CN109301272A - 一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法 - Google Patents

一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法 Download PDF

Info

Publication number
CN109301272A
CN109301272A CN201811102417.3A CN201811102417A CN109301272A CN 109301272 A CN109301272 A CN 109301272A CN 201811102417 A CN201811102417 A CN 201811102417A CN 109301272 A CN109301272 A CN 109301272A
Authority
CN
China
Prior art keywords
coke tar
biomass coke
catalyst
biomass
precipitated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811102417.3A
Other languages
English (en)
Inventor
袁浩然
李德念
陈会兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201811102417.3A priority Critical patent/CN109301272A/zh
Publication of CN109301272A publication Critical patent/CN109301272A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法,以生物质焦油为碳源,通过氢氧化钾与软模板辅助高温碳化耦合氨气还原,利用高温碱活化与软模板致孔提升材料比表面积与石墨化程度,并通过氮掺杂提升材料催化活性、选择性以及稳定性,得到的催化剂具有原材料成本低、来源广、催化活性强、稳定性较好等特点。

Description

一种生物质焦油制备具有氧还原与氧析出活性的双功能催化 剂的方法
技术领域:
本发明涉及纳米功能材料技术领域,具体涉及一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法。
背景技术:
开发环境友好的新能源技术是未来世界能源发展的重要方向,燃料电池、金属空气电池、电解水装置等被认为是解决未来能源问题的关键。然而,涉及的氧电极反应即氧气还原反应(ORR)与氧气析出反应(OER)都依赖于高活性催化剂以克服其自身的超电势及慢动力学等问题,如贵金属Pt与贵金属氧化物RuO2、IrO2,但铂基催化剂通常在催化反应过程中出现易溶解、甲醇中毒等现象;RuO2和IrO2对氧气析出反应OER有很高的催化活性,但是在高电压下会转化成更高价态的氧化物,稳定性较差,同时其存量少、价格昂贵的特点也成为了限制此类新兴技术大规模商业化应用的重大瓶颈。因此,开发用于氧还原反应和析氧反应的低成本、高活性、高抗毒性、高稳定性双功能非贵金属催化剂对于燃料电池和金属-空气电池等新能源技术发展和应用具有非常重要的意义。
生物质焦油是生物质热解气化过程中产生的副产物,含有大量的氧元素以及活性物质如醛、醇和芳香烃类化合物,主要成分为芳香化合物,另外,根据生物质原料和热解条件的不同,热解焦油中还含有数量不等的多环芳烃等有机污染物。与煤焦油可作为重要的化工原料不同,生物质热解产生的焦油属于危险废弃物的范畴,到目前为止,除直接燃烧并无其他的资源化利用途径。随着热解技术在废弃生物质处理处置方面的广泛应用,产生了越来越多的焦油,它是制约生物质热解气化技术发展的瓶颈问题。
发明内容:
本发明的目的是提供一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法,以生物质焦油为碳源,通过氢氧化钾与软模板辅助高温碳化耦合氨气还原制备出氮掺杂碳基双功能催化材料,旨在利用高温碱活化与软模板致孔提升材料比表面积与石墨化程度,并通过氮掺杂提升材料催化活性、选择性以及稳定性。
本发明是通过以下技术方案予以实现的:
一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法,该方法以生物质焦油为碳源,通过氢氧化钾与软模板辅助高温碳化耦合氨气还原制备出氮掺杂碳基双功能催化材料,包括以下步骤:
1)生物质焦油分散于去离子水,先加入KOH,超声,常温下搅拌,然后加入软模板F127的水溶液,并搅拌4-6h混合均匀,随后放进烘箱100℃进行干燥20-24h得到干燥后样品;生物质焦油在水中的质量浓度为0.1-2g/ml,生物质、KOH与F127的质量比为1:2-3:2-3;
2)步骤1)干燥后样品在氮气气氛下以2-10℃/min的升温速率升温到900℃进行热解,反应停留时间为1-3h,反应结束后自然冷却至室温,得到多孔碳材料;
3)步骤2)得到的多孔碳材料与10wt%盐酸溶液进行混合,常温酸洗12-36h,然后对溶液进行过滤,滤渣用去离子水洗至中性,100℃下干燥20-24h;
4)将步骤3)干燥后的样品在氨气气氛下以2-10℃/min的升温速率升温到700-1000℃进行煅烧,停留时间为0.5-1h得到目标双功能催化剂。
生物质焦油是生物质热解气化过程中产生的副产物,主要成分为芳香化合物,易于转化为石墨化程度较高的炭材料,在用作电极材料时有利于促进电化学反应中的电子转移。氮原子的嵌入可以进一步改变局部相邻碳原子的电子密度,并增强材料局部电负性,使得氮原子周围的碳原子带有更多的正电荷,有利于氧气的吸附活化和解离,进而促进ORR;另一方面,石墨氮位于碳层的中间,可在碳平面内替换碳原子,石墨氮的引入往往伴随着表面缺陷的产生,能提供更多的活性位点,有效降低阳极反应的起始电位,使反应尽可能在水的理论分解电压附近发生,有利于OER进行。
本发明的有益效果如下:
1)生物质焦油是生物质热解气化过程中产生的副产物,来源广泛,价格低廉。
2)利用KOH对生物质焦油进行活化,增大了催化剂的比表面积,增加了活性位点,有利用于氧气的传输以及反应的进行。
3)利用氨气对碳材料进行改性,增大了催化剂中N的含量,N诱导材料产生结构缺陷,改变材料的电负性,有利于氧气的吸附活化以及活化解离,增加催化剂的活性。
4)催化剂具有良好的稳定性,经过6000s后,其耐久性优于商业Pt/C催化剂。
总之,本发明以生物质焦油为碳源,通过氢氧化钾与软模板辅助高温碳化耦合氨气还原,利用高温碱活化与软模板致孔提升材料比表面积与石墨化程度,并通过氮掺杂提升材料催化活性、选择性以及稳定性,得到的催化剂具有原材料成本低、来源广、催化活性强、稳定性较好等特点,测得催化氧还原反应启动电压为-0.18V--0.03V,极限扩散电流密度为-6.14mA/cm2--4.77mA/cm2;催化析氧反应的电势差(ΔE=Ej=10-E1/2)为0.87V-1.04V,低于氧化钌1.21V;催化剂稳定性较好,经过6000s后,其耐久性优于商业Pt/C催化剂。
附图说明:
图1是实施例1制备的催化剂SEM图。
图2是实施例1制备的催化剂TEM图。
图3是实施例1制备的催化剂Raman图。
图4是实施例1制备的催化剂CV图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
8g生物质焦油分散于50ml去离子水,加入24g氢氧化钾,超声30min,常温下搅拌10min,得混合溶液1。24g F127溶于100ml去离子水,常温搅拌1h,得溶液2。将溶液1和溶液2混合,常温搅拌4h,100℃下干燥24h。烘干后的样品在氮气气氛下以2℃/min进行900℃热解,反应停留时间为3h,反应结束后自然冷却至室温,得到多孔碳材料。将得到的多孔碳材料与150ml 10wt%盐酸溶液进行混合,常温酸洗24h,然后对溶液进行过滤,用去离子水洗至中性,100℃下干燥24h。将干燥后的样品在氨气气氛下以10℃/min进行900℃煅烧,停留时间为0.5h得到目标双功能催化剂。
如图1所示,所得的催化剂呈片状结构,表面粒子分布均匀。如图2所示,所得的催化剂为层状结构,由无序结构和石墨化结构短程拓扑组成,利于电子和离子的迁移,以及O2的运输。图3所示为合成催化剂的Raman图,D峰(1320~1350cm-1)、G峰(1570~1585cm-1)、2D峰(2640~2680cm-1)是催化剂主要的特征峰。D峰由缺陷和无序诱导产生,用于评估材料的缺陷水平和杂质含量,G峰代表完整的sp2片层结构,反映了催化剂的石墨化程度,2D峰是石墨烯的主要特征峰。
为了检验催化剂的催化活性,将合成的催化剂20mg放入超声瓶中,加入800μL异丙醇溶液、150μL去离子水以及50μL 20wt%Nafion溶液,30℃超声1h后用微量取液器取6μL墨汁到玻碳电极上。评价催化剂的电解液是0.1M KOH溶液。室温下将三电极进入氧饱和的电解液中进行循环伏安扫描。扫描时转速为1600rpm,扫速为10mv/s,扫描范围为-0.8~0.4V,起始电位越高,极限扩散电流密度越大,催化剂活性越好。测得启动电压为-0.03V,极限扩散电流密度为-6.14mA/cm2
催化剂的稳定性测试,通过计时电位法,设定电流检测电压的变化,电压增加表明催化剂活性变差:计时电流法,设定电压,检测电流变化,电流下降表明活性下降。
如图4所示,本发明检测了不同温度、不同停留时间下样品的电催化活性,结果显示温度越高,其启动电压越正、极限扩散电流密度越大,催化活性越好。
实施例2:
参考实施例1,不同之处在于:将干燥后的样品在氨气气氛下以10℃/min进行900℃煅烧,停留时间为1h。
催化剂活性测试及稳定性测试同实施例一,测得启动电压为-0.05V,极限扩散电流密度为-4.77mA/cm2
实施例3:
参考实施例1,不同之处在于:将干燥后的样品在氨气气氛下以10℃/min进行1000℃煅烧,停留时间为0.5h。
催化剂活性测试及稳定性测试同实施例一,测得启动电压为-0.05V,极限扩散电流密度为-4.90mA/cm2

Claims (1)

1.一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法,其特征在于,该方法以生物质焦油为碳源,通过氢氧化钾与软模板辅助高温碳化耦合氨气还原制备出氮掺杂碳基双功能催化材料,包括以下步骤:
1)生物质焦油分散于去离子水,先加入KOH,超声,常温下搅拌,然后加入软模板F127的水溶液,并搅拌4-6h混合均匀,随后放进烘箱100℃进行干燥20-24h得到干燥后样品;生物质焦油在水中的质量浓度为0.1-2g/ml,生物质、KOH与F127的质量比为1:2-3:2-3;
2)步骤1)干燥后样品在氮气气氛下以2-10℃/min的升温速率升温到900℃进行热解,反应停留时间为1-3h,反应结束后自然冷却至室温,得到多孔碳材料;
3)步骤2)得到的多孔碳材料与10wt%盐酸溶液进行混合,常温酸洗12-36h,然后对溶液进行过滤,滤渣用去离子水洗至中性,100℃下干燥20-24h;
4)将步骤3)干燥后的样品在氨气气氛下以2-10℃/min的升温速率升温到700-1000℃进行煅烧,停留时间为0.5-1h得到目标双功能催化剂。
CN201811102417.3A 2018-09-20 2018-09-20 一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法 Pending CN109301272A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811102417.3A CN109301272A (zh) 2018-09-20 2018-09-20 一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811102417.3A CN109301272A (zh) 2018-09-20 2018-09-20 一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法

Publications (1)

Publication Number Publication Date
CN109301272A true CN109301272A (zh) 2019-02-01

Family

ID=65163967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811102417.3A Pending CN109301272A (zh) 2018-09-20 2018-09-20 一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法

Country Status (1)

Country Link
CN (1) CN109301272A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755704A (zh) * 2019-03-27 2020-10-09 中南大学 一种新型多孔碳阴极锂空气电池的制备方法
CN113292071A (zh) * 2021-05-16 2021-08-24 江苏筑原生物科技研究院有限公司 一种焦油碳的制备及其在氮气还原中的应用
CN113363467A (zh) * 2021-06-18 2021-09-07 广东凯金新能源科技股份有限公司 一种氮掺杂高容量硬碳负极材料及其制备方法
CN114426278A (zh) * 2022-01-24 2022-05-03 西安交通大学 一种纳米碳球修饰的生物质焦油基氮掺杂多孔碳及其制备方法
CN114634171A (zh) * 2022-02-28 2022-06-17 东南大学 基于冰模板调控的生物质基笼状多孔碳制备方法及其应用
CN114715876A (zh) * 2022-04-19 2022-07-08 中国科学院过程工程研究所 一种生物质焦油基双功能碳基电催化材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466598A (zh) * 2013-09-13 2013-12-25 中盈长江国际新能源投资有限公司 基于生物质基制备含氮有序介孔碳材料的方法
CN103855366A (zh) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 一种锂-空气电池正极用氮掺杂的多孔碳材料
CN104030268A (zh) * 2014-05-20 2014-09-10 北京林业大学 一种生物油酚醛树脂制备介孔炭的方法
WO2014186207A2 (en) * 2013-05-13 2014-11-20 University Of Connecticut Mesoporous materials and processes for preparation thereof
CN106115658A (zh) * 2016-06-27 2016-11-16 梅庆波 一种利用竹焦油制备炭气凝胶的方法
CN108264045A (zh) * 2018-02-02 2018-07-10 中国科学院生态环境研究中心 废弃生物质热解焦油制备超高比表面积多孔炭材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855366A (zh) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 一种锂-空气电池正极用氮掺杂的多孔碳材料
WO2014186207A2 (en) * 2013-05-13 2014-11-20 University Of Connecticut Mesoporous materials and processes for preparation thereof
CN103466598A (zh) * 2013-09-13 2013-12-25 中盈长江国际新能源投资有限公司 基于生物质基制备含氮有序介孔碳材料的方法
CN104030268A (zh) * 2014-05-20 2014-09-10 北京林业大学 一种生物油酚醛树脂制备介孔炭的方法
CN106115658A (zh) * 2016-06-27 2016-11-16 梅庆波 一种利用竹焦油制备炭气凝胶的方法
CN108264045A (zh) * 2018-02-02 2018-07-10 中国科学院生态环境研究中心 废弃生物质热解焦油制备超高比表面积多孔炭材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIN GAOXIN: "KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction", 《ELECTROCHIMICA ACTA》 *
肖波等: "《生物质热化学转化技术》", 30 June 2016, 冶金工业出版社 *
陈昆柏等: "《农业固体废物处理与处置》", 30 November 2016, 生物质热化学转化技术 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755704A (zh) * 2019-03-27 2020-10-09 中南大学 一种新型多孔碳阴极锂空气电池的制备方法
CN113292071A (zh) * 2021-05-16 2021-08-24 江苏筑原生物科技研究院有限公司 一种焦油碳的制备及其在氮气还原中的应用
CN113363467A (zh) * 2021-06-18 2021-09-07 广东凯金新能源科技股份有限公司 一种氮掺杂高容量硬碳负极材料及其制备方法
CN114426278A (zh) * 2022-01-24 2022-05-03 西安交通大学 一种纳米碳球修饰的生物质焦油基氮掺杂多孔碳及其制备方法
CN114426278B (zh) * 2022-01-24 2023-01-24 西安交通大学 一种纳米碳球修饰的生物质焦油基氮掺杂多孔碳及其制备方法
CN114634171A (zh) * 2022-02-28 2022-06-17 东南大学 基于冰模板调控的生物质基笼状多孔碳制备方法及其应用
CN114715876A (zh) * 2022-04-19 2022-07-08 中国科学院过程工程研究所 一种生物质焦油基双功能碳基电催化材料及其制备方法

Similar Documents

Publication Publication Date Title
CN109301272A (zh) 一种生物质焦油制备具有氧还原与氧析出活性的双功能催化剂的方法
Zhu et al. Microorganism‐derived heteroatom‐doped carbon materials for oxygen reduction and supercapacitors
WO2018120067A1 (en) Waste biomass-derived metal-free catalysts for oxygen reduction reaction
Wang et al. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater
Gao et al. Enhancement of stability and activity of MnO x/Au electrocatalysts for oxygen evolution through adequate electrolyte composition
CN108380229B (zh) 一种磷掺杂钼酸钴析氢电催化剂的制备方法及其产品
CN109378482A (zh) 非贵金属催化材料负载的核壳催化剂、制备方法及其应用
CN107394215B (zh) 一种杂原子掺杂的功能化碳材料的制备及应用
CN105749912B (zh) 一种具有多形貌的金属掺杂w18o49电催化剂及其在电解水制氢中的应用
CN107308958B (zh) 一种析氧反应电化学催化剂及其制备和应用
Ricke et al. Molecular-level insights into oxygen reduction catalysis by graphite-conjugated active sites
CN103316706B (zh) 一种掺杂金属的聚苯胺与聚吡咯复合物碳化电催化剂及其制备方法
CN107376945B (zh) 一种铁基催化剂、制备方法及其在高效电催化水裂解方面的应用
CN108179433B (zh) 有序介孔碳负载纳米铱基电催化析氢电极及其制备及应用
CN107335451A (zh) 铂/二硫化钼纳米片/石墨烯三维复合电极催化剂的制备方法
CN106757143A (zh) 一种水分解反应用催化电极及其制备方法
CN105858815A (zh) 核壳结构NiCo2S4 @NiCo2O4纳米针复合催化电极的制备方法
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
He et al. Phosphorus Doped Multi‐Walled Carbon Nanotubes: An Excellent Electrocatalyst for the VO2+/VO2+ Redox Reaction
Ying et al. Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production
CN105932310A (zh) 硼氮掺杂石墨烯载钯催化剂
CN110721713A (zh) 一种Mo2C催化材料及其制备方法与应用
CN110400939A (zh) 一种生物质掺氮多孔碳氧还原催化剂的制备方法
CN112647091A (zh) 一种N/P/Ca原位掺杂生物炭及其在电分解水析氢中的应用
CN109860645B (zh) 一种生物胶固氮掺杂多孔碳的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190201