CN109278043A - 一种工业机器人折弯跟随方法 - Google Patents

一种工业机器人折弯跟随方法 Download PDF

Info

Publication number
CN109278043A
CN109278043A CN201811004368.XA CN201811004368A CN109278043A CN 109278043 A CN109278043 A CN 109278043A CN 201811004368 A CN201811004368 A CN 201811004368A CN 109278043 A CN109278043 A CN 109278043A
Authority
CN
China
Prior art keywords
bending
bending tool
robot
posture
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811004368.XA
Other languages
English (en)
Inventor
夏久零
邓璨宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRP AUTOMATION CONTROL TECHNOLOGY Co Ltd
Original Assignee
CRP AUTOMATION CONTROL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRP AUTOMATION CONTROL TECHNOLOGY Co Ltd filed Critical CRP AUTOMATION CONTROL TECHNOLOGY Co Ltd
Priority to CN201811004368.XA priority Critical patent/CN109278043A/zh
Publication of CN109278043A publication Critical patent/CN109278043A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种工业机器人折弯跟随方法,涉及工业机器人折弯跟随方法领域。包括以下步骤:根据折弯刀建立用户坐标系;基于用户坐标系获取工业机器人在折弯开始点的位置以及姿态;根据外部传感器反馈的折弯刀位置信息,计算出在一定采样周期内的数据变化量从而得出折弯刀的变化量及速度;通过结合折弯刀参数、折弯机速度以及板材参数计算出机器人在用户坐标系下的实时位置与姿态,在通过用户坐标系这个桥梁,找到折弯刀实时位置与姿态在直角坐标系下的位置与姿态。本发明解决了人工折弯同步性差、工件质量不稳定、生产效率差以及安全性低等问题。

Description

一种工业机器人折弯跟随方法
技术领域
本发明涉及机器人折弯跟随方法领域,特别涉及一种工业机器人折弯跟随方法。
背景技术
随着折弯件在工程机械产品上的广泛应用,为满足其产品质量和生产需要,其质量标准也逐渐提高。数控折弯机在冷态下可利用所配备的通用模具(或专用模具)将金属板材折弯或者各种所需要的几何截面形状的工件,折弯工艺的合理性直接影响到产品最终成型尺寸和外观。而目前大部分为人工配合折弯机进行工件加工,但是现在人工配合折弯机折弯板材存在几个问题:1、板材较大,人托举板材跟随折弯机折弯板材,速度不能保证,同步性信不好。2、人托举板材接触面较小,板材折弯过程中处于变形状态,折弯质量一致性不好,不能保证。3、折弯属于重复性劳动,生产过程中容易让人产生疲劳。从而带来安全隐患。4、生产效率不高。
发明内容
本发明的目的在于:提供了一种工业机器人折弯跟随方法,解决了人工折弯同步性差、工件质量不稳定、生产效率差以及安全性低等问题。
本发明采用的技术方案如下:
本发明一种工业机器人折弯跟随方法,包括以下步骤:
步骤A:建立用户坐标系:
A1:以折弯刀刀尖边缘所在轴线上一点为用户坐标原点ORG;
A2:以折弯刀刀尖边缘所在轴线方向为用户坐标YY方向;
A3:以折弯刀移动方向为用户坐标XX方向;
A4:基于右手法则确定Z轴方向;
A5:建立用户坐标原点时折弯刀刀尖边缘与折弯槽底部距离为D;
A6:基于用户坐标系获得机器人折弯开始点在用户坐标系下的位置P0(X0,Y0,Z0)和姿态Q0(N0,O0,M0);
步骤B:在折弯刀上设置光栅,采集周期△t内的反馈数据△P,得出折弯刀在周期△t内的速度V,其中
步骤C:根据机器人在折弯开始点相对折弯板的姿态,通过折弯刀上光栅采集的数据,得出机器人每个时刻t的位置Pt(Xt,Yt,Zt)和姿态Qt(Nt,Ot,Mt);
步骤D:采集折弯刀的宽度D;
步骤E:采集折弯刀初始状态下V槽的最大间距B;
步骤F:采集折弯刀初始状态下V槽的锐角角度β;
步骤G:计算折弯刀与折弯板V槽接触位置倒角圆圆心到折弯槽端面距离M,其中
步骤H:记录折弯刀的初始位置,采集折弯刀折弯后底面与折弯刀初始位置的底面相交点到折弯板V槽倒角圆圆心所在水平线的垂直距离H;
步骤I:采集折弯刀折弯后底面与折弯刀初始位置的底面的两个相交点的距离W;
步骤J:采集机器人的位移量S;
步骤K:采集折弯刀的倒角半径R;
步骤L:计算折弯刀位移后与初始位置的角度:
步骤M:采集标尺光栅与折弯刀接触面的中点所在的竖直线与折弯板V槽倒角圆圆心的水平距离L1;
步骤N:采集光栅读数头的中点到折弯刀初始位置的垂直距离I;
步骤O:计算周期t内Pt位置和姿态,其中:
Xt=Z0-L1+L1cosα+Isinα,
Yt=Y0
Zt=X0-{sinα·(L1-W/2cosα)-Icosα}=X0-L1sinα+Wtan/2+Icosα,
Nt=N0
Ot=O0+α,
Mt=M0
从而得出机器人的位置Pt(Xt,Yt,Zt)和姿态Qt(Nt,Ot,Mt);
步骤P:根据以上方法得出机器人控制点在用户坐标系下的实时t时刻和位置,从而得出控制点在直角坐标系下的实时位置和姿态,通过以上算法得出机器人控制点位置和姿态下的各个轴的关节角度α;
步骤Q:上位机通过计算控制驱动器配合运动各个轴,计算出机器人△t时间内位移量△S,从而计算出机器人末端速度△V。t+1时刻速度△Vt+1,K为增益比例;机器人速度Vr,其中从而利用公式Vr=△V(1-K)+△Vt+1K计算出机器人速度。
进一步地,所述k为衍射光谱的级次。
进一步地,所述K为增益比例。
进一步地,所述光栅包括标尺光栅和光栅读数头。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明一种工业机器人折弯跟随方法,使用机器人折弯,可以保证其速度稳定一致,提高折弯的同步性。
2.本发明一种工业机器人折弯跟随方法,使用上述算法,使得控制机器人准确进行每一次相同的动作,提高折弯质量的一致性。
3.本发明一种工业机器人折弯跟随方法,通过上述算法,控制机器人替代人工,减少了人工长期重复进行同一类生产的工作量,避免人工操作使得工作人员产生疲倦,提高了生产的安全性。
4.本发明一种工业机器人折弯跟随方法,通过上述算法,控制机器人替代人工操作,提高了生产效率。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的折弯刀位移图;
图2是本发明的流程图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
下面结合图1至图2对本发明作详细说明。
实施例1
包括以下步骤:
步骤A:建立用户坐标系:
A1:以折弯刀1刀尖边缘所在轴线上一点为用户坐标原点ORG;
A2:以折弯刀1刀尖边缘所在轴线方向为用户坐标YY方向;
A3:以折弯刀1移动方向为用户坐标XX方向;
A4:基于右手法则确定Z轴方向;
A5:建立用户坐标原点时折弯刀1刀尖边缘与折弯槽底部距离为D;
A6:基于用户坐标系获得机器人折弯开始点在用户坐标系下的位置P0(X0,Y0,Z0)和姿态Q0(N0,O0,M0);
步骤B:在折弯刀1上设置光栅,采集周期△t内的反馈数据△P,得出折弯刀1在周期△t内的速度V,其中
步骤C:根据机器人在折弯开始点相对折弯板的姿态,通过折弯刀1上光栅采集的数据,得出机器人每个时刻t的位置Pt(Xt,Yt,Zt)和姿态Qt(Nt,Ot,Mt);
步骤D:采集折弯刀1的宽度D;
步骤E:采集折弯刀1初始状态下V槽的最大间距B;
步骤F:采集折弯刀1初始状态下V槽的锐角角度β;
步骤G:计算折弯刀1与折弯板V槽接触位置倒角圆圆心到折弯槽端面距离M,其中
步骤H:记录折弯刀1的初始位置,采集折弯刀1折弯后底面与折弯刀1初始位置的底面相交点到折弯板V槽倒角圆圆心所在水平线的垂直距离H;
步骤I:获取折弯刀1折弯后底面与折弯刀1初始位置的底面的两个相交点的距离W;
步骤J:采集机器人的位移量S;
步骤K:采集折弯刀1的倒角半径R;
步骤L:计算折弯刀1位移后与初始位置的角度:
步骤M:采集标尺光栅与折弯刀1接触面的中点所在的竖直线与折弯板V槽倒角圆圆心的水平距离L1;
步骤N:采集光栅读数头的中点到折弯刀1初始位置的垂直距离I;
步骤O:计算周期t内Pt位置和姿态,其中:
Xt=Z0-L1+L1cosα+Isinα,
Yt=Y0
Zt=X0-{sinα·(L1-W/2cosα)-Icosα}=X0-L1sinα+Wtan/2+Icosα,
Nt=N0
Ot=O0+α,
Mt=M0
从而得出机器人的位置Pt(Xt,Yt,Zt)和姿态Qt(Nt,Ot,Mt);
步骤P:根据以上方法得出机器人控制点在用户坐标系下的实时t时刻和位置,从而得出控制点在直角坐标系下的实时位置和姿态,通过以上算法得出机器人控制点位置和姿态下的各个轴的关节角度α;
步骤Q:上位机通过计算控制驱动器配合运动各个轴,计算出机器人△t时间内位移量△S,从而计算出机器人末端速度△V。t+1时刻速度△Vt+1,K为增益比例;机器人速度Vr,其中从而利用公式Vr=△V(1-K)+△Vt+1K计算出机器人速度。
以上所述,仅为本发明的优选实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (4)

1.一种工业机器人折弯跟随方法,包括折弯刀(1),其特征在于:包括以下步骤:
步骤A:建立用户坐标系:
A1:以折弯刀(1)刀尖边缘所在轴线上一点为用户坐标原点ORG;
A2:以折弯刀(1)刀尖边缘所在轴线方向为用户坐标YY方向;
A3:以折弯刀(1)移动方向为用户坐标XX方向;
A4:基于右手法则确定Z轴方向;
A5:建立用户坐标原点时折弯刀(1)刀尖边缘与折弯槽底部距离为D;
A6:基于用户坐标系获得机器人折弯开始点在用户坐标系下的位置P0(X0,Y0,Z0)和姿态Q0(N0,O0,M0);
步骤B:在折弯刀(1)上设置光栅,采集周期△t内的反馈数据△P,得出折弯刀(1)在周期△t内的速度V,其中
步骤C:根据机器人在折弯开始点相对折弯板的姿态,通过折弯刀(1)上光栅采集的数据,得出机器人每个时刻t的位置Pt(Xt,Yt,Zt)和姿态Qt(Nt,Ot,Mt);
步骤D:采集折弯刀(1)的宽度D;
步骤E:采集折弯刀(1)初始状态下V槽的最大间距B;
步骤F:采集折弯刀(1)初始状态下V槽的锐角角度β;
步骤G:计算折弯刀(1)与折弯板V槽接触位置倒角圆圆心到折弯槽端面距离M,其中
步骤H:记录折弯刀(1)的初始位置,采集折弯刀(1)折弯后底面与折弯刀(1)初始位置的底面相交点到折弯板V槽倒角圆圆心所在水平线的垂直距离H;
步骤I:采集折弯刀(1)折弯后底面与折弯刀(1)初始位置的底面的两个相交点的距离W;
步骤J:采集机器人的位移量S;
步骤K:采集折弯刀(1)的倒角半径R;
步骤L:计算折弯刀(1)位移后与初始位置的角度:
步骤M:采集标尺光栅与折弯刀(1)接触面的中点所在的竖直线与折弯板V槽倒角圆圆心的水平距离L1
步骤N:采集光栅读数头的中点到折弯刀(1)初始位置的垂直距离I;
步骤O:计算周期t内Pt位置和Qt姿态,其中:
Xt=Z0-L1+L1cosα+Isinα,
Yt=Y0
Zt=X0-{sinα·(L1-W/2cosα)-Icosα}=X0-L1sinα+Wtan/2+Icosα,
Nt=N0
Ot=O0+α,
Mt=M0
从而得出机器人的位置Pt(Xt,Yt,Zt)和姿态Qt(Nt,Ot,Zt);
步骤P:根据以上方法得出机器人控制点在用户坐标系下的实时t时刻和位置,从而得出控制点在直角坐标系下的实时位置和姿态,通过以上算法得出机器人控制点位置和姿态下的各个轴的关节角度α;
步骤Q:上位机通过计算控制驱动器配合运动各个轴,计算出机器人△t时间内位移量△S,从而计算出机器人末端速度△V。t+1时刻速度△Vt+1,K为增益比例;机器人速度Vr,其中从而利用公式Vr=△V(1-K)+△Vt+1K计算出机器人速度。
2.根据权利要求1所述的一种工业机器人折弯跟随方法,其特征在于:所述k为衍射光谱的级次。
3.根据权利要求1所述的一种工业机器人折弯跟随方法,其特征在于:所述K为增益比例。
4.根据权利要求1所述的一种工业机器人折弯跟随方法,其特征在于:所述光栅包括标尺光栅和光栅读数头。
CN201811004368.XA 2018-08-30 2018-08-30 一种工业机器人折弯跟随方法 Pending CN109278043A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811004368.XA CN109278043A (zh) 2018-08-30 2018-08-30 一种工业机器人折弯跟随方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811004368.XA CN109278043A (zh) 2018-08-30 2018-08-30 一种工业机器人折弯跟随方法

Publications (1)

Publication Number Publication Date
CN109278043A true CN109278043A (zh) 2019-01-29

Family

ID=65183777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811004368.XA Pending CN109278043A (zh) 2018-08-30 2018-08-30 一种工业机器人折弯跟随方法

Country Status (1)

Country Link
CN (1) CN109278043A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590356A (zh) * 2019-01-30 2019-04-09 福建渃博特自动化设备有限公司 一种折弯跟随方法及终端
CN112536344A (zh) * 2020-11-03 2021-03-23 南京凡多智能科技有限公司 板材折弯角度控制系统
CN114505374A (zh) * 2022-02-25 2022-05-17 北京计算机技术及应用研究所 一种应用于自动折弯的实时跟随折弯与回弹消除方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615370A (ja) * 1992-06-29 1994-01-25 Amada Co Ltd 曲げロボットにおける曲げ追従動作方法および装置
JPH06122025A (ja) * 1992-10-14 1994-05-06 Komatsu Ltd プレスブレーキロボットシステムのワーク曲げ追従方法
US5359872A (en) * 1991-08-29 1994-11-01 Okuma Corporation Method and apparatus for sheet-metal processing
JPH08141653A (ja) * 1994-11-21 1996-06-04 Amada Co Ltd 曲げ加工装置用ロボットハンドの曲げ追従制御方法
CN1476944A (zh) * 2002-08-22 2004-02-25 王朝峰 金属板弯角的加工方法
CN101269777A (zh) * 2008-04-03 2008-09-24 宁波市鄞州欧菱电梯配件有限公司 电梯门地坎及其加工方法
CN103707299A (zh) * 2013-12-18 2014-04-09 南京埃斯顿机器人工程有限公司 一种实现折弯机器人折弯实时跟随的方法
CN104475504A (zh) * 2014-11-04 2015-04-01 上海新时达电气股份有限公司 机器人折弯实时跟随方法及其装置
CN104786015A (zh) * 2014-03-11 2015-07-22 浙江利都不锈钢有限公司 一种金属异型材的加工方法
CN105234213A (zh) * 2015-11-25 2016-01-13 福建骏鹏通信科技有限公司 一种机器人折弯自由插补方法
CN105911955A (zh) * 2016-06-23 2016-08-31 广州纽蓝客精密机床有限公司 具有内嵌机器人控制的折弯机数控系统装置及方法
WO2017113219A1 (zh) * 2015-12-30 2017-07-06 深圳配天智能技术研究院有限公司 折弯跟随轨迹规划方法、装置及系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359872A (en) * 1991-08-29 1994-11-01 Okuma Corporation Method and apparatus for sheet-metal processing
JPH0615370A (ja) * 1992-06-29 1994-01-25 Amada Co Ltd 曲げロボットにおける曲げ追従動作方法および装置
JPH06122025A (ja) * 1992-10-14 1994-05-06 Komatsu Ltd プレスブレーキロボットシステムのワーク曲げ追従方法
JPH08141653A (ja) * 1994-11-21 1996-06-04 Amada Co Ltd 曲げ加工装置用ロボットハンドの曲げ追従制御方法
CN1476944A (zh) * 2002-08-22 2004-02-25 王朝峰 金属板弯角的加工方法
CN101269777A (zh) * 2008-04-03 2008-09-24 宁波市鄞州欧菱电梯配件有限公司 电梯门地坎及其加工方法
CN103707299A (zh) * 2013-12-18 2014-04-09 南京埃斯顿机器人工程有限公司 一种实现折弯机器人折弯实时跟随的方法
CN104786015A (zh) * 2014-03-11 2015-07-22 浙江利都不锈钢有限公司 一种金属异型材的加工方法
CN104475504A (zh) * 2014-11-04 2015-04-01 上海新时达电气股份有限公司 机器人折弯实时跟随方法及其装置
CN105234213A (zh) * 2015-11-25 2016-01-13 福建骏鹏通信科技有限公司 一种机器人折弯自由插补方法
WO2017113219A1 (zh) * 2015-12-30 2017-07-06 深圳配天智能技术研究院有限公司 折弯跟随轨迹规划方法、装置及系统
CN105911955A (zh) * 2016-06-23 2016-08-31 广州纽蓝客精密机床有限公司 具有内嵌机器人控制的折弯机数控系统装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘荣: "折弯机器人折弯随动路径规划与运动控制", 《机械科学与技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590356A (zh) * 2019-01-30 2019-04-09 福建渃博特自动化设备有限公司 一种折弯跟随方法及终端
CN112536344A (zh) * 2020-11-03 2021-03-23 南京凡多智能科技有限公司 板材折弯角度控制系统
CN114505374A (zh) * 2022-02-25 2022-05-17 北京计算机技术及应用研究所 一种应用于自动折弯的实时跟随折弯与回弹消除方法

Similar Documents

Publication Publication Date Title
CN109278043A (zh) 一种工业机器人折弯跟随方法
CN104615083B (zh) 基于刀位点修改的曲面刀轨轮廓误差补偿方法
Mottet et al. The dynamics of goal-directed rhythmical aiming
CA2818709C (en) Method for printing on articles having a non-planar surface
CN106354098B (zh) 一种nurbs组合曲面上刀具加工轨迹生成方法
CN105643062B (zh) 基于旋转电弧的复杂曲面形状识别及焊枪位姿控制方法
CN106041937A (zh) 一种基于双目立体视觉的机械手抓取控制系统的控制方法
CN105598600B (zh) 一种箱型件焊缝自主寻位及轨迹自动生成方法
CN108161991A (zh) 一种基于力反馈的机器人装配自动寻孔方法
CN109318058A (zh) 一种基于数控机床的自适应加工方法
CN111673235A (zh) 一种机器人电弧3d打印层高调控方法及系统
CN102023616B (zh) 三角Bézier曲面数控精加工刀轨快速生成方法
CN111820545A (zh) 一种结合离线与在线扫描自动生成鞋底喷胶轨迹的方法
CN106217455B (zh) 一种确定金刚石尖劈刀机械刻划安装角度参数的方法
CN102452042B (zh) 一种机械加工方法和装置
CN105458372A (zh) 基于非可展直纹面的侧铣误差补偿装置及其刀位规划方法
CN106054814B (zh) 基于图像灰度的计算机辅助加工方法
CN111251189A (zh) 一种用于铸件打磨的视觉定位方法
CN105700469B (zh) 面向三角网格曲面数控加工的刀位点求取方法及其应用
CN103963303A (zh) 一种3d打印方法及其系统
CN110421406A (zh) 基于偏心差控制的刀具动态自适应补偿方法
CN104217458B (zh) 一种三维点云的快速配准方法
CN110695494B (zh) 波纹板外部轴跟踪系统及其方法
CN109590356B (zh) 一种折弯跟随方法及终端
CN113029049B (zh) 基于加权正负余量方差最小化算法的工件光学测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190129

RJ01 Rejection of invention patent application after publication