CN109256554A - 一种硫化聚合物复合材料及其制备方法和应用 - Google Patents

一种硫化聚合物复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN109256554A
CN109256554A CN201811141193.7A CN201811141193A CN109256554A CN 109256554 A CN109256554 A CN 109256554A CN 201811141193 A CN201811141193 A CN 201811141193A CN 109256554 A CN109256554 A CN 109256554A
Authority
CN
China
Prior art keywords
composite material
polymer composite
preparation
sulfide polymer
sulphur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811141193.7A
Other languages
English (en)
Other versions
CN109256554B (zh
Inventor
马晶晶
李元超
许光日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Institute of Science and Technology
Original Assignee
Henan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Science and Technology filed Critical Henan Institute of Science and Technology
Priority to CN201811141193.7A priority Critical patent/CN109256554B/zh
Publication of CN109256554A publication Critical patent/CN109256554A/zh
Application granted granted Critical
Publication of CN109256554B publication Critical patent/CN109256554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于电化学储能材料及其制备领域,公开了一种硫化聚合物复合材料及其制备方法和应用。硫化聚合物复合材料的制备方法包括以下步骤:将升华硫和导电聚合物混合均匀,置于管式炉中,在惰性气氛下经过共热反应即可制得硫化聚合物复合材料。该材料中,小分子硫在物理约束和化学键合的作用下牢牢地被束缚于导电聚合物分子间,使得多硫化物的溶解引起的“穿梭效应”得到有效控制,聚合物优良的导电性也有效修饰了小硫分子的电子导电能力。该材料与碳酸酯基电解液相容性良好,并可获得较优异的电化学性能,本发明所制备的硫化聚吡咯锂硫电池正极材料展现了优异的可逆性和循环稳定性。

Description

一种硫化聚合物复合材料及其制备方法和应用
技术领域
本发明属于电化学储能材料及其制备领域,具体涉及一种硫化聚合物复合材料及其制备方法和应用。
背景技术
面对新能源技术的蓬勃发展,电能储存技术和设备的不断更新换代已然成为社会发展的必然趋势。锂离子电池因其工作电压高、能量密度大(重量轻)、无记忆效应、循环寿命长以及无污染等优点,成为各类电子产品的首选电源。但是,在传统的锂离子电池体系中,正极材料容量较低(LiFePO4和LiCoO2理论比容量分别为170 mAh/g、274 mAh/g),制约了其在智能设备及电动车辆中的应用发展。为此,人们将目光转向新型二次电池体系以期获得更高的能量密度。锂硫电池是由金属锂作为负极、单质硫作为正极构建的锂/硫电池体系。在理论上,其能量密度高达2600 Wh/kg,是传统锂离子电池的3~5倍。同时,相比于常见的锂离子电池正极材料(LiCoO2、LiMnO2和LiFePO4等),硫具有来源广泛、成本低、高安全性、对环境友好等特点,是一种应用前景广阔的正极材料。正因如此,锂硫电池备受关注,成为近几年的研究热点。
与锂离子电池工作方式不同,锂硫电池放电过程对应两个放电区域。在高放电区域(2.4~2.1 V),环形S8分子还原生成S4 2-,与此同时生成易溶于电解质溶液的长链多硫化物(Li2Sn,n = 4~8);低放电区域(约1.5~2.1V)对应可溶性的Li2S4转变成不溶性的Li2S的反应。锂硫电池在充放电过程中形成的长链多硫化物,易溶于电解液中,会随着电解液在电池正负极之间发生穿梭往复,造成活性物质的不可逆损失,导致电池充放电效率降低、循环稳定性变差。研究显示,将硫与氧化物、多孔碳、石墨烯等基质复合,可以在一定程度上吸附、固定、限制硫基材料,使多硫化物的溶解行为得到抑制,从而降低“穿梭效应”的影响。但是,含有S8分子的复合正极在充放电过程中需遵循“固-液-固”的反应机制,多硫化物作为反应机制中很关键的中间产物,其形成和溶解不可避免,因此无法从根本上消除“穿梭效应”。与环状S8分子不同,小分子硫(S2-4)在放电时,可以通过“固-固”反应机制,直接生成产物Li2S,由于S2-4和Li2S都难溶于电解质溶液,因此可以完全避免“穿梭效应”。
为了提高硫正极的电导率、阻止硫分子间发生聚集以及缓解单质硫在充放电过程中的体积效应,通常将小分子硫引入导电基质中制备复合正极材料。其中,研究最多的导电基质是以蔗糖、金属有机骨架、酚醛树脂、聚偏二氟乙烯等为碳源所制备的微孔碳。微孔碳与硫复合后,其良好的导电性可弥补硫的电绝缘的缺点,丰富的孔结构可容纳硫颗粒及其放电产物、阻碍硫的聚集,吸附性又能抑制多硫化物的溶解,高比表面积可提供较大的电极反应场所,降低电化学极化,因此可获得较优异的电化学性能。但是多数硫/碳复合材料的制备过程较为繁复,且主要通过物理吸附作用来限制硫及硫化物的行为。除了微孔碳,导电聚合物也是一类备受关注的导电基质。Zhang Kailong等(Journal of MaterialsChemistry A, 2016, 4(17):151-158)在其报道的文献中,以硫粉和苯胺为原料,经过苯胺聚合过程制备得到具有核壳结构的复合材料S@PANI。该材料在醚基电解液(1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)基二(三氟甲基磺酸)亚胺锂(LiTFSI)电解液)中,初始容量高达1198 mAh/g,0.2 C下循环100次后,比容量为584 mAh/g。Qian Weiwei等(ElectrochimicaActa, 2017, 235:32–41)首先将吡咯原位聚合于氧化石墨烯表面形成GO/PPy,而后在90℃油浴条件下与硫复合,同时将氧化石墨烯还原后得到rGO/PPy/S三元复合材料。该材料在1 C下初始容量为991 mAh/g,400次循环后容量保持率为63%,同时库伦效率降至约87%。Dong Zimin等(RSC Advances, 2013, 3:24914-24917)首先使用模版法制备了中空聚吡咯,而后将聚吡咯与硫粉混合后共热得到S@H-PPy复合材料,在醚基电解液中,0.5 C时首次容量为1426 mAh/g,循环100次后,容量衰减至620 mAh/g,库伦效率仅为89 %。Feng Wu等(Journal of Physical Chemistry C, 2011, 115:6057–6063)以噻吩和硫粉为原料,采用原位聚合的方式制得S-PTh复合材料,在醚基电解液中,100 mA/g的电流密度下,首次可逆容量为1119 mAh/g,80次循环后容量保持率为74 %。在已经报道的关于导电聚合物修饰硫正极的文献中,硫元素多数以大分子硫(S8)形式存在,且主要采用醚基电解液,部分材料仍需要石墨烯等碳类导电基质的配合才能获得较理想的电化学性能。另外,聚合物主要通过物理包覆或物理吸附作用将分子硫限制在其导电结构中,由于结构稳定性不足,从而导致容量衰减现象严重。研究显示,将物理负载和化学固定的方式结合起来才是稳定硫及硫化物的更有效的手段。例如,Du Huiping等报道的硫化石墨炔(Small, 2017, 13:1702277),小分子硫均匀地分散在石墨炔中,并且与石墨炔之间形成C-S键。Wang Jiulin等通过硫与聚丙烯腈共热反应得到的复合正极材料,聚丙烯腈脱氢形成杂环化合物,硫元素则均匀地分布于杂环结构中,S与N之间可能存在化学键作用。Wei Shuya等(J. Am. Chem. Soc.,2015, 137:12143-12152)报道的硫/聚丙烯腈复合材料中,小分子硫通过物理约束和共价键作用被限制在正极结构中。在物理约束与化学键合的双重作用下,小分子硫与载体之间能够形成更紧密的联系,从而能够更好地避免多硫化物的溶解与“穿梭效应”。
电解质溶液对电池的影响也是不容忽视的。在锂硫电池中,被研究和应用最多的电解液为醚基电解液,即1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)基二(三氟甲基磺酸)亚胺锂(LiTFSI)电解液。使用该电解液时虽然可以获得较高的比容量,但循环稳定性较差。除此之外,醚类溶剂由于闪点和沸点较低易引发安全问题。碳酸酯基电解液(乙烯碳酸酯(EC)/碳酸二甲酯(DMC)基六氟磷酸锂(LiPF6))是商用锂离子电池中最常见的电解液,与醚基电解液相比,具有商业化程度高、性能稳定、价格便宜、安全性高等优势。由于S8分子及其复合物作为正极时,放电过程中产生的长链多硫化锂会和碳酸酯基电解液发生亲核加成或者取代反应导致容量大幅度衰减,使得碳酸酯基电解液在锂硫电池中的应用受到阻碍。当以短链硫分子(S2-4)及其复合物作为正极时,“固-固”反应机制避免了长链多硫化锂的形成,因此彻底解决了多硫化锂溶解及其与碳酸酯溶剂反应的问题,使锂硫电池在碳酸酯基电解液中实现优异且稳定的电化学性能。因此,人们迫切需要探索研究那些基于小分子硫的并且能够在碳酸酯基电解液中获得优良电化学性能的复合正极材料。
发明内容
本发明的目的是提供一种制备简单、原料廉价、设备成本低、电化学性能优异、适合大规模生产的硫化聚合物复合材料的制备方法。
为实现上述目的,本发明采用的技术方案是,一种硫化聚合物复合材料的制备方法,包括以下步骤:将升华硫和导电聚合物混合均匀,置于管式炉中,在惰性气氛下经过共热反应即可制得硫化聚合物复合材料。
优选的,在惰性气氛下经过共热反应具体步骤为:管式炉的升温速度为2~20 ℃/min,反应温度为150~400 ℃,反应时间为2~20 h。共热反应过程发生的反应历程包括:升华硫(S8)分子受热开环断裂为小分子硫(S2-4);部分小分子硫与聚合物分子反应、交联形成立体网络结构,剩余小分子硫则扩散、嵌入网络结构的层隙与孔隙间。
优选的,升华硫和导电聚合物的质量比为1:2 ~ 20:1。
优选的,所述导电聚合物为聚苯胺、聚吡咯、聚(3,4-乙烯二氧噻吩)、聚喹啉中的任一种或几种。
优选的,升华硫和导电聚合物混合采用球磨法实施,球磨时间为1~12 h。
进一步优选的,在球磨时加入溶剂(溶剂的加入量与升华硫和导电聚合物总重量的液固比为1~10mL:1g),溶剂为水、乙醇、N,N-二甲基甲酰胺、N-甲基吡咯烷酮中的任一种。
本发明中以升华硫和导电聚合物为原料,采用一步共热反应制备得到硫化聚合物复合材料。所述复合材料中,硫元素分布均匀,且主要以小分子硫(Sn,1 ≤ n ≤ 4)形态存在。所述复合材料中,小分子硫在物理约束和化学键合的作用下牢牢地被束缚于聚合物分子形成的层隙和孔隙间。所述复合材料呈现颗粒状,粒径在1 nm~1 μm之间,所述复合材料中硫元素所占比重为5 % ~ 95 %之间。
本发明还涉及一种前述硫化聚合物复合材料的应用方法,所述复合材料可作为正极应用于以乙烯碳酸酯(EC)/碳酸二甲酯(DMC)基六氟磷酸锂(LiPF6)作为电解液(碳酸酯基电解液)的锂硫电池中。
与现有技术相比,本发明具有如下突出优势:(1)本发明以升华硫和导电聚合物为原料,采用一步共热法合成目标产物,合成方法简单易行,不需要任何添加剂,不需要使用昂贵的仪器,也没有繁琐的实验步骤。所使用的原料丰富,且廉价易得,产物收率高,整个实验过程效率高,可控性强,成本低廉,简单环保,适合工业化生产。
(2)本发明的合成过程中,升华硫(S8)受热开环断裂为小分子硫(S2-4),部分小分子硫与聚合物分子反应、交联形成立体网络结构,剩余小分子硫则扩散、嵌入网络结构内,如此,小分子硫在物理约束和化学键合的作用下被牢牢地束缚于聚合物分子形成的层隙和孔隙间,形成的硫化聚合物复合材料体积更小,从而极大的提高其比表面积,进一步提高其电化学性能。这样的结构不仅可以有效避免因多硫化物溶解而引起的“穿梭效应”,而且能够缓解硫在充放电过程中引起的体积效应。另外,小分子硫在导电聚合物分子间均匀分布的结构也可以有效改善其电子导电能力。
(3)本发明所制备复合材料作为锂硫电池正极时,采用“固-固”反应机制,避免了长链多硫化锂的形成,因此彻底解决了多硫化锂溶解及其与碳酸酯溶剂反应的问题,使锂硫电池在碳酸酯基电解液中实现优异且稳定的电化学性能。
(4)在碳酸酯基电解液中,本发明所制备的硫化聚吡咯锂硫电池正极材料展现了优异的可逆性和循环稳定性,在倍率为0.5 C时,首次可逆容量为772 mAh/g,100次循环后,容量保持在745 mAh/g。当倍率为1 C时,首次可逆容量为628 mAh/g,经过500次循环后,容量仍可稳定在624 mAh/g,与首次可逆容量相比,几乎没有容量损失,库伦效率接近100 %,取得了意想不到的技术效果。
附图说明
图1为本发明实施例1制得的硫化聚苯胺的SEM 图;
图2为本发明采用实施例1得到的硫化聚苯胺组装成锂硫电池在0.5 C倍率下的循环性能;
图3为本发明采用实施例1得到的硫化聚苯胺组装成锂硫电池在1 C倍率下的循环性能。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
锂硫电池的组装与测试方法如下:
将以下实施例制备的硫化聚合物复合材料与Super-P和NaCMC按照8:1:1的质量比在去离子水中混合均匀。将所得浆料涂敷在铝箔上,放入烘箱中在60~80 ℃烘干,使硫的负载量为1.0~2.0 mg/cm2。再用直径12~16mm的冲头冲成极片,转移至充满氩气的手套箱中。以金属锂片为对电极,Celgard 2400为隔膜,1 mol/L六氟磷酸锂的碳酸乙烯酯与碳酸二甲酯(体积比1:1)混合溶液为电解液,组装成CR2016扣式电池,在LAND电池测试系统(武汉金诺电子有限公司提供)上进行恒流充放电性能测试,充放电截止电压相对于Li/Li+为1~3 V。
实施例1
一种硫化聚苯胺复合材料的制备方法,包括以下步骤:升华硫和聚苯胺以质量比6:1混合球磨1小时后得到混合物(球磨时加入乙醇,乙醇的加入量与升华硫和聚苯胺总重量的液固比为1mL:1g)。将该混合物置于管式炉中,在Ar气气氛下,以5 ℃/min的速度升温至320℃,并在320 ℃下反应10 h,得到硫化聚苯胺复合材料。
共热处理过程中,升华硫(S8)分子受热开环断裂为小分子硫(S2-4),部分小分子硫与聚苯胺分子反应、交联形成立体网络结构,剩余小分子硫则扩散、嵌入网络结构的层隙与孔隙间,所制备硫化聚苯胺复合材料的结构示意图如下所示:
该复合材料中,硫元素所占比重为60%。复合材料呈颗粒状,平均粒径约为100 nm,如图1所示。所制备材料作为正极用于以1 mol/L六氟磷酸锂的碳酸乙烯酯与碳酸二甲酯(体积比1:1)混合溶液为电解液的锂硫电池中时展现了优异的循环稳定性。在倍率为0.5 C时,首次可逆容量为705 mAh/g,100次循环后,容量保持在692 mAh/g,容量保持率为98%(图2)。当倍率为1 C时,经过500次循环后,容量仍可稳定在575 mAh/g,与首次可逆容量相比,仅0.02%的容量损失,几乎没有容量损失,库伦效率接近100 %(图3)。
实施例2
一种硫化聚吡咯复合材料的制备方法,包括如下步骤:升华硫和聚吡咯以质量比20:1混合球磨1小时后得到混合物(球磨时加入N-N-二甲基甲酰,N-N-二甲基甲酰的加入量与升华硫和聚吡咯总重量的液固比为1mL:1g),将该混合物置于管式炉中,在氮气气氛下,以20℃/min的速度升温至150℃,并在150℃下反应2 h,得到硫化聚吡咯复合材料。所制备的硫化聚吡咯复合材料结构示意图如下所示:
热处理过程中,升华硫(S8)分子受热开环断裂为小分子硫(S2-4),部分小分子硫与聚吡咯分子反应、交联形成立体网络结构,剩余小分子硫则扩散、嵌入网络结构的层隙与孔隙间。该复合材料中,硫元素所占比重约为95%。复合材料呈颗粒状,平均粒径约为50nm。
所制备硫化聚吡咯复合材料作为正极用于以1 mol/L六氟磷酸锂的碳酸乙烯酯与碳酸二甲酯(体积比1:1)混合溶液为电解液的锂硫电池中时展现了优异的循环稳定性。在倍率为0.5 C时,首次可逆容量为772 mAh/g,100次循环后,容量保持在745 mAh/g。当倍率为1 C时,首次可逆容量为628 mAh/g,经过500次循环后,容量仍可稳定在624 mAh/g,与首次可逆容量相比,几乎没有容量损失,库伦效率接近100 %。本实施例中制备的硫化聚吡咯复合材料与实施例1中的硫化聚苯胺复合材料相比,聚吡咯与小分子硫的结合力更为稳固,
复合材料体积更小,从而极大的提高其比表面积,进一步提高其电化学性能。
实施例3
一种硫化聚(3,4-乙烯二氧噻吩)复合材料的制备方法,包括以下步骤:升华硫和聚(3,4-乙烯二氧噻吩)以质量比6:1混合球磨12小时后得到混合物(球磨时加入N-甲基吡咯烷酮,N-甲基吡咯烷酮的加入量与升华硫和聚(3,4-乙烯二氧噻吩)总重量的液固比为5mL:1g),将该混合物置于管式炉中,在氮气气氛下,以2 ℃/min的速度升温至280 ℃,并在280℃下反应12 h,得到硫化聚(3,4-乙烯二氧噻吩)复合材料。热处理过程中,升华硫(S8)分子受热开环断裂为小分子硫(S2-4),部分小分子硫与聚噻吩分子反应、交联形成立体网络结构,剩余小分子硫则扩散、嵌入网络结构的层隙与孔隙间。该复合材料中,硫元素所占比重约为39 %。复合材料呈颗粒状,平均粒径约为100 nm。所制备硫化聚(3,4-乙烯二氧噻吩)复合材料可作为正极用于以1 mol/L六氟磷酸锂的碳酸乙烯酯与碳酸二甲酯(体积比1:1)混合溶液为电解液的锂硫电池中,在倍率为0.5 C时,首次可逆容量为510 mAh/g,100次循环后,容量保持在500 mAh/g。
实施例4
一种硫化聚苯胺复合材料的制备方法,包括以下步骤:升华硫和聚苯胺以质量比1:20混合球磨3小时后得到混合物(球磨时加入水,水的加入量与升华硫和聚苯胺总重量的液固比为2mL:1g),将该混合物置于管式炉中,在Ar气气氛下,以5 ℃/min的速度升温至150 ℃,并在150 ℃下反应20 h,得到硫化聚苯胺复合材料。热处理过程中,升华硫(S8)分子受热开环断裂为小分子硫(S2-4),部分小分子硫与聚苯胺分子反应、交联形成立体网络结构,剩余小分子硫则扩散、嵌入网络结构的层隙与孔隙间。该复合材料中,硫元素所占比重约为5%。复合材料呈颗粒状,平均粒径约为1 μm。所制备材料可作为正极用于以1 mol/L六氟磷酸锂的碳酸乙烯酯与碳酸二甲酯(体积比1:1)混合溶液为电解液的锂硫电池中,在倍率为0.5 C时,首次可逆容量为640 mAh/g,100次循环后,容量保持在598 mAh/g。
实施例5
一种硫化聚喹啉复合材料的制备方法,包括如下步骤:升华硫和聚苯胺以质量比10:1混合球磨6小时后得到混合物(球磨时加入乙醇,乙醇的加入量与升华硫和聚喹啉总重量的液固比为1mL:1g),将该混合物置于管式炉中,在氮气气氛下,以5 ℃/min的速度升温至400℃,并在400 ℃下反应10 h,得到硫化聚喹啉复合材料。热处理过程中,升华硫(S8)分子受热开环断裂为小分子硫(S2-4),部分小分子硫与聚喹啉分子反应、交联形成立体网络结构,剩余小分子硫则扩散、嵌入网络结构的层隙与孔隙间。该复合材料中,硫元素所占比重约为54 %。复合材料呈颗粒状,平均粒径约为500nm。所制备材料作为正极用于以1 mol/L六氟磷酸锂的碳酸乙烯酯与碳酸二甲酯(体积比1:1)混合溶液为电解液的锂硫电池中,在倍率为0.5 C时,首次可逆容量为611 mAh/g,100次循环后,容量保持在601 mAh/g。

Claims (9)

1.一种硫化聚合物复合材料的制备方法,其特征在于包括以下步骤:将升华硫和导电聚合物混合均匀,置于管式炉中,在惰性气氛下经过共热反应即可制得硫化聚合物复合材料。
2.如权利要求1所述硫化聚合物复合材料的制备方法,其特征在于在惰性气氛下经过共热反应具体步骤为:管式炉的升温速度为2~20 ℃/min,反应温度为150~400 ℃,反应时间为2~20 h。
3.如权利要求1所述硫化聚合物复合材料的制备方法,其特征在于:升华硫和导电聚合物的质量比为1:2 ~ 20:1。
4.如权利要求1所述硫化聚合物复合材料的制备方法,其特征在于:所述导电聚合物为聚苯胺、聚吡咯、聚(3,4-乙烯二氧噻吩)、聚喹啉中的任一种或几种。
5.如权利要求1所述硫化聚合物复合材料的制备方法,其特征在于:升华硫和导电聚合物的混合采用球磨法,球磨时间为1~12 h。
6.如权利要求5所述硫化聚合物复合材料的制备方法,其特征在于:在球磨时加入溶剂,溶剂为水、乙醇、N,N-二甲基甲酰胺、N-甲基吡咯烷酮中的任一种。
7.如权利要求1-6任一方法制备得到的硫化聚合物复合材料。
8.如权利要求7所述硫化聚合物复合材料在锂硫电池正极材料中的应用。
9.如权利要求8所述的应用,其特征在于所述的锂硫电池的电解液为碳酸酯基电解液。
CN201811141193.7A 2018-09-28 2018-09-28 一种硫化聚合物复合材料及其制备方法和应用 Active CN109256554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811141193.7A CN109256554B (zh) 2018-09-28 2018-09-28 一种硫化聚合物复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811141193.7A CN109256554B (zh) 2018-09-28 2018-09-28 一种硫化聚合物复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109256554A true CN109256554A (zh) 2019-01-22
CN109256554B CN109256554B (zh) 2020-08-28

Family

ID=65048343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811141193.7A Active CN109256554B (zh) 2018-09-28 2018-09-28 一种硫化聚合物复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109256554B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310352A (zh) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 负极活性材料及二次电池
CN112421030A (zh) * 2020-10-15 2021-02-26 中南大学 一种n、s双重原子杂化的钠离子电池阳极活性材料及其制备和在钠电中的应用
CN113270583A (zh) * 2021-05-19 2021-08-17 惠州亿纬锂能股份有限公司 一种硫化聚合物复合材料、包含其的正极极片及其制备方法和应用
WO2022252360A1 (zh) * 2021-05-31 2022-12-08 苏州大学 一种基于镍-巯基苯并咪唑配位化合物的有机硫分子及其制备方法与应用
CN115975194A (zh) * 2023-01-18 2023-04-18 湘潭大学 一种硫化蒽基聚合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396202A (zh) * 2002-04-17 2003-02-12 中国科学院上海微系统与信息技术研究所 电化学电源正极用单质硫/导电聚合物复合材料及方法
CN101740758A (zh) * 2010-01-04 2010-06-16 北京航空航天大学 锂离子电池用硫化导电聚合物复合正极的制备方法
CN102315424A (zh) * 2010-07-06 2012-01-11 中国科学院上海硅酸盐研究所 一种锂硫电池用复合正极材料及其制备方法与应用
CN103259000A (zh) * 2013-04-25 2013-08-21 浙江师范大学 一种聚吡咯空心微球/硫复合材料及其制备方法和用途
CN105355876A (zh) * 2015-11-07 2016-02-24 合肥国轩高科动力能源有限公司 复合导电聚合物包覆单质硫的制备方法及其用途
CN106159221A (zh) * 2015-04-27 2016-11-23 中国人民解放军63971部队 一种用于锂硫电池的纳米碳硫复合材料
CN106661149A (zh) * 2014-08-07 2017-05-10 罗伯特·博世有限公司 硫‑pan复合物、制备所述复合物的方法以及包含所述复合物的电极和锂硫电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396202A (zh) * 2002-04-17 2003-02-12 中国科学院上海微系统与信息技术研究所 电化学电源正极用单质硫/导电聚合物复合材料及方法
CN101740758A (zh) * 2010-01-04 2010-06-16 北京航空航天大学 锂离子电池用硫化导电聚合物复合正极的制备方法
CN102315424A (zh) * 2010-07-06 2012-01-11 中国科学院上海硅酸盐研究所 一种锂硫电池用复合正极材料及其制备方法与应用
CN103259000A (zh) * 2013-04-25 2013-08-21 浙江师范大学 一种聚吡咯空心微球/硫复合材料及其制备方法和用途
CN106661149A (zh) * 2014-08-07 2017-05-10 罗伯特·博世有限公司 硫‑pan复合物、制备所述复合物的方法以及包含所述复合物的电极和锂硫电池
CN106159221A (zh) * 2015-04-27 2016-11-23 中国人民解放军63971部队 一种用于锂硫电池的纳米碳硫复合材料
CN105355876A (zh) * 2015-11-07 2016-02-24 合肥国轩高科动力能源有限公司 复合导电聚合物包覆单质硫的制备方法及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE NAM LONG DOAN ET AL.: "Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode", 《JOURNAL OF POWER SOURCES》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310352A (zh) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 负极活性材料及二次电池
US11476457B2 (en) 2019-07-29 2022-10-18 Contemporary Amperex Technology Co., Limited Negative active material, method for preparing the same, and related secondary battery, battery module, battery pack and apparatus
CN112421030A (zh) * 2020-10-15 2021-02-26 中南大学 一种n、s双重原子杂化的钠离子电池阳极活性材料及其制备和在钠电中的应用
CN113270583A (zh) * 2021-05-19 2021-08-17 惠州亿纬锂能股份有限公司 一种硫化聚合物复合材料、包含其的正极极片及其制备方法和应用
WO2022252360A1 (zh) * 2021-05-31 2022-12-08 苏州大学 一种基于镍-巯基苯并咪唑配位化合物的有机硫分子及其制备方法与应用
CN115975194A (zh) * 2023-01-18 2023-04-18 湘潭大学 一种硫化蒽基聚合物及其制备方法和应用
CN115975194B (zh) * 2023-01-18 2024-05-07 湘潭大学 一种硫化蒽基聚合物及其制备方法和应用

Also Published As

Publication number Publication date
CN109256554B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN102969487B (zh) 一种用于锂硫电池正极的碳硫复合材料及其制备方法
Bao et al. Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder
CN109256554A (zh) 一种硫化聚合物复合材料及其制备方法和应用
Zou et al. Sulfur‐containing polymer cathode materials: From energy storage mechanism to energy density
Xiang et al. Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries
CN102088086B (zh) 一种高电压锂离子电池正极制备方法
CN110429279B (zh) 一种锂离子电池有机正极材料及其应用
CN101562244A (zh) 锂二次电池用单质硫复合材料的制备方法
CN102244288B (zh) 锂磷二次电池
EP2985818A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
CN110611084B (zh) 一种具有长循环寿命和100%库伦效率的锂硫二次电池
CN101595580B (zh) 聚自由基化合物-导电材料的复合体、及其制备方法和使用其的电池
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN106159221A (zh) 一种用于锂硫电池的纳米碳硫复合材料
CN105703003A (zh) 一种锂电池用梳状聚合物、电解质、复合电极及其应用
CN102024989A (zh) 一种高电压锂离子电池的制备方法
CN103000385B (zh) 一种超级混合电容电池及其制造方法
CN113429504A (zh) 一种锂电池用半固态聚离子液体电解质的制备方法
CN105789561B (zh) 一种锂-多硫化物二次电池的制备方法
CN111082054B (zh) 一种锂硫电池正极材料、正极及其制备和应用
CN105428634B (zh) 一种锂离子电池负极材料及其硫化锂电池的制备方法
CN104979534B (zh) 一种碘‑硫/碳复合材料及其制备方法与应用
CN103441281A (zh) 一种镁掺杂磷酸锰锂/碳复合纳米纤维的制备方法
CN110556537B (zh) 一种改善阴离子嵌入型电极材料电化学性能的方法
CN109004191A (zh) 一种聚噻吩衍生物复合导电负极活性材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant