CN109265159A - 一种基于氧化锌的高性能新型ntc热敏电阻材料 - Google Patents

一种基于氧化锌的高性能新型ntc热敏电阻材料 Download PDF

Info

Publication number
CN109265159A
CN109265159A CN201811061914.3A CN201811061914A CN109265159A CN 109265159 A CN109265159 A CN 109265159A CN 201811061914 A CN201811061914 A CN 201811061914A CN 109265159 A CN109265159 A CN 109265159A
Authority
CN
China
Prior art keywords
temperature
thermistor
room temperature
ntc
processing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811061914.3A
Other languages
English (en)
Inventor
李志成
李鹏飞
张鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201811061914.3A priority Critical patent/CN109265159A/zh
Publication of CN109265159A publication Critical patent/CN109265159A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/30Apparatus or processes specially adapted for manufacturing resistors adapted for baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/044Zinc or cadmium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明涉及一种符合制备具有电阻负温度系数(NTC)热敏电阻的材料。本发明的NTC热敏电阻材料以氧化锌为主要成分组成,并含有铝、镧和铜为成分组成元素,可适应制备热敏陶瓷电阻元件、厚膜热敏电阻元件、薄膜热敏电阻元件。本发明材料可以通过改变所述成分组成元素的含量以调节热敏电阻元件的室温电阻率值和材料常数B值,可实现宽范围室温电阻值和宽范围材料常数B值的调节。本发明的热敏电阻材料,具有室温电阻率值和材料常数可调控和时效稳定高的特点,适用于温度测量、温度控制、抑制浪涌、线路补偿和红外探测,以及电路、电子元件的保护和流量、流速、射线测量仪器领域的应用。

Description

一种基于氧化锌的高性能新型NTC热敏电阻材料
技术领域
本发明涉及一种制备具有电阻负温度系数(NTC)效应的热敏电阻元件的材料。适用于温度测量、温度控制、线路补偿、红外探测、流量流速探测器,以及电子元件和电路的浪涌保护应用领域。
背景技术
热敏电阻传感器是以热敏电阻为关键元件、利用热敏电阻的电阻率随温度变化而变化的优异特性而制成的器件。按电阻率随温度变化的特征,热敏电阻元件主要包括正温度系数(PTC)热敏电阻元件和负温度系数(NTC)热敏电阻元件,PTC热敏电阻元件的电阻率随温度升高而增大,NTC热敏电阻元件的电阻率随温度升高而减小。NTC热敏电阻器件已广泛应用于测温、控温、温度补偿,电路和电子元件的保护,以及流速、流量、射线测量的相关仪器与应用领域,在日常生活、国民经济、军事及航空航天等领域得到了广泛应用。
按使用温度分类,NTC热敏电阻元件有低温型、常温型和高温型热敏电阻三种。常温型NTC热敏电阻元件,当前主要采用锰、铁、钴、镍、铜过渡金属的氧化物制成的尖晶石晶体结构的NTC热敏电阻元件。这种尖晶石结构的NTC热敏电阻材料得到了广泛的研究与应用。如:中国发明专利CN102627446A公布的Mn-Ni-O陶瓷系NTC热敏材料;中国发明专利CN1332405C公布的以锰、镍、镁、铝的硝酸盐为原材料、采用液相共沉淀法合成的NTC热敏电阻材料;中国发明专利CN101585707公布的Fe-Ni-Mn-Cr-O系NTC热敏陶瓷材料;美国发明专利6861622公开专利描述的锰-镍-钴-铁-铜系NTC热敏电阻材料。这些NTC热敏电阻材料的共同特性是含有至少两种过渡金属元素的氧化物,且以尖晶石型晶体结构为主晶相。
在采用过渡金属锰、铁、钴、镍、铜氧化物制成的多组分NTC热敏电阻材料中,由于这些过渡金属氧化物的挥发温度较低,这类NTC热敏电阻元件在制备烧结过程中容易造成原材料成分的挥发,使得产品的最终成分、产品一致性和不同生产批次之间的重复性难以控制。一般情况下,AB2O4型尖晶石晶体结构的NTC热敏电阻的室温电阻率主要依赖晶格B位的离子价态及浓度比(如锰酸盐尖晶石电阻材料中的[Mn4+]/[Mn3+Mn4+]),浓度比越高,电阻率越小。因此,这类材料的室温电阻率受烧结温度、烧结气氛、冷却速度等工艺的影响较大,易导致较低的产品一致性,且电阻率值不易于调控。同时,当前广泛应用的具有尖晶石结构的过渡金属氧化物NTC热敏电阻元件,在使用过程中容易产生阳离子缓慢重新分布而引起结构弛豫。这种弛豫现象会造成NTC陶瓷材料电学性能的不稳定,易导致热敏电阻元件的老化,影响热敏电阻传感器的测温精度等使用性能。
为了开发新型氧化物基NTC热敏电阻材料,科技工作者也开展了一些新材料体系的探索与研究。六方BaTiO3体系材料呈现良好的NTC性能(中国发明专利ZL 200910043274.8;中国发明专利ZL 2009 10303525.1),金红石型SnO2陶瓷具有良好的NTC特性(电子元件与材料,2009,6:56-59;Journal of Materials Science:Materials inElectronics,2015, 26: 6163-6169);LaCoO3基钙钛矿结构的NTC陶瓷已被报道(Journalof the European Ceramics Society,2000,20:2367-2376)。BaBiO3、BaSnO3、SrTiO3、YMnO3和LaMnO3等材料通过掺杂、复合等手段成功制得NTC热敏电阻(Journal of the AmericanCeramics Society,1997,80:2153-2156;Solid state Science,2006,8:137-141)。最近研究报道,掺杂改性的CuO基陶瓷也具有良好的NTC热敏性质(Journal of MaterialsScience:Materials in Electronics,2015,26:10151-10185;中国发明专利,专利申请号:201510360036.5、201610298467.8);掺杂改性的NiO基NTC热敏电阻材料、Y掺杂锌镍氧化物体系NTC热敏电阻材料也被相继得到(中国发明专利,专利申请号:201610298726.7、201610298669.2、201610296987.5、201610306430.5);镍锌镁基NTC热敏电阻材料、Li-Fe掺杂改性的镍锌氧化物体系、Al-Li掺杂改性的镍锌氧化物体系也被发现具有室温电阻和材料常数可调控的NTC热敏特性(中国发明专利,专利申请号:201711016767.3、201710948170.6、201710505976.8)。
随着电冰箱、空调、微波设备、汽车、通讯与航空航天等产业对NTC热敏电阻器的稳定性要求越来越高,改善现有成分体系或开发新型成分体系就显得十分重要。针对以上状况,本发明采用氧化锌为主要成分,通过微量元素掺杂进行材料改性,得到了具有优异NTC效应的热敏电阻材料体系;在该体系中,可以通过改变掺杂元素的含量来调节热敏电阻元件的室温电阻率和材料常数B值。
本发明选用氧化锌为主原料制备NTC热敏电阻材料,通过添加不大于8%摩尔含量的掺杂元素以调节材料的性能;NTC热敏电阻材料成分简单,电性能稳定,时效性能好,而且可大范围调控电气性能;所选原材料价格便宜,热敏电阻材料制备成本低。
发明内容
本发明的目的是提供一种能够制造具有电阻负温度系数效应的NTC热敏电阻材料体系。这种热敏电阻材料可以通过改变掺杂元素的含量以调节热敏电阻元件的室温电阻率和材料的温度常数。
本发明组成NTC热敏电阻材料的成分组成为:Zn1-x-y-zCuxLayAlzO,其中x=0.0005-0.04,y=0.0005-0.01,z=0.0005-0.02。
本发明组成NTC材料的关键组成为Zn1-x-y-zCuxLayAlzO,配方成分中含有锌、铝、镧和铜元素,其原材料可以是含这些元素的单质,也可以是含这些元素的氧化物、无机盐或有机盐化合物。其中,半导化掺杂元素铝和镧是为了调整电阻元件的室温电阻率,铜元素是为了调整热敏电阻元件的室温电阻率和材料常数B值。
按本发明实施例所述制备方法能获得高纯单相六方晶系的物相组成,所制备的NTC热敏电阻元件的性能稳定、可靠性高。
本发明的重点在于热敏电阻材料的成分配方,实际应用过程中可以根据需要对合成方法和生产工艺进行相应调整,灵活性大。例如,原材料可选用含有这些元素的单质、氧化物、无机盐或有机盐等物质;合成方法可采用固相反应法、共沉淀法、溶胶-凝胶法、气相沉积法或其他陶瓷材料的制备方法来实现。
本发明的NTC热敏电阻材料的性能检测是采用涂覆银电极,通过华中科技大学研制的R-T电阻温度测试系统测量电阻元件的室温电阻及电阻随温度升高的变化特性。实际生产和应用中,电极可选用其他材料如铝电极、In-Ga合金电极、Ni-Cr合金电极或者铜电极,性能测试也可选用其他电阻和电阻温度特性测试的仪器。
本发明涉及的NTC热敏电阻材料的特色和优势表现在:材料成分简单,原材料丰富,价格便宜,无毒且环境友好;适合陶瓷、薄膜等NTC热敏电阻元件的生产;通过调整半导化掺杂元素铝和镧的含量可大范围调节热敏电阻元件的室温电阻率值、材料常数和温度系数;通过调节成分组成中铜的含量,可以较大范围地调节热敏元件的材料室温电阻率和材料常数与温度系数;时效稳定性能好。
本发明NTC热敏电阻材料的电性能可实现以下参数要求:室温电阻率ρ25 = 600Ω·cm – 4 MΩ·cm,材料常数B=2000 K - 6000 K。
本发明的内容结合以下实施例做进一步的说明。以下实施例只是符合本发明技术内容的几个实例,并不说明本发明仅限于以下述实例所述内容。本发明的重点在于NTC热敏电阻材料的成分配方,所述原材料、工艺方法和制备与生产步骤可以根据实际生产条件进行相应的调整,灵活性大。
附图说明
图1是实施例中热敏电阻材料的电阻率对数(lnρ)随温度倒数(1000/T)变化的特性曲线,该图说明所有实施例材料均呈现典型的NTC特性。
图2是实施例中热敏电阻材料的室温电阻率对数(lnρ25)和NTC材料常数的数据曲线图。NTC材料常数由实验测量的25 °C -85 °C温度区间计算所得。该图说明本发明NTC热敏电阻材料体系能实现大范围的室温电阻率的调节,且保持较高的NTC材料常数B值。
具体实施方式
实施例1
本实施例按化学分子式Zn1-x-y-zCuxLayAlzO进行配料,其中x=0.0005、y=0.002、z=0.005。初始原材料选自氧化锌ZnO、硝酸铝Al(NO3)3·9H2O、三氧化二镧La2O3、氢氧化铜Cu(OH)2。材料制备与测试按以下实验的工艺步骤完成:
(1)将初始原料按Zn0.925Cu0.0005La0.002Al0.005O配方配料,用分析天平称取ZnO 16.0827g、Al(NO3)3·9H2O 0.3751 g、La2O3 0.0652 g、Cu(OH)2 0.0098 g;
(2)将上一工艺步骤称取的原料中的Al(NO3)3·9H2O溶解于50 mL去离子水中,Cu(OH)2原料溶解于100 mL的体积分数为10%的稀硝酸溶液中,La2O3和ZnO原料分别溶解于20 mL和600 mL的体积分数为10%的稀硝酸溶液中;
(3)将上一步工艺步骤中配制的四种溶液混合在一起,并利用磁力加热搅拌器搅拌混合均匀、加热干燥,获得前驱体粉末;
(4)将上一步工艺制得的前驱粉末在空气环境中进行干灰化,升温速率为15 °C/min,干灰化温度为300 °C,保温30分钟;
(5)将上一工艺步骤干灰化得到的粉体,用预先制备好的聚乙烯醇水溶液为粘结剂,进行造粒,然后在轴向压力为20 MPa下压制成坯体,坯体直径15 mm、厚度2-3 mm,之后室温静置10小时;
(6)将上一工艺步骤制得的坯体进行空气环境中烧结,烧结制度为450 °C保温1小时,700 °C保温1小时,1100 °C保温5小时,1350 °C保温1小时,升温降温速率均为5 °C/min,以此获得NTC陶瓷片;
(7)将上一工艺步骤制得的陶瓷片,用砂纸磨去陶瓷片两圆面表层,使得两圆面平整光滑,涂以银浆并经600°C固化制作电极,获得NTC热敏电阻元件;
(8)将上一工艺步骤制得的NTC热敏电阻元件在室温空气环境中静置20小时,之后对元件进行电阻-温度特性测量,测试温度范围为25 ºC-250 ºC;
所制备的材料性能如表1、图1和图2所示。
实施例2
本实施例按化学分子式Zn1-x-y-zCuxLayAlzO进行配料,其中x=0.001、y=0.002、z=0.005。初始原材料选自氧化锌ZnO、硝酸铝Al(NO3)3·9H2O、三氧化二镧La2O3、氢氧化铜Cu(OH)2。材料制备与测试按以下实验的工艺步骤完成:
(1)将初始原料按Zn0.992Cu0.001La0.002Al0.005O配方配料,用分析天平称取ZnO 16.1478g、Al(NO3)3·9H2O 0.3751 g、La2O3 0.0652 g、Cu(OH)2 0.0195 g;
(2)制备工艺过程与实施例1中的工艺步骤(2)-(8)相同;
所制备的材料性能如表1、图1和图2所示。
实施例3
本实施例按化学分子式Zn1-x-y-zCuxLayAlzO进行配料,其中x=0.003、y=0.002、z=0.005。初始原材料选自氧化锌ZnO、硝酸铝Al(NO3)3·9H2O、三氧化二镧La2O3、氢氧化铜Cu(OH)2。材料制备与测试按以下实验的工艺步骤完成:
(1)将初始原料按Zn0.99Cu0.003La0.002Al0.005O配方配料,用分析天平称取ZnO 16.1152g、Al(NO3)3·9H2O 0.3751 g、La2O3 0.0652 g、Cu(OH)2 0.0585 g;
(2)制备工艺过程与实施例1中的工艺步骤(2)-(8)相同;
(3)测试所制得的NTC热敏电阻元件在25 ºC时的电阻(计为R0);
(4)将NTC热敏电阻元件在空气中经125°C时效处理400小时后,测试电阻元件在25 ºC时的电阻(计为R1);
(5)将步骤(3)和步骤(4)测试的电阻,经方程式r=[(R1-R0)/R0]×100% 计算得到热敏电阻元件时效后的电阻变化率;
所制备的材料性能如表1、表2、图1和图2所示。
实施例4
本实施例按化学分子式Zn1-x-y-zCuxLayAlzO进行配料,其中x=0.005、y=0.002、z=0.005。初始原材料选自氧化锌ZnO、硝酸铝Al(NO3)3·9H2O、三氧化二镧La2O3、氢氧化铜Cu(OH)2。材料制备与测试按以下实验的工艺步骤完成:
(1)将初始原料按Zn0.988Cu0.005La0.002Al0.005O配方配料,用分析天平称取ZnO 16.0827g、Al(NO3)3·9H2O 0.3751 g、La2O3 0.06512 g、Cu(OH)2 0.0976 g;
(2)制备工艺过程与实施例1中的工艺步骤(2)-(8)相同;
(3)工艺步骤与实施例3中的步骤(3)-(5)相同;
所制备的材料性能如表1、表2、图1和图2所示。
实施例5
本实施例按化学分子式Zn1-x-y-zCuxLayAlzO进行配料,其中x=0.007、y=0.002、z=0.005。初始原材料选自氧化锌ZnO、硝酸铝Al(NO3)3·9H2O、三氧化二镧La2O3、氢氧化铜Cu(OH)2。材料制备与测试按以下实验的工艺步骤完成:
(1)将初始原料按Zn0.986Cu0.007La0.002Al0.005O配方配料,用分析天平称取ZnO 16.0501g、Al(NO3)3·9H2O 0.3751 g、La2O3 0.06512 g、Cu(OH)2 0.1366 g;
(2)制备工艺过程与实施例1中的工艺步骤(2)-(8)相同;
(3)工艺步骤与实施例3中的步骤(3)-(5)相同;
所制备的材料性能如表1、表2、图1和图2所示。
实施例6
本实施例按化学分子式Zn1-x-y-zCuxLayAlzO进行配料,其中x=0.015、y=0.002、z=0.005。初始原材料选自氧化锌ZnO、硝酸铝Al(NO3)3·9H2O、三氧化二镧La2O3、氢氧化铜Cu(OH)2。材料制备与测试按以下实验的工艺步骤完成:
(1)将初始原料按Zn0.978Cu0.015La0.002Al0.005O配方配料,用分析天平称取ZnO 15.9199g、Al(NO3)3·9H2O 0.3751 g、La2O3 0.0652 g、Cu(OH)2 0.2927 g;
(2)制备工艺过程与实施例1中的工艺步骤(2)-(8)相同;
(3)工艺步骤与实施例3中的步骤(3)-(5)相同;
所制备的材料性能如表1、表2、图1和图2所示。
表1实施例中NTC热敏电阻元件的性能指标
序号 室温电阻率(kΩ·cm) 材料常数(K)
实施例1 0.65 2058
实施例2 42.04 2686
实施例3 77.16 3633
实施例4 553.63 4612
实施例5 1065.56 5025
实施例6 3488.80 5960
表2 实施例中NTC热敏电阻元件在空气中经125°C时效处理400小时后电阻变化率
序号 电阻变化率(%)
实施例3 0.53
实施例4 0.14
实施例5 1.10
实施例6 0.70

Claims (6)

1.一种负温度系数热敏电阻材料,其特征是该材料的成分组成为Zn1-x-y-zCuxLayAlzO,其中x=0.0005-0.04,y=0.0005-0.01,z=0.0005-0.02。
2.根据权利要求1所述的负温度系数热敏电阻材料,制备这种热敏电阻的原材料可以是含锌、铝、镧和铜元素的单质,氧化物,无机盐,有机盐。
3.根据权利要求1和权利要求2所述的热敏电阻材料,其特征是掺杂铝元素以实现热敏电阻材料的室温电阻率和材料常数的调节,铝掺杂含量在Zn1-x-yCuxLayAlzO成分组成中为z的取值范围由0.0005至0.02。
4.根据权利要求1、权利要求2和权利要求3所述的热敏电阻材料,其特征是掺杂镧元素以实现热敏电阻材料的室温电阻率和材料常数的调节,镧掺杂含量在Zn1-x-y-zCuxLayAlzO成分组成中为y的取值范围由0.0005至0.01。
5.根据权利要求1、权利要求2、权利要求3和权利4所述的热敏电阻材料,其特征是掺杂铜元素以实现热敏电阻材料的室温电阻率和材料常数的调节,铜掺杂量在Zn1-x-y- zCuxLayAlzO成分组成中为x的取值范围由0.0005至0.04。
6.根据权利要求1、权利要求2、权利要求3、权利要求4和权利要求5所述组成成分为Zn1-x-y-zCuxLayAlzO的氧化物负温度系数热敏电阻材料,其制备过程如下所述:
(1)以氧化锌(ZnO)、硝酸铝(Al(NO3)3·9H2O)、三氧化二镧(La2O3)和氢氧化铜(Cu(OH)2)为原料,将原料按Zn1-x-y-zCuxLayAlzO配方配料,称取相应质量的ZnO、Al(NO3)3·9H2O、La2O3和Cu(OH)2
(2)将上一工艺步骤称取的原料中的Al(NO3)3·9H2O溶解于去离子水中,ZnO、La2O3和Cu(OH)2原料分别溶解于体积分数为10%的稀硝酸溶液中;
(3)将上一步工艺步骤中配制的四种溶液混合在一起,并利用磁力加热搅拌器搅拌混合均匀、加热干燥;
(4)将上一步工艺制得的前驱粉末在空气环境中进行干灰化,升温速率为15 °C/min,干灰化温度为300 °C,保温30分钟;
(5)将上一工艺步骤干灰化得到的粉体,用预先制备好的聚乙烯醇水溶液为粘结剂,进行造粒,然后在轴向压力为20 MPa下压制成胚体,胚体为圆片型,圆片直径15 mm,厚度2-3mm,之后室温静置10小时;
(6)将上一工艺步骤制得的坯体进行空气环境中烧结,烧结制度为450 °C保温1小时,700 °C保温1小时,1100 °C保温5小时,1250-1400 °C保温1小时,升温和降温速率均为5 °C/min,以此获得陶瓷片;
(7)将上一工艺步骤制得的陶瓷片,用砂纸磨去陶瓷片两圆面表层,使得两圆面平整光滑,涂以银浆并经600°C固化制作电极,获得NTC热敏电阻元件。
CN201811061914.3A 2018-09-12 2018-09-12 一种基于氧化锌的高性能新型ntc热敏电阻材料 Pending CN109265159A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811061914.3A CN109265159A (zh) 2018-09-12 2018-09-12 一种基于氧化锌的高性能新型ntc热敏电阻材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811061914.3A CN109265159A (zh) 2018-09-12 2018-09-12 一种基于氧化锌的高性能新型ntc热敏电阻材料

Publications (1)

Publication Number Publication Date
CN109265159A true CN109265159A (zh) 2019-01-25

Family

ID=65188649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811061914.3A Pending CN109265159A (zh) 2018-09-12 2018-09-12 一种基于氧化锌的高性能新型ntc热敏电阻材料

Country Status (1)

Country Link
CN (1) CN109265159A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372335A (zh) * 2019-06-19 2019-10-25 山东格仑特电动科技有限公司 一种锰镍铝钴基ntc热敏电阻材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469550A (en) * 1987-09-07 1989-03-15 Nippon Denso Co Zno based semiconductor material having negative characteristic
JPH01215752A (ja) * 1988-02-24 1989-08-29 Nippon Denso Co Ltd ZnO系負特性半導体材料およびこの材料を用いた発熱体、ならびにこの発熱体を用いた過電流保護装置
CN1326198A (zh) * 2000-05-25 2001-12-12 列特龙株式会社 利用尖晶石系铁氧体的负温度系数热敏电阻元件
CN1348192A (zh) * 2000-10-11 2002-05-08 株式会社村田制作所 具有负电阻温度系数的半导体陶瓷和负温度系数热敏电阻
CN101659544A (zh) * 2009-07-29 2010-03-03 四川西汉电子科技有限责任公司 一种低成本负温度系数热敏材料及其制备方法
EP2426678A2 (en) * 2010-09-03 2012-03-07 SFI Electronics Technology Inc. Zinc-oxide surge arrester for high-temperature operation
CN102958866A (zh) * 2010-06-24 2013-03-06 爱普科斯公司 无钴ntc陶瓷和用于制造无钴ntc陶瓷的方法
CN103193474A (zh) * 2013-03-04 2013-07-10 合肥工业大学 一种新型负温度系数热敏电阻材料及其制备方法
CN105967677A (zh) * 2016-05-11 2016-09-28 中南大学 一种锌镍氧化物新型ntc热敏电阻材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469550A (en) * 1987-09-07 1989-03-15 Nippon Denso Co Zno based semiconductor material having negative characteristic
JPH01215752A (ja) * 1988-02-24 1989-08-29 Nippon Denso Co Ltd ZnO系負特性半導体材料およびこの材料を用いた発熱体、ならびにこの発熱体を用いた過電流保護装置
CN1326198A (zh) * 2000-05-25 2001-12-12 列特龙株式会社 利用尖晶石系铁氧体的负温度系数热敏电阻元件
CN1348192A (zh) * 2000-10-11 2002-05-08 株式会社村田制作所 具有负电阻温度系数的半导体陶瓷和负温度系数热敏电阻
CN101659544A (zh) * 2009-07-29 2010-03-03 四川西汉电子科技有限责任公司 一种低成本负温度系数热敏材料及其制备方法
CN102958866A (zh) * 2010-06-24 2013-03-06 爱普科斯公司 无钴ntc陶瓷和用于制造无钴ntc陶瓷的方法
EP2426678A2 (en) * 2010-09-03 2012-03-07 SFI Electronics Technology Inc. Zinc-oxide surge arrester for high-temperature operation
CN103193474A (zh) * 2013-03-04 2013-07-10 合肥工业大学 一种新型负温度系数热敏电阻材料及其制备方法
CN105967677A (zh) * 2016-05-11 2016-09-28 中南大学 一种锌镍氧化物新型ntc热敏电阻材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI SHUHUA 等: "Characterization of temperature induced resistivity jump in Li/Y/Cr co-doped ZnO ceramics", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
SONJA HARTNER 等: "Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis", 《NANOTECHNOLOGY》 *
王新超 等: "Ga掺杂ZnO陶瓷的电子导电性与NTC热敏特性", 《粉末冶金材料科学与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372335A (zh) * 2019-06-19 2019-10-25 山东格仑特电动科技有限公司 一种锰镍铝钴基ntc热敏电阻材料及其制备方法

Similar Documents

Publication Publication Date Title
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
CN107324799B (zh) 一种类钙钛矿型高温热敏电阻材料及其制备方法
CN105967655B (zh) 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN105967677A (zh) 一种锌镍氧化物新型ntc热敏电阻材料
CN105967675A (zh) 一种适合低温制备的新型ntc热敏电阻材料
Ouyang et al. Zr-substituted SnO 2-based NTC thermistors with wide application temperature range and high property stability
CN104987059B (zh) 一种基于氧化铜的新型ntc热敏电阻材料
CN109133201A (zh) 基于多组分a位共掺杂镍基钙钛矿氧化物材料及使用方法
CN108329015B (zh) 一种掺杂改性氧化镍基ntc热敏电阻材料及其制备方法
CN108395217A (zh) 一种铌掺杂锰镍基负温度系数热敏电阻及其制备方法
CN110372335A (zh) 一种锰镍铝钴基ntc热敏电阻材料及其制备方法
CN101580386B (zh) 热敏陶瓷电阻材料及电阻元件及该电阻元件的制备方法
CN109265159A (zh) 一种基于氧化锌的高性能新型ntc热敏电阻材料
CN107200563A (zh) Al‑Li优化的Ni\Zn氧化物负温度系数热敏电阻材料
US5858902A (en) Semiconducting ceramic compounds having negative resistance-temperature characteristics with critical temperatures
CN109796203A (zh) 一种ZnO基负温度系数热敏电阻材料
Mahani et al. A thermistor with variable rate of negative temperature coefficient of resistance made from Egyptian raw materials
CN107857584A (zh) 一种基于镍镁锌氧化物的ntc热敏电阻材料
CN110317045A (zh) 一种锰镍铁钴基ntc热敏电阻材料及其制备方法
CN110304905A (zh) 一种铜钐为半导化的ntc热敏电阻材料及其制备方法
CN110642603A (zh) 一种基于氧化镍的高精度新型ntc热敏电阻材料
CN107892557A (zh) Li/Fe修饰的镍锌氧化物NTC热敏电阻材料
CN109734423B (zh) 一种负温度系数的热敏材料及其制备方法
EP1002324A1 (en) Growth of nickel-cobalt-manganese-copper oxide single crystals
CN114409397B (zh) 一种低tcr陶瓷芯片电阻及其材料和制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190125