CN109225199B - 一种梭形五氧化二钽光催化剂的制备方法 - Google Patents

一种梭形五氧化二钽光催化剂的制备方法 Download PDF

Info

Publication number
CN109225199B
CN109225199B CN201811216189.2A CN201811216189A CN109225199B CN 109225199 B CN109225199 B CN 109225199B CN 201811216189 A CN201811216189 A CN 201811216189A CN 109225199 B CN109225199 B CN 109225199B
Authority
CN
China
Prior art keywords
lining
tantalum pentoxide
photocatalyst
spindle
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811216189.2A
Other languages
English (en)
Other versions
CN109225199A (zh
Inventor
张青红
安琳
王宏志
李耀刚
侯成义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201811216189.2A priority Critical patent/CN109225199B/zh
Publication of CN109225199A publication Critical patent/CN109225199A/zh
Application granted granted Critical
Publication of CN109225199B publication Critical patent/CN109225199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种梭形五氧化二钽光催化剂的制备方法,包括:将金属钽粉分散在超纯水中置于第一内衬中,将氢氟酸和过氧化氢溶液均匀混合后置于第二内衬中,进行水热反应;反应结束后自然冷却,将第一内衬中的悬浊液离心、清洗、干燥,即得。本发明制备方法简单,可重复性好,制得的梭形五氧化二钽结晶度高,形貌可控,光催化效率高,在光解水制氢及水处理等方面具有广阔的应用前景。

Description

一种梭形五氧化二钽光催化剂的制备方法
技术领域
本发明属于光催化剂领域,特别涉及一种梭形五氧化二钽光催化剂的制备方法。
背景技术
随着化石能源的日益枯竭以及环境问题的日益严峻,以发展非化石能源为主要内容的能源转型成为世界能源发展的一大趋势。氢能具有能量高、无污染、燃烧性能好等优点,是21世纪最具发展潜力的清洁能源之一。利用太阳能分解水制氢,可以直接将太阳能转变为氢能,从根本上解决能源短缺与环境污染问题,具有广阔的应用前景。光解水制氢技术始于1972年,Fujishima和Honda两位教授发现TiO2电极在光照情况下能将水分解为氢气和氧气,相关成果发表在《Nature》杂志上[Nature(1972),238:37-38],从而开辟了利用太阳能光解水制氢的研究道路。
早在二十世纪七十年代,五氧化二钽就作为减反射层用于光学或光伏装置中,之后由于其较高的介电常数而广泛应用于电子工业领域。直到1993年日本学者Sayama和Arakawa研究碳酸钠对氧化物半导体光催化剂的作用时才发现,在氧化钌或氧化镍的存在下,五氧化二钽可作为光催化剂将水分解,分解效率还高于同等条件下的二氧化钛[Journal of Photochemistry and Photobiology A:Chemistry(1994),77:243-247]。随后,大量研究致力于五氧化二钽的合成和分解水研究。五氧化二钽的理论带隙值为3.9eV,其价带和导带位置适用于全分解水。相比于二氧化钛等传统半导体,其最低导带位置更负,更有利于析氢反应的发生。目前常见的制备五氧化二钽的方法有配合基辅助模板法、水热法和阳极氧化法,可以得到介孔微球状、空心海胆状和纳米管状等形貌的五氧化二钽。但迄今为止,还未见有梭形五氧化二钽光催化剂制备方法的报道。
发明内容
本发明所要解决的技术问题是提供一种梭形五氧化二钽光催化剂的制备方法,该方法简单,易于操作,可重复性强,制得的五氧化二钽具有结晶性好、比表面积大和光催化活性高等优点。
本发明提供了一种梭形五氧化二钽光催化剂的制备方法,包括:
采用双内衬聚四氟乙烯水热釜,第二内衬位于第一内衬内部;将金属钽粉分散在超纯水中得到分散液并置于第一内衬中,将氢氟酸和过氧化氢溶液均匀混合后置于第二内衬中,进行水热反应;反应结束后自然冷却,将第一内衬中的悬浊液离心清洗、干燥,即得梭形五氧化二钽光催化剂。
所述金属钽粉分散液的浓度为0.05~0.2g/mL。
所述第一内衬、第二内衬、氢氟酸和过氧化氢溶液的体积比为50~100:10~20:1~3:2~4。
所述水热反应温度为160~220℃,时间为12~48h。
所述离心清洗转速为10000-14000r/min,时间为8~12min。
所述干燥条件为60~80℃真空干燥12~24h。
所述得到的梭形五氧化二钽光催化剂沿特定晶面取向生长。
有益效果
(1)本发明方法简单,可重复性强,所制备的梭形五氧化二钽形貌可控;
(2)相比常见的无定形五氧化二钽,本发明方法可以一步合成结晶性良好的梭形五氧化二钽,制得的五氧化二钽还可以沿固定晶面取向生长;
(3)相比其他形貌的五氧化二钽,本发明方法所用的合成原料价格低廉,反应所需温度相对较低,且制得的梭形五氧化二钽比表面积高,可以为光催化反应提供更多的活性位点,光催化效率高,稳定性好,在光解水制氢及水处理等方面具有广阔的应用前景。
附图说明
图1为本发明中聚四氟乙烯内衬和所用原料的位置摆放示意图;
图2为实施例1制备的五氧化二钽光催化剂的场发射扫描电镜图;
图3为实施例1制备的五氧化二钽光催化剂的X射线衍射图;
图4为实施例1制备的五氧化二钽光催化剂的氮气吸附脱附曲线图;
图5为实施例1制备的五氧化二钽光催化剂的制氢速率图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)将1g金属钽粉分散在10ml超纯水中得到浓度为0.1g/mL的分散液,置于体积为50ml的聚四氟乙烯第一内衬中;将2ml氢氟酸溶液和3ml过氧化氢溶液均匀混合置于体积为10ml的聚四氟乙烯第二内衬中;
(2)将第二内衬置于第一内衬内,180℃水热反应24h;反应结束后待水热釜自然冷却至室温,将第一内衬中的白色悬浊液离心清洗(12000r/min离心10min)后,70℃真空干燥18h,得到梭形五氧化二钽光催化剂。
图2为本实施例制备的五氧化二钽光催化剂的场发射扫描电镜图,放大倍数为5万倍,从图中可以看出该五氧化二钽多为梭形,长度100-300nm左右。
图3为本实施例制备的五氧化二钽光催化剂的X射线衍射图,图中只有两个明显的衍射峰,与五氧化二钽标准卡片(PDF#25-0922)的(001)和(002)晶面相对应,进一步表明本实例制得的梭形五氧化二钽结晶性良好,可以沿固定晶面取向生长。
图4为本实施例制备的五氧化二钽光催化剂的氮气吸附脱附曲线图,通过计算比表面积为109.9m2/g,较大的比表面积有助于光催化活性的提升。
图5为本实施例制备的五氧化二钽光催化剂的制氢速率图(具体催化反应条件:300W氙灯作为光源,催化剂20mg,溶液为80ml水加20ml甲醇,负载2%的贵金属Pt助催化剂),产氢速率为442.8μmol/h/g。
实施例2
(1)将0.5g金属钽粉分散在10ml超纯水中得到浓度为0.05g/mL的分散液,置于体积为50ml的聚四氟乙烯第一内衬中;将1ml氢氟酸溶液和2ml过氧化氢溶液均匀混合置于体积为10ml的聚四氟乙烯第二内衬中;
(2)将第二内衬置于第一内衬内,160℃水热反应48h;反应结束后待水热釜自然冷却至室温,将第一内衬中的白色悬浊液离心清洗(10000r/min离心12min)后,60℃真空干燥24h,得到梭形五氧化二钽光催化剂。
本实施例的产氢速率为143.1μmol/h/g,且持续光照反应24h后产氢量未见有明显衰减,说明制得的梭形五氧化二钽具有良好的稳定性。
实施例3
(1)将2g金属钽粉分散在10ml超纯水中得到浓度为0.2g/mL的分散液,置于体积为100ml的聚四氟乙烯第一内衬中;将3ml氢氟酸溶液和4ml过氧化氢溶液均匀混合置于体积为20ml的聚四氟乙烯第二内衬中;
(2)将第二内衬置于第一内衬内,220℃水热反应12h;反应结束后待水热釜自然冷却至室温,将第一内衬中的白色悬浊液离心清洗(14000r/min离心8min)后,80℃真空干燥12h,得到梭形五氧化二钽光催化剂。
本实施例的产氢速率为265.7μmol/h/g,且持续光照反应24h后产氢量未见有明显衰减,说明制得的梭形五氧化二钽具有良好的稳定性。

Claims (4)

1.一种梭形五氧化二钽光催化剂的制备方法,包括:
采用双内衬聚四氟乙烯水热釜,第二内衬位于第一内衬内部;将金属钽粉分散在超纯水中得到分散液并置于第一内衬中,将氢氟酸和过氧化氢溶液均匀混合后置于第二内衬中,进行水热反应;反应结束后自然冷却,将第一内衬中的悬浊液离心清洗、干燥,即得梭形五氧化二钽光催化剂;其中,所述金属钽粉分散液的浓度为0.05~0.2g/mL;所述第一内衬、第二内衬、氢氟酸和过氧化氢溶液的体积比为50~100:10~20:1~3:2~4;所述水热反应温度为160~220℃,时间为12~48h。
2.根据权利要求1所述的一种梭形五氧化二钽光催化剂的制备方法,其特征在于:所述离心清洗转速为10000-14000r/min,时间为8~12min。
3.根据权利要求1所述的一种梭形五氧化二钽光催化剂的制备方法,其特征在于:所述干燥条件为60~80℃真空干燥12~24h。
4.根据权利要求1所述的一种梭形五氧化二钽光催化剂的制备方法,其特征在于:所述得到的梭形五氧化二钽光催化剂沿特定晶面取向生长。
CN201811216189.2A 2018-10-18 2018-10-18 一种梭形五氧化二钽光催化剂的制备方法 Active CN109225199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811216189.2A CN109225199B (zh) 2018-10-18 2018-10-18 一种梭形五氧化二钽光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811216189.2A CN109225199B (zh) 2018-10-18 2018-10-18 一种梭形五氧化二钽光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN109225199A CN109225199A (zh) 2019-01-18
CN109225199B true CN109225199B (zh) 2021-07-20

Family

ID=65053751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811216189.2A Active CN109225199B (zh) 2018-10-18 2018-10-18 一种梭形五氧化二钽光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109225199B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2057094A1 (en) * 2006-08-30 2009-05-13 PPG Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
CN103084196A (zh) * 2012-12-31 2013-05-08 北京科技大学 钽基分级结构空心纳米光催化材料制备方法及其应用
CN103143342A (zh) * 2013-03-08 2013-06-12 上海交通大学 棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法
CN104607226A (zh) * 2015-01-15 2015-05-13 东华大学 一种氧氮化钽光催化材料的制备方法
CN104874410A (zh) * 2015-05-12 2015-09-02 武汉理工大学 一种钽氧氯微米立方晶体光催化剂及其制备方法和应用
CN108042846A (zh) * 2018-01-15 2018-05-18 陕西科技大学 一种锶掺杂钽氧化物纳米棒结构生物活性涂层的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2057094A1 (en) * 2006-08-30 2009-05-13 PPG Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
CN103084196A (zh) * 2012-12-31 2013-05-08 北京科技大学 钽基分级结构空心纳米光催化材料制备方法及其应用
CN103143342A (zh) * 2013-03-08 2013-06-12 上海交通大学 棒状五氧化二钽纳米晶/石墨烯复合光催化剂的制备方法
CN104607226A (zh) * 2015-01-15 2015-05-13 东华大学 一种氧氮化钽光催化材料的制备方法
CN104874410A (zh) * 2015-05-12 2015-09-02 武汉理工大学 一种钽氧氯微米立方晶体光催化剂及其制备方法和应用
CN108042846A (zh) * 2018-01-15 2018-05-18 陕西科技大学 一种锶掺杂钽氧化物纳米棒结构生物活性涂层的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Growth and characterization of Ta2O5 nanorod and W Ta2O5 nanowire films on the tantalum substrates by a facile one-step hydrothermal method;Mohamad Mohsen Momeni et al.;《Ceramics International》;20160302;第42卷;第9133-9138页 *
Hydrothermal synthesis and photocatalytic properties of tantalum pentoxide nanorods;Juxia Li et al.;《Chinese Journal of Catalysis》;20150320;第36卷;第432–438页 *

Also Published As

Publication number Publication date
CN109225199A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN108855167B (zh) 一种碳掺杂TiO2纳米多级结构材料及其应用
CN111921550B (zh) 一种MXene/二氧化钛纳米管复合材料光催化剂及其制备方法
CN111646500B (zh) 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法
CN113058617B (zh) 一种光催化剂及其制备方法和应用
CN106040275B (zh) 制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法
CN110280280B (zh) 黑磷纳米片、硫化锌/黑磷纳米片的制备方法及其应用
CN107876087A (zh) 甲胺铅碘‑还原氧化石墨烯复合光催化材料的制备及其光催化制氢的应用
CN111203231A (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN106492840A (zh) 一种二氧化钛‑硫铟铜复合纳米纤维材料及其制备方法
CN112619647A (zh) Co-MOF衍生的四氧化三钴复合二氧化钛异质结的制备方法及电解水应用
CN113559834A (zh) 一种Ti3C2MXene@TiO2/CuInS2催化材料及其制备方法和应用
Wang et al. Research advances on photo-assisted CO2 conversion to methanol
CN112047372B (zh) 一种CuO多孔纳米片、其制备方法及其在热催化和光热催化方面的应用
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
CN110627116B (zh) 一种氢掺杂TiO2相变纳米材料及其应用
CN109225199B (zh) 一种梭形五氧化二钽光催化剂的制备方法
CN116726973A (zh) 花球状硫铟锌/氮化碳异质结光催化剂及制备方法与应用
CN114931949B (zh) 一种用于二氧化碳还原的光催化剂及其制备方法与应用
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
CN115090318A (zh) 一种高比表面积分子间异质结氮化碳光催化剂的制备方法及其应用
CN110252349B (zh) 一种原位光沉积制备CdS@MoS2复合光催化剂的制备方法
CN109569659B (zh) 一种还原二氧化碳的光催化助剂及其制备方法
CN112657516A (zh) 一种直接z型光催化剂及其制备方法和应用
CN111330623A (zh) 一步法制备高可见光响应Ag离子修饰TiO2/g-C3N4纳米纤维光催化材料
CN111807336A (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant