,对微弱信号和单光子信号进行检测。
附图说明
图1为本发明实施例的具有石墨烯透明电极的碳化硅雪崩光电探测器三维结构截面示意图。
具体实施方式
本发明的具体实施方式如图1所示,在商业用的低电阻率N+型4H-SiC衬底2上依次采用物理气相传输法外延同质生长第一N型外延缓冲层3、N-型外延吸收层4、第二N型外延倍增层5和P+型欧姆接触层6。所述的第一N型外延缓冲层的厚度和掺杂浓度可分别为0.1μm和5×1018/cm3、N-型外延吸收层的厚度和掺杂浓度分别可为1.0μm和1×1015/cm3、第二N型外延倍增层的厚度和掺杂浓度可为0.2um和1×1018/cm3、P+型欧姆接触层的厚度和掺杂浓度分别可为0.2μm和1×1019/cm3。对上述4H-SiC进行RCA标准清洗,通过热分解法在外延片P+型欧姆接触层表面形成石墨烯薄膜7作为P+型欧姆接触电极。采用光刻掩膜技术和ICP刻蚀工艺刻蚀形成一高度从P+型欧姆接触电极到N-型层表面的台面,使得第二N型层形成圆形或者方形的台面,台面的斜面和水平面的夹角θ小于10o。通过热氧化和PECVD在器件表面长生一层SiOx/Si3N4 8作为器件的钝化层,钝化层的总厚度可为0.3μm。通过光刻工艺和湿法腐蚀工艺去除台面上固定位置的钝化层,在台面上形成与台面形状相同,但是面积稍微小的P型光敏面窗口,同时也是电极窗口,在N+衬底背面溅射N型欧姆接触电极1并退火处理。最后通过光刻掩膜技术和磁控溅射技术在P+型欧姆接触电极上制备焊盘9。本发明提供一种探测波长为200~400nm的4H-碳化硅(4H-SiC)紫外光电探测器。由于器件采用石墨烯透明电极做为P+型欧姆接触电极,可以有效提高器件的光吸收效率。在高工作电压情况下,由于石墨烯电极的均匀分布,促使器件空间耗尽层中的电场在空间中均匀分布,降低了器件提前雪崩击穿的可能性,降低器件在高工作电压条件下的暗电流,提高器件的紫外微弱信号的探测能力。制备完的器件可用半导体器件紫外光电性质测量探针台进行测量验证。
本发明公开了一种探测波长为200~400nm的具有石墨烯透明电极的4H-碳化硅(4H-SiC)紫外雪崩光电探测器,包括从下到上依次设计的Ni/Au欧姆接触电极,N+型SiC衬底、N型SiC外延缓冲层、N-型SiC吸收层、N型SiC倍增层、P+型SiC欧姆接触层,石墨烯电极层和SiOx/Si3N4复合钝化层。在SiC外延芯片采用传统外部加热方法或者通入大电流产生焦耳热的方法,使碳化硅样品温度达到1400℃以上,利用Si和C原子的饱和蒸气压不同,Si面上SiC晶片外延层表面的Si原子升华,留下的C原子在晶体表面重新排列组合生成石墨烯薄膜。由于石墨烯在紫外波段的高透过率以及石墨烯/碳化硅的低界面态,采用石墨烯作为透明电极的SiC紫外雪崩光电探测器调高了紫外光子的入射效率、改善了器件的欧姆接触、形成了器件上的均匀外加电场,降低雪崩探测器局部击穿可能性,有效提高4H-SiC雪崩光电探测器的雪崩光电探测性能。

Claims (8)

1.一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于设有衬底,在衬底上依次设有同质的第一N型外延缓冲层、N-型外延吸收层、第二N型外延倍增层和P+型欧姆接触层;在P+型欧姆接触层表面通过电热分解法生长的多层石墨烯透明电极层,采用光刻掩膜技术和ICP刻蚀工艺刻蚀一高度从石墨烯层表面到第一N型外延缓冲层表面,使得P+型欧姆接触层、第二N型外延倍增层和N-型外延吸收层为圆台,通过等离子体增强化学气相沉积法生长一致密的SiOx/Si3N4保护钝化层,起到器件钝化保护作用和对固定波长范围进行光增透的作用;在N+型衬底的背面溅射N型欧姆接触电极,并在SiOx/Si3N4保护钝化层上通过光刻工艺刻蚀出焊盘窗口并制备石墨烯透明电极层的焊盘。
2.如权利要求1所述一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于所述衬底为4H-SiCN+型衬底。
3.如权利要求1所述一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于所述第一N型外延缓冲层的掺杂浓度为3~5×1018/cm3,厚度为100~200nm。
4.如权利要求1所述一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于所述N-型外延吸收层的掺杂浓度为2×1014~1×1015/cm3的轻掺杂层,厚度为1.0~1.5μm。
5.如权利要求1所述一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于所述第二N型外延倍增层的掺杂浓度为5×1017~2×1018/cm3,厚度为0.1~0.25μm。
6.如权利要求1所述一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于所述P+型欧姆接触电极层的掺杂浓度为1~2×1019/cm3,厚度为0.2~0.3μm。
7.如权利要求1所述一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于所述圆台的下底面直径比上底面直径为5μm,圆台的下底面直径为105~505μm,上表面直径为100~500μm。
8.如权利要求1所述一种具有石墨烯透明电极的碳化硅雪崩光电探测器,其特征在于所述SiOx/Si3N4保护钝化层的厚度为0.3~0.5μm。
CN201711495476.7A 2017-12-31 2017-12-31 一种具有石墨烯透明电极的碳化硅雪崩光电探测器 Pending CN108231919A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711495476.7A CN108231919A (zh) 2017-12-31 2017-12-31 一种具有石墨烯透明电极的碳化硅雪崩光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711495476.7A CN108231919A (zh) 2017-12-31 2017-12-31 一种具有石墨烯透明电极的碳化硅雪崩光电探测器

Publications (1)

Publication Number Publication Date
CN108231919A true CN108231919A (zh) 2018-06-29

Family

ID=62642227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711495476.7A Pending CN108231919A (zh) 2017-12-31 2017-12-31 一种具有石墨烯透明电极的碳化硅雪崩光电探测器

Country Status (1)

Country Link
CN (1) CN108231919A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309131A (zh) * 2018-09-14 2019-02-05 中国科学院长春光学精密机械与物理研究所 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法
CN109817762A (zh) * 2019-01-30 2019-05-28 山东大学 一种在n型4H/6H-SiC硅面上制备周期性石墨烯PN结的方法
CN110165012A (zh) * 2019-06-28 2019-08-23 河北工业大学 一种具有弧形增透作用的光电探测器结构及其制备方法
CN110323127A (zh) * 2019-06-04 2019-10-11 浙江大学 一种利用peald在硅衬底上生长石墨烯的方法
CN111211196A (zh) * 2020-02-15 2020-05-29 北京工业大学 一种高灵敏度高线性度探测器
CN111933724A (zh) * 2020-07-22 2020-11-13 中国电子科技集团公司第十三研究所 光电二极管及其制备方法
CN116154030A (zh) * 2023-03-06 2023-05-23 厦门大学 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129708A1 (en) * 2010-04-16 2011-10-20 Institutt For Energiteknikk Thin film solar cell electrode with graphene electrode layer
CN103117317A (zh) * 2013-01-31 2013-05-22 电子科技大学 一种硅面SiC衬底上的石墨烯光电器件及其制备方法
CN104157721A (zh) * 2014-08-08 2014-11-19 浙江大学 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN105244405A (zh) * 2014-07-10 2016-01-13 中国科学院物理研究所 紫外探测器
CN105304748A (zh) * 2015-09-30 2016-02-03 厦门大学 双工作模式的4H-SiC紫外光电探测器及其制备方法
CN107316804A (zh) * 2017-07-07 2017-11-03 西安交通大学 一种金属原子掺杂的大面积规则外延石墨烯的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129708A1 (en) * 2010-04-16 2011-10-20 Institutt For Energiteknikk Thin film solar cell electrode with graphene electrode layer
CN103117317A (zh) * 2013-01-31 2013-05-22 电子科技大学 一种硅面SiC衬底上的石墨烯光电器件及其制备方法
CN105244405A (zh) * 2014-07-10 2016-01-13 中国科学院物理研究所 紫外探测器
CN104157721A (zh) * 2014-08-08 2014-11-19 浙江大学 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN105304748A (zh) * 2015-09-30 2016-02-03 厦门大学 双工作模式的4H-SiC紫外光电探测器及其制备方法
CN107316804A (zh) * 2017-07-07 2017-11-03 西安交通大学 一种金属原子掺杂的大面积规则外延石墨烯的制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309131A (zh) * 2018-09-14 2019-02-05 中国科学院长春光学精密机械与物理研究所 石墨烯透明电极双台面碳化硅辐射探测器及其制备方法
CN109817762A (zh) * 2019-01-30 2019-05-28 山东大学 一种在n型4H/6H-SiC硅面上制备周期性石墨烯PN结的方法
CN109817762B (zh) * 2019-01-30 2021-02-12 山东大学 一种在n型4H/6H-SiC硅面上制备周期性石墨烯PN结的方法
CN110323127A (zh) * 2019-06-04 2019-10-11 浙江大学 一种利用peald在硅衬底上生长石墨烯的方法
CN110323127B (zh) * 2019-06-04 2021-07-06 浙江大学 一种利用peald在硅衬底上生长石墨烯的方法
CN110165012A (zh) * 2019-06-28 2019-08-23 河北工业大学 一种具有弧形增透作用的光电探测器结构及其制备方法
CN111211196A (zh) * 2020-02-15 2020-05-29 北京工业大学 一种高灵敏度高线性度探测器
CN111933724A (zh) * 2020-07-22 2020-11-13 中国电子科技集团公司第十三研究所 光电二极管及其制备方法
CN116154030A (zh) * 2023-03-06 2023-05-23 厦门大学 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法
CN116154030B (zh) * 2023-03-06 2024-04-30 厦门大学 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN108231919A (zh) 一种具有石墨烯透明电极的碳化硅雪崩光电探测器
Varshney et al. Current advances in solar-blind photodetection technology: Using Ga 2 O 3 and AlGaN
CN201032635Y (zh) 一种PIN结构4H-SiC紫外光电探测器
CN103400872B (zh) 表面电场增强的pin光电探测器的结构及其制备方法
CN103280484B (zh) p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
CN105304748B (zh) 双工作模式的4H‑SiC紫外光电探测器及其制备方法
CN100438083C (zh) δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
CN100463232C (zh) 4H-SiC雪崩光电探测器及其制备方法
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN108376716A (zh) 一种新型氧化镓基pin结构紫外光电探测器及其制备方法
ITTO20100251A1 (it) Fotodiodo a valanga operante in modalita' geiger ad elevato rapporto segnale rumore e relativo procedimento di fabbricazione
CN102386269B (zh) GaN基p-i-p-i-n结构紫外探测器及其制备方法
Cai et al. 4H-SiC SACM avalanche photodiode with low breakdown voltage and high UV detection efficiency
Xin et al. Demonstration of 4H-SiC visible-blind EUV and UV detector with large detection area
TW200421603A (en) Infrared photodetector
Jehad et al. CVD graphene/SiC UV photodetector with enhanced spectral responsivity and response speed
CN201000897Y (zh) 4H-SiC雪崩光电探测器
Huang et al. Silicon-based photodetector for infrared telecommunication applications
CN111463308B (zh) 一种碳化硅同轴紫外光电探测器及其制备方法
CN107452820A (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
CN106601837A (zh) 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
Xing et al. High external quantum efficiency in ZnO/Au/Ga2O3 sandwich–structured photodetector
CN108630782A (zh) 一种宽探测波段双重等离子工作光电探测器及其制备方法
CN106711289A (zh) 一种抑制锑化物超晶格红外探测器表面泄露电流的方法
CN106409965B (zh) 一种高速饱和单行载流子紫外光电二极管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180629

RJ01 Rejection of invention patent application after publication