CN116154030A - 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法 - Google Patents

极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法 Download PDF

Info

Publication number
CN116154030A
CN116154030A CN202310205107.9A CN202310205107A CN116154030A CN 116154030 A CN116154030 A CN 116154030A CN 202310205107 A CN202310205107 A CN 202310205107A CN 116154030 A CN116154030 A CN 116154030A
Authority
CN
China
Prior art keywords
type
silicon carbide
layer
doped
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310205107.9A
Other languages
English (en)
Other versions
CN116154030B (zh
Inventor
洪荣墩
刘佳
付钊
李子豪
刘庚
姚亮
刘颖
张峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Beijing Smartchip Microelectronics Technology Co Ltd
Original Assignee
Xiamen University
Beijing Smartchip Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University, Beijing Smartchip Microelectronics Technology Co Ltd filed Critical Xiamen University
Priority to CN202310205107.9A priority Critical patent/CN116154030B/zh
Publication of CN116154030A publication Critical patent/CN116154030A/zh
Application granted granted Critical
Publication of CN116154030B publication Critical patent/CN116154030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法,涉及紫外光电探测器。包括小面积横纵向的吸收倍增分离(SAM)结构和纵向p‑i‑n结构,p+型欧姆接触层、n型倍增层、n‑型吸收层和n型缓冲层形成横纵向相结合的小面积SAM结构,p‑型吸收层、n‑型吸收层和n型缓冲层形成纵向大面积的p‑i‑n结构。SAM结构和p‑i‑n结构的耗尽层电场相互连接和耦合,p‑i‑n内产生的光生载流子可被电场加速漂移至SAM结构中的n型倍增层进行载流子的雪崩倍增效应,再漂移至p+型欧姆接触层收集形成电流信号,避免光生载流子复合问题,提高光生载流子收集效率,提高极紫外和深紫外波段信号探测效率,获得更高器件响应度。

Description

极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法
技术领域
本发明涉及紫外光电探测器,尤其是涉及可提高极紫外和深紫外波段信号的吸收和响应度的一种极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法。
背景技术
碳化硅雪崩光电探测器能够探测到极微弱的紫外信号,在诸多紫外探测领域都有重要应用,比如火灾预警、环境检测、导弹尾焰监测和紫外保密通信等。与其他材料的半导体紫外探测器相比,碳化硅材料缺陷密度低,外延相对成热,且碳化硅雪崩光电探测器的响应峰值在280nm附近,响应截止波长在390nm,基本对可见光不响应,对于制备单光子探测器有独特优势。与光电倍播管(PMT)等传统的真空紫外探测器件相此,碳化硅雪崩光电探测器具有体积小、成本低、易集成和可见盲等不可替代的优点。因此碳化硅雪崩光电探测器在微弱紫外光探测领域具有很大优势,引起了世界范围内研究人员的广泛关注。
碳化硅作为第三代宽禁带半导体的主要材料,具有宽带隙、高击穿电场、高载流子饱和速率,高热导率等优良特性,因此碳化硅基的紫外光电探测器具有高量子效率、可见盲、抗辐射、抗高温等优良性质。由于紫外信号在半导体内部的吸收系数大,即吸收长度(即传播距离)短(Jiafa Cai,Xiaping Chen,Rongdun Hong,Weifeng Yang,Zhengyun Wu,High-per formance 4H-SiC-based p-i-n ultraviolet photodiode and investigationof its capacitance char acteristics[J].Optics Communications,2014,333:182-186.),常用的p-i-n结构紫外雪崩光电探测器的高掺杂p+型欧姆接触层对紫外信号特别是极紫外和深紫外波段的信号具有非常强的吸收并转化为光生载流子,然而,由于p+型欧姆接触层的空间耗尽层非常薄,在其区域的光生载流子无法被电场分离收集形成响应电流,而是由于载流子复合效应而消失,降低了器件响应度。因此,攻克p+型欧姆接触层对极紫外和深紫外波段信号的吸收复合效应对器件响应度的抑制便成为碳化硅紫外雪崩光电探测器研究的难点和重点(Wu J,Zhang M,Fu Z,Hong R,Wu Z,Charge layer optimized 4H-SiC SACM avalanche photodiode with low break down voltage and high gain[J].Japanese Journal of Applied Physics,2019,58(10):100913-.)。
发明内容
本发明的目的在于解决传统碳化硅紫外雪崩光电探测器p+层对极紫外和深紫外波段的信号的吸收导致响应度和量子效率降低的缺点,提供一种可提高极紫外和深紫外信号的吸收,进而提高响应度和探测效率的极紫外至紫外波段的碳化硅雪崩光电探测器。
本发明的另一目的在于提供所述极紫外至紫外波段的碳化硅雪崩光电探测器的制备方法。
所述极紫外至紫外波段的碳化硅雪崩光电探测器由一个小面积横纵向相结合的SAM结构和一个大面积纵向的p-i-n结构结合组成,自下而上设有n+型欧姆接触电极、碳化硅高掺杂n+型衬底、碳化硅n型缓冲层、圆柱状碳化硅低掺杂n-型吸收层、圆柱状碳化硅低掺杂p-型吸收层、碳化硅n型倍增层、圆柱管状碳化硅高掺杂p+型欧姆接触层、等离激元、钝化隔离层、p+型欧姆接触电极;
在碳化硅高掺杂n+型衬底的硅面上外延同质的碳化硅n型缓冲层,在碳化硅n型缓冲层的中心向上设圆柱状碳化硅低掺杂n-型吸收层,以n-型吸收层的轴心为中心向上设大面积圆柱状碳化硅低掺杂p-型吸收层,形成p-/n-的pn结,提供具有内建电场的空间耗尽区,用于光生载流子的产生和分离,以n-型吸收层的轴心为中心向外设小面积的碳化硅n型倍增层,在n型倍增层的外侧设更小面积的圆柱管状碳化硅高掺杂p+型欧姆接触层,形成p+/n结,用于提供光生载流子的雪崩倍增区域及实现载流子的收集;在p-型吸收层表面设等离激元用于增强光生载流子的吸收效率,在器件整个上表面(p+型欧姆接触层除外)设钝化隔离层,在n+型衬底的背面设有n+型欧姆接触电极,p+型欧姆接触层上表面设有p+型欧姆接触电极;
所述圆柱管状碳化硅高掺杂p+型欧姆接触层、碳化硅n型倍增层、圆柱状碳化硅低掺杂n-型吸收层和碳化硅n型缓冲层形成小面积横纵向相结合的SAM结构;圆柱状碳化硅低掺杂p-型吸收层、圆柱状碳化硅低掺杂n-型吸收层和碳化硅n型缓冲层形成大面积纵向的p-i-n结构;SAM结构和p-i-n结构的耗尽层电场相互连接和耦合,以使在p-i-n内产生的光生载流子可被电场加速漂移至SAM结构中的n型倍增层进行载流子的雪崩倍增效应,再漂移至p+型欧姆接触层进行收集形成电流信号。
所述碳化硅高掺杂n+型衬底可采用商业型的n+导电衬底,n+型衬底的掺杂浓度量级可为1018/cm3~1019/cm3,厚度可为50μm~500μm;
所述碳化硅n型缓冲层的掺杂浓度量级可为1018/cm3~1019/cm3,厚度可为100nm~1μm。
所述圆柱状碳化硅低掺杂n-型吸收层的的直径为50μm~800μm,厚度为200nm~5μm,掺杂浓度量级为1014/cm3~1016/cm3
所述圆柱状碳化硅低掺杂p-型吸收层的直径为49μm~799μm,厚度为100nm~1μm,掺杂浓度量级为1015/cm3~1017/cm3
所述碳化硅n型倍增层的宽度为几百纳米并能保证p+/n结的空间耗尽层穿通到n-型吸收层,宽度为数百纳米,厚度为300nm~1.1μm,掺杂浓度量级为1015/cm3~1016/cm3
所述圆柱管状碳化硅高掺杂p+型欧姆接触层的宽度为100nm~5μm,厚度为200nm~1μm,掺杂浓度量级为1018/cm3~1019/cm3
所述等离激元的形状为球形、圆盘形或三角柱形,以更好的与尺寸相配合,等离激元的宽度可为5nm~100nm,厚度可为5nm~100nm,所述等离激元材料为Al、Ag或Au。
所述钝化隔离层可采用二氧化硅、氧化铪或氮化硅等钝化隔离介电材料,钝化隔离层的厚度为几纳米至几十纳米,优选厚度为10nm。
所述极紫外至紫外波段的碳化硅雪崩光电探测器的纵截面宽度可为50μm~800μm。
所述极紫外至紫外波段的碳化硅雪崩光电探测器的制备方法,包括以下步骤:
1)对碳化硅高掺杂n+型衬底进行RCA标准清洗;
2)在n+型衬底的Si面同质外延生长碳化硅n型缓冲层;
3)在碳化硅n型缓冲层上外延生长圆柱状低掺杂n-型吸收层;
4)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n-型吸收层表面居中形成大面积的圆柱状低掺杂p-型吸收层;
5)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n-型吸收层的外侧形成小面积的碳化硅n型倍增层;
6)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n型倍增层外侧形成更小面积的圆柱管状碳化硅高掺杂p+型欧姆接触层;
7)采用沉积、光刻、电子束蒸发与高温退火技术在p-型吸收层上形成等离激元;
8)采用光刻、刻蚀、热氧化与沉积技术在器件整个上表面(p+型欧姆接触层除外)形成二氧化硅钝化隔离层;
9)采用光刻、磁控溅射与退火技术在高掺杂p+型欧姆接触层表面和n+型衬底底部分别制备p+型欧姆接触电极和n+型欧姆接触电极。
现有技术的常规垂直p-i-n结构的碳化硅紫外雪崩光电探测器,要同时满足i层全部被耗尽和良好p型欧姆接触的需求才可以实现高性能的紫外探测,因此表面需要采用高掺杂p+型欧姆接触层。而探测器表面的高掺杂p+型欧姆接触层几乎没有空间耗尽层。根据光在半导体中的指数衰减吸收原理,入射极紫外和深紫外信号大部分都在p+型欧姆接触层被吸收并转化为光生载流子,由于有没有没有空间耗尽层电场的分离,光生载流子无法被有效分离形成电流,而是在p+型欧姆接触层中随机扩散从而被复合湮灭,导致常规垂直p-i-n结构的碳化硅紫外雪崩光电探测器对极紫外和深紫外信号的探测量子效率低下。
本发明设计的极紫外至紫外波段的碳化硅雪崩光电探测器为一个小面积横纵向的吸收倍增分离SAM结构和一个纵向的p-i-n结构相结合的新型雪崩光电探测器。其中,p+型欧姆接触层、n型倍增层、n-型吸收层和n型缓冲层形成横纵向相结合的小面积SAM结构,p-型吸收层、n-型吸收层和n型缓冲层形成纵向大面积的p-i-n结构。SAM结构和p-i-n结构的耗尽层电场相互连接和耦合,使得在p-i-n内产生的光生载流子可被电场加速漂移至SAM结构中的n型倍增层进行载流子的雪崩倍增效应,再漂移至p+型欧姆接触层进行收集形成电流信号。相对传统垂直三明治结构的碳化硅雪崩光电探测器,本发明设计的极紫外至紫外波段的碳化硅雪崩光电探测器可以明显提高极紫外和深紫外波段信号的探测效率。可以避免传统碳化硅雪崩光电探测器在深紫外和极紫外波段由于p+型欧姆接触层的表面缺陷导致的光生载流子复合问题,提高光生载流子的收集效率,可获得更高的器件响应度。
附图说明
图1为本发明实施例所述极紫外至紫外波段的碳化硅雪崩光电探测器的二维剖面示意图。
图2为本发明实施例所述极紫外至紫外波段的碳化硅雪崩光电探测器的三维剖面示意图。
图3为本发明实施例所述极紫外至紫外波段的碳化硅雪崩光电探测器与传统垂直三明治结构的碳化硅雪崩光电探测器在20V工作电压条件下的绝对光谱响应曲线。
具体实施方式
为了使本发明设计的结构更加清楚易懂,以下实施例将结合附图对本发明作进一步的说明。
如图1和2所示,所述极紫外至紫外波段的碳化硅雪崩光电探测器自下而上设有商业型的碳化硅高掺杂n+型衬底1,碳化硅高掺杂n+型衬底1的厚度可为50μm~500μm,掺杂浓度量级可为1018/cm3~1019/cm3,纵截面宽度可为50μm~500μm;在碳化硅高掺杂n+型衬底1的硅面上外延同质的碳化硅n型缓冲层2,碳化硅n型缓冲层2的厚度可为100nm~1μm,掺杂浓度量级可为1018/cm3~1019/cm3;在碳化硅n型缓冲层2的中心向上设圆柱状的碳化硅低掺杂n-型吸收层3,碳化硅低掺杂n-型吸收层3的直径可为50μm~800μm,厚度可为200nm~5μm,掺杂浓度量级1014/cm3~1016/cm3;以碳化硅低掺杂n-型吸收层3的轴心为中心向上设大面积圆柱状的碳化硅低掺杂p-型吸收层6,碳化硅低掺杂p-型吸收层6的直径可为49μm~799μm,厚度可为100nm~1μm,掺杂浓度量级1015/cm3~1017/cm3;以碳化硅低掺杂n-型吸收层3的轴心为中心向外设小面积的碳化硅n型倍增层4,碳化硅n型倍增层4宽度可为数百纳米,厚度可为300nm~1.1μm,掺杂浓度量级可为1016/cm3~1018/cm3;在碳化硅n型倍增层4的外侧设更小面积的圆柱管状的碳化硅高掺杂p+型欧姆接触层5,碳化硅高掺杂p+型欧姆接触层5的宽度可为100nm~5μm,厚度可为200nm~1μm,掺杂浓度量级可为1018~1019/cm3;在碳化硅低掺杂p-型吸收层6的上表面设等离激元10,等离激元10的宽度可为5nm~100nm,厚度可为5nm~100nm,等离激元10的材料可为Al、Au或Ag;在器件整个上表面(p+型欧姆接触层除外)设钝化隔离层7,介电层材料可为二氧化硅,氧化铪和氮化硅等,厚度为几纳米至几十纳米,优选厚度为10nm。在碳化硅高掺杂p+型欧姆接触层5的侧上表面设有p+型欧姆接触电极8,在n+型衬底的背面设有n+型欧姆接触电极9。整个器件为一个小面积横纵向的SAM结构和一个纵向的p-i-n结构相结合的新型雪崩光电探测器。其中,碳化硅高掺杂p+型欧姆接触层5、碳化硅n型倍增层4、碳化硅低掺杂n-型吸收层3和碳化硅n型缓冲层2形成横纵向相结合的小面积SAM结构,碳化硅低掺杂p-型吸收层6、碳化硅低掺杂n-型吸收层3和碳化硅n型缓冲层2形成纵向大面积的p-i-n结构。SAM结构和p-i-n结构的耗尽层电场相互连接和耦合,使得在p-i-n内产生的光生载流子可被电场加速漂移至SAM结构中的n型倍增层4进行载流子的雪崩倍增效应,再漂移至p+型欧姆接触层5进行收集形成电流信号。
所述极紫外至紫外波段的碳化硅雪崩光电探测器的制备方法,包括以下步骤:
1)对碳化硅高掺杂n+型衬底1进行RCA标准清洗;
2)在清洗后的n+型衬底的Si面同质外延生长碳化硅n型缓冲层2;
3)在碳化硅n型缓冲层上外延生长圆柱状低掺杂n-型吸收层3;
4)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n-型吸收层表面居中形成大面积的圆柱状的碳化硅低掺杂p-型吸收层6;
5)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n-型吸收层的外侧形成小面积的碳化硅n型倍增层4;
6)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n型倍增层外侧形成更小面积的圆柱管状碳化硅高掺杂p+型欧姆接触层5;
7)采用沉积、光刻、电子束蒸发与高温退火技术在碳化硅低掺杂p-型吸收层6上形成等离激元10;
8)采用光刻、刻蚀、热氧化与沉积技术在器件整个上表面(p+型欧姆接触层除外)形成二氧化硅钝化隔离层7;
9)采用光刻、磁控溅射与退火技术在高掺杂p+型欧姆接触层表面和n+型衬底底部分别制备p+型欧姆接触电极8和n+型欧姆接触电极9。
以下给出具体制备实施例。
1)对碳化硅高掺杂n+型衬底1样品进行RCA标准清洗,具体步骤如下:
a.依次用甲苯、丙酮和乙醇超声清洗至少两次,再用去热、冷离子水冲洗。
b.采用三号液于250℃下煮20min,用热、冷去离子水冲洗,所述三号液按体积的配比为H2SO4∶H2O2=4∶1。
c.将样品放入稀释的氢氟酸(按体积比氟化氢∶去离子水=1∶10)内浸泡3min及以上,再用热、冷去离子水冲洗。
d.将样品放入一号液煮10min及以上,用热、冷去离子水冲洗,所述一号液为按体积的配比为NH3·H2O∶H2O2∶H2O=1∶1∶4。
e.将样品放入二号液煮10min及以上,用热、冷去离子水冲洗,所述二号液为按体积的配比为HCl∶H2O2∶H2O=1∶1∶4。
f.将样品放入稀释的氢氟酸(按体积比氟化氢∶去离子水=1∶10)内浸泡3min及以上,再用热、冷去离子水冲洗,氮气吹干衬底,待用。
2)在RCA标准清洗处理后的碳化硅n+型衬底的(0001)Si面采用同质外延生长掺杂浓度数量级为1018/cm3~1019/cm3,厚度为100nm~1μm的碳化硅n型缓冲层2。
3)在碳化硅n型缓冲层2上外延生长掺杂浓度数量级为1014/cm3~1016/cm3,直径为50μm~800μm,厚度为200nm~5μm的圆柱状碳化硅n-型吸收层3。
4)采用光刻、刻蚀和沉积技术形成掩膜,在此基础上将Al离子注入至圆柱状碳化硅n-型吸收层3,采取高温退火激活Al离子,在圆柱状碳化硅n-型吸收层3表面居中形成大面积的圆柱状碳化硅低掺杂p-型吸收层6,圆柱状碳化硅低掺杂p-型吸收层6的直径可为49μm~799μm,厚度可为100nm~1μm,掺杂浓度量级可为1015/cm3~1017/cm3
5)采用光刻、刻蚀和沉积技术形成掩膜,在此基础上将Al离子注入至圆柱状碳化硅n-型吸收层3,采取高温退火激活Al离子,在圆柱状碳化硅n-型吸收层3外侧形成小面积的碳化硅n型倍增层4,碳化硅n型倍增层4的宽度可为数百纳米,厚度可为300nm~1.1μm,掺杂浓度量级可为1016/cm3~1018/cm3
6)采用光刻、刻蚀和沉积技术形成掩膜,在此基础上将Al离子注入至碳化硅n型倍增层4,采取高温退火激活Al离子,在碳化硅n型倍增层4外侧形成更小面积的圆柱管状碳化硅高掺杂p+型欧姆接触层5,圆柱管状碳化硅高掺杂p+型欧姆接触层5的宽度可为100nm~5μm,厚度可为200nm~1μm,掺杂浓度量级可为1018/cm3~1019/cm3
7)采用光刻、刻蚀和沉积技术形成掩膜,在圆柱状碳化硅低掺杂p-型吸收层6上曝光、显影、冲洗形成金属膜的图形,不要沉积金属的地方有光刻胶作为阻挡层,电子束蒸发沉积5~50nm的金属膜,泡丙酮剥离掉除台面外其他区域的金属,最后通过热退火处理形成有序的等离激元10结构,等离激元10的宽度可为5nm~100nm,厚度可为5nm~100nm。
8)采用光刻、刻蚀和沉积技术形成掩膜,通过化学气相沉积方法生长,在器件整个上表面(p+型欧姆接触层除外)形成钝化隔离介电层7,介电层材料可采用二氧化硅、氧化铪和氮化硅等中的一种,钝化隔离介电层7的厚度可为几纳米至几十纳米。
9)采用光刻工艺,对光刻胶进行曝光显影,使用缓冲氢氟酸腐蚀圆柱管状碳化硅高掺杂p+型欧姆接触层5上部分的氧化层,形成电极窗口,采用磁控溅射工艺制备一层合金,形成p+型欧姆接触电极8,在样品正面制备一层光刻胶用于保护隔离,使用缓冲氢氟酸腐蚀衬底底面氧化层,采用磁控溅射制备合金层,形成n+型欧姆接触电极9,对两个电极p+型欧姆接触电极8和n+型欧姆接触电极9退火,使样品的p+型电极和n+型电极分别与p+型欧姆接触层和n+型衬底形成良好的欧姆接触。
本发明设计的极紫外至紫外波段的碳化硅雪崩光电探测器为一个小面积横纵向的SAM结构和一个纵向的p-i-n结构相结合的新型雪崩光电探测器。其中,p+型欧姆接触层、n型倍增层、n-型吸收层和n型缓冲层形成横纵向相结合的小面积SAM结构,p-型吸收层、n-型吸收层和n型缓冲层形成纵向大面积的p-i-n结构。根据半导体pn结能带理论,具有两端都是低掺杂浓度的pn结,空间耗尽层会同时向p-型吸收层和n-型吸收层两端延伸,在合适的厚度条件下p-型吸收层和n-型吸收层可同时完全耗尽。入射极紫外和深紫外信号极大部分通过p-型吸收层入射到器件内部,在p-型吸收层和n-型吸收层中被吸收转化为光生载流子并被空间耗尽层的电场分离。由于p-型吸收层无法和金属形成有效的欧姆接触电极,因此本发明对碳化硅紫外雪崩光电探测器设计SAM结构和p-i-n结构相结合的一种结构,在器件的低掺杂n-型吸收层表面的其中一端设计一小面积的碳化硅n型倍增层用于提高雪崩增益,在n型倍增层中的外侧设计一小面积的碳化硅高掺杂p+型欧姆接触层用于光生载流子的收集,另外一端设计一大面积的碳化硅低掺杂p-型吸收层用于光生载流子的产生和分离。上述在p-型吸收层和n-型吸收层中形成的光生载流子被大面积p-i-n的空间耗尽层弱电场分离,再被具有p+型欧姆接触层小面积SAM结构中的耗尽层强电场收集并导出到外部电路进行测试分析。实验表明,相对传统垂直三明治结构的碳化硅雪崩光电探测器,本发明设计的极紫外至紫外波段的碳化硅雪崩光电探测器可以明显提高极紫外和深紫外波段信号的探测响应度,如图3。

Claims (10)

1.极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于由一个小面积横纵向相结合的SAM结构和一个大面积纵向的p-i-n结构结合组成,自下而上设有n+型欧姆接触电极、碳化硅高掺杂n+型衬底、碳化硅n型缓冲层、圆柱状碳化硅低掺杂n-型吸收层、圆柱状碳化硅低掺杂p-型吸收层、碳化硅n型倍增层、圆柱管状碳化硅高掺杂p+型欧姆接触层、等离激元、钝化隔离层、p+型欧姆接触电极;
在碳化硅高掺杂n+型衬底的硅面上外延同质的碳化硅n型缓冲层,在碳化硅n型缓冲层的中心向上设圆柱状碳化硅低掺杂n-型吸收层,以n-型吸收层的轴心为中心向上设大面积圆柱状碳化硅低掺杂p-型吸收层,形成p-/n-的pn结,提供具有内建电场的空间耗尽区,用于光生载流子的产生和分离,以n-型吸收层的轴心为中心向外设小面积的碳化硅n型倍增层,在碳化硅n型倍增层的外侧设更小面积的圆柱管状碳化硅高掺杂p+型欧姆接触层,形成p+/n结,用于提供光生载流子的雪崩倍增区域及实现载流子的收集;在p-型吸收层表面设等离激元用于增强光生载流子的吸收效率,在器件除p+型欧姆接触层外的上表面设钝化隔离层,在n+型衬底的背面设有n+型欧姆接触电极,p+型欧姆接触层上表面设有p+型欧姆接触电极;
所述圆柱管状碳化硅高掺杂p+型欧姆接触层、碳化硅n型倍增层、圆柱状碳化硅低掺杂n-型吸收层和碳化硅n型缓冲层形成小面积横纵向相结合的SAM结构;圆柱状碳化硅低掺杂p-型吸收层、圆柱状碳化硅低掺杂n-型吸收层和碳化硅n型缓冲层形成大面积纵向的p-i-n结构;SAM结构和p-i-n结构的耗尽层电场相互连接和耦合,以使在p-i-n内产生的光生载流子被电场加速漂移至SAM结构中的碳化硅n型倍增层进行载流子的雪崩倍增效应,再漂移至p+型欧姆接触层进行收集形成电流信号。
2.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述碳化硅高掺杂n+型衬底采用商业型的n+导电衬底,n+型衬底的掺杂浓度量级为1018/cm3~1019/cm3,厚度为50μm~500μm。
3.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述碳化硅n型缓冲层的掺杂浓度量级为1018/cm3~1019/cm3,厚度为100nm~1μm。
4.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述圆柱状碳化硅低掺杂n-型吸收层的直径为50μm~800μm,厚度为200nm~5μm,掺杂浓度量级为1014/cm3~1016/cm3
5.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述圆柱状碳化硅低掺杂p-型吸收层的直径为49μm~799μm,厚度为100nm~1μm,掺杂浓度量级为1015/cm3~1017/cm3
6.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述碳化硅n型倍增层的宽度为几百纳米并能保证p+/n结的空间耗尽层穿通到n-型吸收层,厚度为300nm~1.1μm,掺杂浓度量级为1016/cm3~1018/cm3
7.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述圆柱管状碳化硅高掺杂p+型欧姆接触层的宽度为100nm~5μm,厚度为200nm~1μm,掺杂浓度量级为1018/cm3~1019/cm3
8.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述等离激元的形状为球形、圆盘形或三角柱形,以更好的与尺寸相配合,等离激元的宽度为5nm~100nm,厚度为5nm~100nm,所述等离激元材料为Al、Ag或Au。
9.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器,其特征在于所述钝化隔离层采用二氧化硅、氧化铪或氮化硅等钝化隔离介电材料,钝化隔离层的厚度为几纳米至几十纳米,优选厚度为10nm。
10.如权利要求1所述极紫外至紫外波段的碳化硅雪崩光电探测器的制备方法,其特征在于包括以下步骤:
1)对碳化硅高掺杂n+型衬底进行RCA标准清洗;
2)在n+型衬底的Si面同质外延生长碳化硅n型缓冲层;
3)在碳化硅n型缓冲层上外延生长圆柱状低掺杂n-型吸收层;
4)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n-型吸收层表面居中形成大面积的圆柱状低掺杂p-型吸收层;
5)采用沉积、光刻、刻蚀、离子注入与高温退火技术在n-型吸收层的外侧形成小面积的碳化硅n型倍增层;
6)采用沉积、光刻、刻蚀、离子注入与高温退火技术在碳化硅n型倍增层外侧形成更小面积的圆柱管状碳化硅高掺杂p+型欧姆接触层;
7)采用沉积、光刻、电子束蒸发与高温退火技术在p-型吸收层表面形成等离激元;
8)采用光刻、刻蚀、热氧化与沉积技术在器件除p+型欧姆接触层外的上表面形成二氧化硅钝化隔离层;
9)采用光刻、磁控溅射与退火技术在高掺杂p+型欧姆接触层表面和n+型衬底底部分别制备p+型欧姆接触电极和n+型欧姆接触电极。
CN202310205107.9A 2023-03-06 2023-03-06 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法 Active CN116154030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310205107.9A CN116154030B (zh) 2023-03-06 2023-03-06 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310205107.9A CN116154030B (zh) 2023-03-06 2023-03-06 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN116154030A true CN116154030A (zh) 2023-05-23
CN116154030B CN116154030B (zh) 2024-04-30

Family

ID=86360007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310205107.9A Active CN116154030B (zh) 2023-03-06 2023-03-06 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN116154030B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202243A1 (en) * 2005-03-11 2006-09-14 The Boeing Company Metamorphic avalanche photodetector
CN101000936A (zh) * 2006-12-23 2007-07-18 厦门大学 δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
CN101030609A (zh) * 2007-04-04 2007-09-05 厦门大学 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
DE102007037020B3 (de) * 2007-08-06 2008-08-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche-Photodiode
CN105304748A (zh) * 2015-09-30 2016-02-03 厦门大学 双工作模式的4H-SiC紫外光电探测器及其制备方法
CN108231919A (zh) * 2017-12-31 2018-06-29 厦门大学 一种具有石墨烯透明电极的碳化硅雪崩光电探测器
CN111463308A (zh) * 2020-05-13 2020-07-28 厦门大学 一种碳化硅同轴紫外光电探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202243A1 (en) * 2005-03-11 2006-09-14 The Boeing Company Metamorphic avalanche photodetector
CN101000936A (zh) * 2006-12-23 2007-07-18 厦门大学 δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
CN101030609A (zh) * 2007-04-04 2007-09-05 厦门大学 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
DE102007037020B3 (de) * 2007-08-06 2008-08-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche-Photodiode
CN105304748A (zh) * 2015-09-30 2016-02-03 厦门大学 双工作模式的4H-SiC紫外光电探测器及其制备方法
CN108231919A (zh) * 2017-12-31 2018-06-29 厦门大学 一种具有石墨烯透明电极的碳化硅雪崩光电探测器
CN111463308A (zh) * 2020-05-13 2020-07-28 厦门大学 一种碳化硅同轴紫外光电探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱会丽;陈厦平;吴正云;: "吸收层与倍增层分离的4H-SiC雪崩光电探测器", 半导体学报, no. 02, 8 February 2007 (2007-02-08) *
钟金祥;吴正云;洪荣墩;: "结合雪崩和PIN特性的4H-SiC紫外光电探测器的模拟", 中国新通信, no. 07, 5 April 2015 (2015-04-05) *

Also Published As

Publication number Publication date
CN116154030B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2009022945A1 (fr) Convertisseur d'émission électromagnétique
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN108878576B (zh) 一种氧化镓基紫外探测器
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN111463308B (zh) 一种碳化硅同轴紫外光电探测器及其制备方法
WO2023061235A1 (zh) 基于选区离子注入的新型碳化硅基横向pn结极紫外探测器及制备方法
CN111952384B (zh) 光电探测器及其制备方法
CN111490112B (zh) 一种新型碳化硅肖特基结极深紫外探测器及其制备方法
CN106711289A (zh) 一种抑制锑化物超晶格红外探测器表面泄露电流的方法
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
Zhang et al. Vertical Schottky ultraviolet photodetector based on graphene and top–down fabricated GaN nanorod arrays
CN116154030B (zh) 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法
CN109638024B (zh) 一种可见光短波段硅基雪崩光电二极管阵列及其制备方法
CN116799092A (zh) 一种基于氧化镓基的日盲紫外探测器及其制备方法
CN111710731A (zh) 一种氧化镓日盲光电探测器及其制备方法
CN108615782B (zh) 一种紫外探测器及其制造方法
JP6411450B2 (ja) 高効率光電変換デバイス
Mimura et al. Optoelectrical properties of amorphous‐crystalline silicon heterojunctions
CN111211196B (zh) 一种高灵敏度高线性度探测器
CN114122191A (zh) 一种雪崩光电探测器的制备方法
CN112117346B (zh) 一种微米线阵列、雪崩紫外探测器和雪崩紫外探测器系统
CN116314421A (zh) 一种双p层碳化硅p-i-n紫外光电探测器及制备方法
CN216488098U (zh) 一种InAlAs雪崩光电探测器结构
CN117766616A (zh) 一种具有微米柱结构的碳化硅紫外雪崩光电探测器及其制备方法
CN109742093B (zh) 一种增强蓝光型硅基雪崩光电二极管阵列及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant