CN109305886B - 1,4-环己烷二甲酸加氢方法 - Google Patents

1,4-环己烷二甲酸加氢方法 Download PDF

Info

Publication number
CN109305886B
CN109305886B CN201710628279.1A CN201710628279A CN109305886B CN 109305886 B CN109305886 B CN 109305886B CN 201710628279 A CN201710628279 A CN 201710628279A CN 109305886 B CN109305886 B CN 109305886B
Authority
CN
China
Prior art keywords
catalyst
hydrogen
content
cyclohexanedimethanol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710628279.1A
Other languages
English (en)
Other versions
CN109305886A (zh
Inventor
司丹
畅延青
朱庆才
张海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201710628279.1A priority Critical patent/CN109305886B/zh
Publication of CN109305886A publication Critical patent/CN109305886A/zh
Application granted granted Critical
Publication of CN109305886B publication Critical patent/CN109305886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/187Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及1,4‑环己烷二甲酸加氢方法,解决现有技术中1,4‑环己烷二甲酸加氢制备1,4‑环己烷二甲醇时收率低的问题。通过采用1,4‑环己烷二甲酸加氢方法,包括如下步骤:以水为溶剂,在加氢催化剂存在下,1,4‑环己烷二甲酸与氢气反应得到1,4‑环己烷二甲醇,其中所述加氢催化剂,包括载体、活性组分和助催化剂,所述载体为活性炭,活性组分包括Re,所述助催化剂包括Zn的技术方案,可用于生产1,4‑环己烷二甲醇的工业生产中。

Description

1,4-环己烷二甲酸加氢方法
技术领域
本发明涉及1,4-环己烷二甲酸加氢方法,所用的催化剂及其制备方法。
背景技术
1,4-环己烷二甲醇(简称CHDM)是生产聚酯树脂的重要有机化工原料,由它替代乙二醇或其它多元醇生产的聚酯树脂具有良好的热稳定性和热塑性,能在较高的温度下保持稳定的物理性质和电性能,而由这类树脂制得的产品则具有良好的耐化学性和耐环境性。目前工业化生产1,4-环己烷二甲醇的工艺主要以对苯二甲酸二甲酯为原料,先苯环加氢制备1,4-环己烷二甲酸二甲酯,再通过酯加氢反应制备1,4-环己烷二甲醇。由于对苯二甲酸(PTA)价格相对较低且来源丰富,因此近几年出现了以对苯二甲酸为原料制备1,4-环己烷二甲醇的趋势。其过程通常也需经过两步反应,首先是苯环选择加氢生产1,4-环己烷二甲酸,然后1,4-环己烷二甲酸再加氢生成1,4-环己烷二甲醇。考虑到两步法工艺的复杂性,也有很多研究者进行了对苯二甲酸一步法加氢制备1,4-环己烷二甲醇的研究。如日本三菱化学公司,于1998年申请的专利JP200007596中公开了PTA在液相条件下一步法制备CHDM的工艺。其催化剂选用了含Ru和Sn组分的催化剂,最好还含有Pt,催化剂以活性炭为载体。实施例中公开了具体的反应过程,即在高压釜中氩气保护气氛下加入PTA、水和催化剂,在氢压1MPa时将温度升至230℃,再在氢压达到15MPa时通入氢气反应,反应4h后将反应液取出,CHDM的收率仅有28.3%。Yoshinori Hara等(The drastic effect of platinum oncarbon-supported ruthenium-tin catalysts used for hydrogenation reactions ofcarboxylic acids.Y.Hara,K.Endou.Applied Catalysis A:General 239(2003)181–195)采用Ru-Sn-Pt/C催化剂进行加氢反应,尽管其1,4-环己烷二甲酸的转化率达到了98%,但1,4-环己烷二甲醇的最高收率仅为81.6%,US6495730采用的Ru-Sn-Re/C催化剂进行加氢反应,其1,4-环己烷二甲醇的收率也仅为75%。
发明内容
本发明所要解决的问题是现有技术中存在的1,4-环己烷二甲酸加氢制备1,4-环己烷二甲醇收率低的问题,提供一种1,4-环己烷二甲酸加氢方法。该方法具有1,4-环己烷二甲酸加氢生成1,4-环己烷二甲醇收率高的特点。
为了解决上述技术问题,本发明采用的技术方案如下:1,4-环己烷二甲酸加氢方法,包括如下步骤:以水为溶剂,在加氢催化剂存在下,1,4-环己烷二甲酸与氢气反应得到1,4-环己烷二甲醇,其中所述加氢催化剂,包括载体、活性组分和助催化剂,所述载体为活性炭,活性组分包括Re,所述助催化剂包括Zn。
上述技术方案中,优选反应温度为180~250℃;反应温度更优选为200~230℃。
上述技术方案中,优选氢气压力为5~12MPa;氢气压力优选为8~10MPa。
上述技术方案中,1,4-环己烷二甲酸与水的质量比优选为1:(1~10),更优选为1:(4~7)。
上述技术方案中,优选反应时间为1~5小时。
上述技术方案中,所述活性组分优选包括Ru,Ru与Re在提高1,4-环己烷二甲醇收率方面具有协同作用。
上述技术方案中,所述活性组分优选包括Co,Ru和Co在提高1,4-环己烷二甲醇收率方面具有协同作用。
上述技术方案中,所述活性组份优选同时包括Ru和Co,Ru和Co在提高1,4-环己烷二甲醇收率方面具有协同作用。
上述技术方案中,所述助催化剂优选包括P,Zn和P在提高1,4-环己烷二甲醇收率和提高1,4-环己烷二甲醇选择性方面具有协同作用。
上述技术方案中,最优选的是,所述活性组分同时包括Ru、Re和Co,所述助催化剂同时包括Zn和P,Ru、Re、Co、Zn和P在提高1,4-环己烷二甲醇收率和提高1,4-环己烷二甲醇选择性方面具有相互组合的促进效果。
上述技术方案中,催化剂中Ru含量优选为大于0g/L且10g/L以下,例如但不限于0.013g/L、0.13g/L、0.53g/L、1.03g/L、1.53g/L、2.03g/L、2.53g/L、3.03g/L、3.53g/L、4.03g/L、5.03g/L、6.03g/L、7.03g/L、8.03g/L、9.03g/L。催化剂中Ru含量更优选为0.5~6g/L。
上述技术方案中,催化剂中Re含量优选为大于0g/L且10g/L以下,例如但不限于0.013g/L、0.13g/L、0.53g/L、1.03g/L、1.53g/L、2.03g/L、2.53g/L、3.03g/L、3.53g/L、4.03g/L、5.03g/L、6.03g/L、7.03g/L、8.03g/L、9.03g/L。催化剂中Re含量更优选为0.5~6g/L。
上述技术方案中,催化剂中Co含量优选大于0g/L且10g/L以下,例如但不限于0.013g/L、0.13g/L、0.53g/L、1.03g/L、1.53g/L、2.03g/L、2.53g/L、3.03g/L、3.53g/L、4.03g/L、5.03g/L、6.03g/L、7.03g/L、8.03g/L、9.03g/L。催化剂中Co含量更优选为0.5~6g/L。
上述技术方案中,催化剂中Zn含量优选为大于0且10g/L以下,例如但不限于0.013g/L、0.13g/L、0.53g/L、1.03g/L、1.53g/L、2.03g/L、2.53g/L、3.03g/L、3.53g/L、4.03g/L、5.03g/L、6.03g/L、7.03g/L、8.03g/L、9.03g/L。催化剂中Zn含量更优选为0.5~5g/L。
上述技术方案中,催化剂中P含量优选为大于0且10g/L以下,例如但不限于0.013g/L、0.13g/L、0.53g/L、1.03g/L、1.53g/L、2.03g/L、2.53g/L、3.03g/L、3.53g/L、4.03g/L、5.03g/L、6.03g/L、7.03g/L、8.03g/L、9.03g/L。催化剂中P含量更优选为0.5~5g/L
本发明的关键是活性组份和助剂的选择,而对活性炭种类和本身的指标参数没有特别限制,本领域技术人员可以合理选择。关于活性炭种类,例如但不限于活性炭可以为煤质、果壳炭,果壳炭中作为非限制性举例可以为椰壳炭。关于活性炭的粒度,例如但不限于10~200目(例如但不限于20目、30目、40目、50目、60目、70目、80目、90目、100目、120目、150目、180目等等);关于活性炭的比表面,例如但不限于0.01~1500m2/g,在这个范围内非限制性举例为900m2/g、1000m2/g、1100m2/g、1200m2/g、1300m2/g、1400m2/g等等;关于活性炭的平均孔容,例如但不限于0.1~0.7cm3/g,在这个范围内非限制性举例为0.1cm3/g、0.2cm3/g、0.3cm3/g、0.4cm3/g、0.6cm3/g、0.7cm3/g等等。为了同比计,本发明具体实施方式中的活性炭为椰壳炭,粒度为60~80目,比表面为1056m2/g,平均孔容为0.32cm3/g。
上述技术方案中,所述加氢催化剂可以采用包括如下步骤的方法制备:
a)将活性组份的化合物和助催化剂元素的化合物的溶液与活性炭混合;
b)用还原剂将活性组份的化合物中的活性组份元素还原为单质。
上述技术方案中,步骤b)所述的还原剂优选为氢气、甲醛、水合肼、硼氢化钠、甲酸或甲酸钠中的至少一种。具体的还原工艺条件根据步骤b)所达到的目标本领域技术人员可以合理选择并且不需要付出创造性劳动。例如,当采用氢气体积浓度为2~4%的氢气氮气混合气进行还原是,采用的温度例如但不限于150~300℃。还原的时间例如可以是1~5小时。
P的引入可以是任意含磷化合物。
本发明的关键是催化剂的选择,对于具体的工艺方法和工艺条件,本领域的技术人员可以合理选择。
从具体实施方式的数据可以看出,本发明催化剂用于所述合成反应时,原料1,4-环己烷二甲酸的转化率达到了99.3%,目标产物CHDM的选择性也达到了96.5%,也即CHDM的收率达到了95.8%,取得了较好的技术效果。
具体实施方式
【实施例1】
催化剂的制备
将RuCl3·3H2O和ZnCl2溶于水,得到含6克Ru和4克Zn的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为6g/L,Zn含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
【实施例2】
催化剂的制备
将RuCl3·3H2O和Na2HPO4溶于水,得到含6克Ru和4克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为6g/L,P含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
【实施例3】
催化剂的制备
将ReCl3·6H2O和ZnCl2溶于水,得到含6克Re和4克Zn的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Re含量为6g/L,Zn含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
【实施例4】
催化剂的制备
将ReCl3·6H2O和Na2HPO4溶于水,得到含6克Re和4克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Re含量为6g/L,P含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
【实施例5】
催化剂的制备
将Co(OAc)2·4H2O和ZnCl2溶于水,得到含6克Co和4克Zn的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Co含量为6g/L,Zn含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
【实施例6】
催化剂的制备
将Co(OAc)2·4H2O和Na2HPO4溶于水,得到含6克Co和4克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Co含量为6g/L,P含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
【实施例7】
催化剂的制备
将RuCl3·3H2O、ReCl3·6H2O和ZnCl2溶于水,得到含3克Ru、3克Re和4克Zn的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为3g/L,Re含量为3g/L,Zn含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例7与实施例1和实施例3同比可以看出,Ru和Re在提高1,4-环己烷二甲醇收率方面具有协同作用。
【实施例8】
催化剂的制备
将RuCl3·3H2O、ReCl3·6H2O和Na2HPO4溶于水,得到含3克Ru、3克Re和4克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为3g/L,Re含量为3g/L,P含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例8与实施例2和实施例4同比可以看出,Ru和Re在提高1,4-环己烷二甲醇收率方面具有协同作用。
【实施例9】
催化剂的制备
将ReCl3·6H2O、Co(OAc)2·4H2O和ZnCl2溶于水,得到含3克Re、3克Co和4克Zn的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Re含量为3g/L,Co含量为3g/L,Zn含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例9与实施例3和实施例5同比可以看出,Re和Co在提高1,4-环己烷二甲醇收率方面具有协同作用。
【实施例10】
催化剂的制备
将ReCl3·6H2O、Co(OAc)2·4H2O和Na2HPO4溶于水,得到含3克Re、3克Co和4克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Re含量为3g/L,Co含量为3g/L,P含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例10与实施例4和实施例6同比可以看出,Re和Co在提高1,4-环己烷二甲醇收率方面具有协同作用。
【实施例11】
催化剂的制备
将RuCl3·3H2O、Co(OAc)2·4H2O和ZnCl2溶于水,得到含3克Ru、3克Co和4克Zn的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为3g/L,Co含量为3g/L,Zn含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例11与实施例1和实施例5同比可以看出,Ru和Co在提高1,4-环己烷二甲醇收率方面具有协同作用。
【实施例12】
催化剂的制备
将RuCl3·3H2O、Co(OAc)2·4H2O和Na2HPO4溶于水,得到含3克Ru、3克Co和4克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为3g/L,Co含量为3g/L,P含量为4g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例12与实施例2和实施例6同比可以看出,Ru和Co在提高1,4-环己烷二甲醇收率方面具有协同作用。
【实施例13】
催化剂的制备
将RuCl3·3H2O、ReCl3·6H2O和ZnCl2、Na2HPO4溶于水,得到含3克Ru、3克Re和3克Zn、1克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为3g/L,Re含量为3g/L,Zn含量为3g/L,P含量为1g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例13与实施例7和实施例8同比可以看出,Zn和P在提高1,4-环己烷二甲醇收率和提高1,4-环己烷二甲醇选择性方面具有协同作用。
【实施例14】
催化剂的制备
将ReCl3·6H2O、Co(OAc)2·4H2O和ZnCl2、Na2HPO4溶于水,得到含3克Re、3克Co和3克Zn、1克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Re含量为3g/L,Co含量为3g/L,Zn含量为3g/L,P含量为1g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例14与实施例9和实施例10同比可以看出,Zn和P在提高1,4-环己烷二甲醇收率和提高1,4-环己烷二甲醇选择性方面具有协同作用。
【实施例15】
催化剂的制备
将RuCl3·3H2O、Co(OAc)2·4H2O和ZnCl2、Na2HPO4溶于水,得到含3克Ru、3克Co和3克Zn、1克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为3g/L,Co含量为3g/L,Zn含量为3g/L,P含量为1g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例15与实施例11和实施例12同比可以看出,Zn和P在提高1,4-环己烷二甲醇收率和提高1,4-环己烷二甲醇选择性方面具有协同作用。
【实施例16】
催化剂的制备
将RuCl3·3H2O、ReCl3·6H2O、Co(OAc)2·4H2O和ZnCl2、Na2HPO4溶于水,得到含2.5克Re、2.5克Re、1克Co和3克Zn、1克P的浸渍液1200毫升,将所述浸渍液与1L活性炭混合,浸渍24h,在80℃下干燥6小时,然后在氢气氮气混合气(混合气中氢气体积浓度为3%)250℃还原3h得到催化剂成品。
ICP-AES分析,催化剂中的Ru含量为2.5g/L,Re含量为2.5g/L,Co含量为1g/L,Zn含量为3g/L,P含量为1g/L。
1,4-环己烷二甲醇的合成
将150g 1,4-环己烷二甲酸和600g水加入高压釜,加入50ml上述所得的催化剂,开启搅拌,先通入氮气置换三次,在通入氢气置换三次,然后通入氢气使氢气压力升至8.5MPa并保持稳定,维持反应温度230℃,并连续通入氢气反应3h。反应结束后,趁热滤除催化剂,用液相色谱和气相色谱分别分析反应液,计算CHDA转化率、CHDM选择性及CHDM的收率。
为便于比较,将催化剂组成和合成反应结果列于表1。
通过实施例16与实施例1~15同比可以看出,Ru、Re、Co、Zn和P在提高1,4-环己烷二甲醇收率和提高1,4-环己烷二甲醇选择性方面具有相互组合的促进效果。
表1
Figure BDA0001363291880000141

Claims (8)

1.1,4-环己烷二甲酸加氢方法,包括如下步骤:以水为溶剂,在加氢催化剂存在下,1,4-环己烷二甲酸与氢气反应得到1,4-环己烷二甲醇,其中所述加氢催化剂,包括载体、活性组分和助催化剂,所述载体为活性炭,活性组分包括Re和Ru,所述助催化剂包括Zn和P;
其中,Re含量为大于0g/L且10g/L以下;Ru含量为大于0g/L且10g/L以下;Zn含量为大于0g/L且10g/L以下;P含量为大于0且10g/L以下。
2.根据权利要求1所述的加氢方法,其特征是反应温度为180~250℃。
3.根据权利要求1所述的加氢方法,其特征是氢气压力为5~12MPa。
4.根据权利要求1所述的加氢方法,其特征是1,4-环己烷二甲酸与水的质量比为1:(1~10)。
5.根据权利要求1所述的加氢方法,其特征是反应时间为1~5小时。
6.根据权利要求1所述的加氢方法,其特征是催化剂中Re含量为0.5~6g/L。
7.根据权利要求1所述的加氢方法,其特征是催化剂中Zn含量为0.5~5g/L。
8.根据权利要求1~7中任一项所述的加氢方法,其特征是所述的加氢催化剂采用包括如下步骤制备:
a)将活性组份的化合物和助催化剂元素的化合物的溶液与活性炭混合;
b)用还原剂将活性组份的化合物中的活性组份元素还原为单质。
CN201710628279.1A 2017-07-28 2017-07-28 1,4-环己烷二甲酸加氢方法 Active CN109305886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710628279.1A CN109305886B (zh) 2017-07-28 2017-07-28 1,4-环己烷二甲酸加氢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710628279.1A CN109305886B (zh) 2017-07-28 2017-07-28 1,4-环己烷二甲酸加氢方法

Publications (2)

Publication Number Publication Date
CN109305886A CN109305886A (zh) 2019-02-05
CN109305886B true CN109305886B (zh) 2021-10-01

Family

ID=65202576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710628279.1A Active CN109305886B (zh) 2017-07-28 2017-07-28 1,4-环己烷二甲酸加氢方法

Country Status (1)

Country Link
CN (1) CN109305886B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037996A (en) * 1988-12-14 1991-08-06 Tonen Corporation Process for producing 1,4-butanediol
CN1374884A (zh) * 1999-09-21 2002-10-16 旭化成株式会社 用于氢化羧酸的催化剂
CN105498763A (zh) * 2014-09-25 2016-04-20 中国石油化工股份有限公司 1,4-环己烷二甲醇催化剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037996A (en) * 1988-12-14 1991-08-06 Tonen Corporation Process for producing 1,4-butanediol
CN1374884A (zh) * 1999-09-21 2002-10-16 旭化成株式会社 用于氢化羧酸的催化剂
CN105498763A (zh) * 2014-09-25 2016-04-20 中国石油化工股份有限公司 1,4-环己烷二甲醇催化剂

Also Published As

Publication number Publication date
CN109305886A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
CN107282045B (zh) 用于制备1,4-环己烷二甲醇的催化剂
CN103877991B (zh) 反式-1,4-环己烷二甲醇的生产方法及其所用催化剂
CN105498763B (zh) 1,4‑环己烷二甲醇催化剂
CN109304161B (zh) 用于1,4-环己烷二甲酸加氢的催化剂
CN104549254B (zh) 己二酸直接还原制1,6‑己二醇的催化剂
CN109305887B (zh) 用于1,4-环己烷二甲酸加氢的方法
CN109304166B (zh) 1,4-环己烷二甲酸加氢的催化剂
CN109304160B (zh) 适于1,4-环己烷二甲酸的加氢催化剂
CN109304191B (zh) 适于1,4-环己烷二甲酸加氢的催化剂
CN100465145C (zh) 1,4-环己烷二甲醇的制备方法
CN109305886B (zh) 1,4-环己烷二甲酸加氢方法
CN109305883B (zh) 1,4-环己烷二甲醇的生产方法
CN109305884B (zh) 适于1,4-环己烷二甲酸的加氢方法
CN109304168B (zh) 用于1,4-环己烷二甲酸的加氢催化剂
CN109305888B (zh) 适于1,4-环己烷二甲酸加氢的方法
CN107282104B (zh) 用于1,4-环己烷二甲醇合成的催化剂
CN109305885B (zh) 1,4-环己烷二甲醇的合成方法
CN109304167B (zh) 1,4-环己烷二甲酸加氢催化剂
CN105582927B (zh) 1,4‑环己烷二甲醇催化剂和其制备方法
CN107282044B (zh) 1,4-环己烷二甲酸合成用催化剂
CN111068724B (zh) 用于1,4-环己烷二甲酸生产的催化剂和其应用
CN105582914B (zh) 对苯二甲酸的氢化催化剂
CN105435811B (zh) 1,4‑环己烷二甲醇催化剂及其制备方法
KR102570842B1 (ko) 불균일계 이산화탄소 전환반응용 촉매 복합체
CN111068725B (zh) 用于制备1,4-环己烷二甲酸的催化剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant