CN109154578A - 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统 - Google Patents

用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统 Download PDF

Info

Publication number
CN109154578A
CN109154578A CN201780030260.5A CN201780030260A CN109154578A CN 109154578 A CN109154578 A CN 109154578A CN 201780030260 A CN201780030260 A CN 201780030260A CN 109154578 A CN109154578 A CN 109154578A
Authority
CN
China
Prior art keywords
detector
beta radiation
radiation detector
energy
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780030260.5A
Other languages
English (en)
Other versions
CN109154578B (zh
Inventor
M·D·海尔贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Co LLC
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to CN202110894088.6A priority Critical patent/CN113624795B/zh
Publication of CN109154578A publication Critical patent/CN109154578A/zh
Application granted granted Critical
Publication of CN109154578B publication Critical patent/CN109154578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/221Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis
    • G01N23/222Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis using neutron activation analysis [NAA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/234Measuring induced radiation, e.g. thermal neutron activation analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/074Investigating materials by wave or particle radiation secondary emission activation analysis
    • G01N2223/0745Investigating materials by wave or particle radiation secondary emission activation analysis neutron-gamma activation analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1013Different kinds of radiation or particles electromagnetic radiation gamma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/106Different kinds of radiation or particles neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/319Accessories, mechanical or electrical features using opaque penetrant medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开一种确定部件中的结构缺陷的方法,该方法利用具有通过毛细吸收渗透到材料表面上的小裂缝的能力的溶液的中子激活,当暴露于中子脉冲时,所述溶液产生限定能量的可分辨的瞬时伽马释放。在表面上的用户受控位置以期望能量产生的伽马射线的强度被用于确定裂缝位置、长度和深度。

Description

用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测 量系统
技术领域
本发明总的涉及被辐射表面中的裂缝的检测,更具体地说,涉及被辐射部件的无损检查以确定结构瑕疵。
背景技术
在需要操纵高放射性部件或放射性材料的容器时,重要的是确保评估部件或材料容器的结构完整性,以减小放射性材料失控或失去容纳的可能。由于放射场对设备评估和可操作性的影响,使用标准的视觉和超声无损检测(NDE)技术难以评估放射性部件或位于高放射场中的放射性材料的容器的结构完整性。存在提供设备使用适于高辐射环境的方法和装置评价放射性部件和放射性材料的容器的结构完整性的需求。
发明内容
本发明公开了一种无损地检测被照射的材料的表面中的结构缺陷的方法,包括向材料的表面施加发射限定能量的瞬时伽马释放的液体裂缝渗透剂的步骤,该液体裂缝渗透剂优选具有高含氮量,或者与具有大量同位素的化学物质混合,该同位素具有较大快速中子瞬时捕获伽马发射截面,例如钪、钒、锰或钛。然后使用中子脉冲发生器照射该表面,并且被调谐到该限定的能量的多个贝塔辐射检测器按照规则的模式定位在施加了该混合物的材料的表面;所述多个贝塔辐射检测器各自提供输出,该输出指示在由所述多个贝塔辐射检测器中对应的贝塔辐射检测器观察的表面区域中所述限定能量的瞬时伽马释放的接收。采用该接收来测定缺陷的特征。在一个实施例中,该特征是表面上的缺陷的位置和长度。在另一个实施例中,该特征是表面上的缺陷的深度。优选地,根据接收的强度确定缺陷的深度。
在一个这样的实施例中,混合物通过毛细吸收被吸收到表面内。期望地,中子脉冲发生器是纽催斯特(neutristor)型中子脉冲发生器。优选地,通过在表面和贝塔辐射检测器的有源部分之间布置高原子数牺牲性材料作为电子辐射器。期望地,贝塔辐射检测器是碳化硅(SiC)检测器,选择贝塔辐射检测器的牺牲性层中使用的材料的类型、与有源检测器区域的距离、以及厚度,从而确保由期望发射的瞬时伽马辐射能量的光电吸收产生的大部分电子完全停止在SiC检测器的有源区域中。在一个这样的实施例中,牺牲性材料为铂或钨。
附图说明
当与附图结合阅读,能够从下述优选实施例得到对本发明的进一步理解。其中
图1是本发明的设备布局的示意性表示;以及
图2是图1的SiC检测器阵列中使用的SiC检测器和前置放大器的示意性布局。
具体实施方式
本发明的操作基础是建立在染料渗透剂裂缝检测、瞬时中子伽马(γ)辐射检测、以及平面计算机化断层显像(CT)技术的新颖结合上的。该系统还使用新颖的SiC调谐的伽马强度检测方法和基于固态真空管技术的用于非常小SiC信号输出的前置放大器。优选的实施例如下:非腐蚀性裂缝渗透剂,优选具有高含氮量的非腐蚀性裂缝渗透剂,或者诸如可以从位于佐治亚州Cartersville的Dynaflux Quality Products Company获得的裂缝渗透剂,其与含有大比例的具有较大快速中子瞬时捕获伽马发射截面(例如钪、钒、锰、钛)的一类化学物质混合,酌情在受控的温度和压强下被施加,以确保渗透剂到达被检查的表面时处于液态。本公开描述的系统有将混合物高压喷洒到待检查表面的能力,以允许在该系统硬件不实际触碰表面的情况下施加该物质。包含在测量组件中的由Sandia NationalLaboratory(“Innovation Marketplace”,2014年9月,第1卷第3期)开发的“纽催斯特(neutristor)”型中子脉冲发生器(NPG)组件被操作者放置到表面一英寸内的径向位置处,该径向位置已知在表面上的固定表面参考点0.1mm内。NPG组件被特殊配置的SiC辐射检测器阵列(例如,1mm2检测器的100×100正方形,例如2013年2月18日递交的、名称为“SolidState Radiation Detector With Enhanced Gamma Radiation Sensitivity”、专利申请号13/769,401中所述)包围,这些SiC辐射检测器的位置已知位于NPG组件上的参考点的0.05mm内,这些SiC辐射检测器被调谐以主要测量在从裂缝渗透剂混合物中的瞬时伽马发射同位素发射的伽马辐射与SiC检测器的有源区域之间的材料中生成的光电子吸收产生的电子的强度,如图1所示。
本发明的无损检查系统10具有可以在待检测材料的表面20上移动的喷洒系统18,以在表面上裂缝渗透剂溶液30。中子脉冲发生器12发射与裂缝渗透剂溶液30内的同位素反应的脉冲流,以发射被SiC辐射检测器24检测的瞬时伽马辐射。SiC辐射检测器的输出被馈送给前置放大器26,前置放大器的输出被发送给处理电子器件,处理电子器件,处理电子器件解释接收信号的强度和变化,以确定裂缝的存在以及位置、长度和深度。通过在SiC检测器的有源部分和表面之间布置稿原子数的牺牲性材料(例如铂或钨)作为电子辐射器,实现SiC贝塔(β)辐射能力灵敏度的调谐。选择检测器的牺牲性层中使用的材料类型、与有源检测器区域的距离、以及厚度,以确保由期望的所发射的瞬时伽马辐射能量在牺牲性层中的光电子吸收产生的绝大多数电子完全停止在SiC检测器的有源区域内。这可以由本领域技术人员通过以下方式实现:适当地调节电子辐射器的表面与SiC的覆盖肖特基界面区域的铝的前表面之间的距离,使得能量小于全部伽马能量的电子几乎不可能到达并且停止在SiC检测器的有源体积中。这将确保所测量的检测器输出与每个检测器看到的裂缝中的渗透剂材料的量成比例,从而与裂缝的尺寸属性成比例。图2提供了SiC检测器和相关联的阵列几何形状的示意图。
SiC检测器24通过牺牲性材料36接收瞬时伽马辐射38,牺牲性材料36转换瞬时伽马辐射以通过光电子吸收产生电子,其中牺牲性材料36与肖特基接触面的距离是可变的,以确保捕获到全部电子。在该实施例中,电子行进穿过大约10μm厚的N掺杂的SiC 40,到达基底42,电子在基底42处被背面为金的欧姆接触44收集,并且输出电流28通过前置放大器26被传送给处理电子器件46。在中子脉冲发生器触发一次或多次后由检测器阵列中每个非常小且精确定位的SiC检测器获得的相对测量强度数据将被用于确定缺陷的尺寸特征。检测器信号输出将被输入到单独的前置放大器中,这些单独的前置放大器集成到利用小型化设计(例如2016年1月15日递交的名称为“In-Containment Ex-Core Detector System”的美国专利申请No.14/996,667所述)的中子脉冲发生器结构中。然后,放大后的测量检测器电流信号被发送给位于高辐射区域外的方便位置处的测量和分析系统。使用平面CT算法,根据SiC检测器阵列几何形状和阵列中每个检测器的相对测量结果确定期望的测量的裂缝尺寸属性(例如深度、宽度、长度)之间的与具体应用相关的关联性。
虽然已经详细描述了本发明的具体实施例,但是本领域技术人员应当理解,基于本公开的整体教导,可以开发出这些具体内容的各种修改和替换。因此,所公开的具体实施例仅为了示意性的说明,而不是为了限制本发明的范围,本发明的范围的全部广度由所附的权利要求及其任何及全部等价部分给出。

Claims (15)

1.一种无损检测被照射的材料的表面(20)中的结构缺陷(22)的方法,包括以下步骤:
向待检查的材料的表面(20)施加非腐蚀性裂缝渗透剂(30)的混合物,所述混合物包括对于限定能量的、快速中子诱发的瞬时伽马发射反应具有较大截面的化学物质,例如包含氮、钪、钛、锰或钒的化学物质;
使用中子脉冲发生器(12)照射所述材料的表面;
在施加了所述混合物的材料的表面上按照规则的模式定位多个贝塔辐射检测器(24),所述贝塔辐射检测器(24)被调谐到由位于检测器的有源区域(42)和被检查的表面之间的电子生成窗(36)产生的光电生成电子的所述限定能量,所述多个贝塔辐射检测器各自提供输出,该输出指示在由所述多个贝塔辐射检测器中对应的贝塔辐射检测器观察的表面区域中所述限定能量的瞬时伽马释放(38)的接收;以及
采用所述接收来测定所述缺陷(22)的特征。
2.根据权利要求1所述的方法,其中所述特征为所述表面(20)上的所述缺陷(22)的位置、长度和深度中的至少一种。
3.根据权利要求2所述的方法,其中根据所述接收的强度来确定所述缺陷(22)的深度。
4.根据权利要求1所述的方法,其中所述混合物(3)通过毛细吸收被吸收到所述表面(20)内。
5.根据权利要求1所述的方法,其中所述中子脉冲发生器(12)是纽催斯特型中子脉冲发生器。
6.根据权利要求1所述的方法,其中通过把高原子数牺牲性材料(36)布置在被检查的表面(20)和贝塔辐射检测器的有源部分(42)之间作为电子辐射器来实现贝塔辐射检测器(24)的调谐。
7.根据权利要求6所述的方法,其中所述贝塔辐射检测器(24)是碳化硅(SiC)检测器,选择所述贝塔辐射检测器(24)的牺牲性层(36)中使用的材料的类型、与有源检测器区域(42)的距离以及厚度,以确保由期望的发射的瞬时伽马辐射能量(38)的光电吸收产生的电子的大多数完全停止在SiC检测器的有源区域内部。
8.根据权利要求6所述的方法,其中所述牺牲性材料(36)为铂或钨。
9.一种用于无损地检测和表征被照射的材料的表面(20)中的缺陷(22)的设备,包括:
喷洒系统(18),被构造成向待检查的材料的表面喷洒非腐蚀性裂缝渗透剂(30)的混合物,所述混合物具有高含氮量,或者与具有大量同位素的化学物质混合,所述同位素具有光电的限定能量的、较大的快速中子瞬时捕获伽马发射截面,例如氮、钪、钒、锰或钛;
中子脉冲发生器(12),被构造成照射材料的表面(20);
多个贝塔辐射检测器(24),被调谐到由位于贝塔辐射检测器(24)的有源区域(42)和被检查的表面(20)之间的电子生成窗(36)产生的光电生成电子能量的所述限定能量,所述贝塔辐射检测器在施加了所述混合物的材料的表面上按照预定的模式定位,所述多个贝塔辐射检测器各自提供输出,该输出指示在由所述多个贝塔辐射检测器中对应的贝塔辐射检测器观察的表面区域中所述限定能量的瞬时伽马释放(38)的接收;以及
贝塔辐射检测器输出,根据所述贝塔辐射检测器输出,采用所述接收来测定所述缺陷(22)的特征。
10.根据权利要求9所述的设备,其中所述特征为所述表面(20)上的所述缺陷(22)的位置、长度和深度中的至少一种。
11.根据权利要求10所述的设备,其中根据所述接收的强度来确定所述缺陷(22)的深度。
12.根据权利要求9所述的设备,其中所述中子脉冲发生器(12)是纽催斯特型中子脉冲发生器。
13.根据权利要求9所述的设备,其中所述贝塔辐射检测器(24)包括位于被检查的表面(20)和贝塔辐射检测器的有源部分(42)之间作为电子辐射器的高原子数牺牲性材料(36)。
14.根据权利要求13所述的设备,其中所述贝塔辐射检测器是碳化硅(SiC)检测器,选择所述贝塔辐射检测器(24)的牺牲性层(36)中使用的材料的类型、与有源检测器区域(42)的距离以及厚度,以确保由期望的发射的瞬时伽马辐射能量(38)的光电吸收产生的电子的大多数完全停止在SiC检测器的有源区域内部。
15.根据权利要求13所述的设备,其中所述牺牲性材料(36)为铂或钨。
CN201780030260.5A 2016-05-17 2017-04-13 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统 Active CN109154578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110894088.6A CN113624795B (zh) 2016-05-17 2017-04-13 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/156,757 US9528952B1 (en) 2016-05-17 2016-05-17 Pulsed neutron generated prompt gamma emission measurement system for surface defect detection and analysis
US15/156,757 2016-05-17
PCT/US2017/027326 WO2017200666A1 (en) 2016-05-17 2017-04-13 Pulsed neutron generated prompt gamma emission measurement system for surface defect detection and analysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110894088.6A Division CN113624795B (zh) 2016-05-17 2017-04-13 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统

Publications (2)

Publication Number Publication Date
CN109154578A true CN109154578A (zh) 2019-01-04
CN109154578B CN109154578B (zh) 2021-11-05

Family

ID=57589884

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780030260.5A Active CN109154578B (zh) 2016-05-17 2017-04-13 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统
CN202110894088.6A Active CN113624795B (zh) 2016-05-17 2017-04-13 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110894088.6A Active CN113624795B (zh) 2016-05-17 2017-04-13 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统

Country Status (6)

Country Link
US (1) US9528952B1 (zh)
EP (1) EP3458847B1 (zh)
JP (1) JP6981998B2 (zh)
KR (1) KR102397712B1 (zh)
CN (2) CN109154578B (zh)
WO (1) WO2017200666A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913953A (zh) * 2017-08-15 2020-03-24 西屋电气有限责任公司 通过外科手术定位的中子通量激活的高能治疗带电粒子生成系统
KR102142956B1 (ko) 2018-11-09 2020-08-10 코아스템(주) 중간엽줄기세포의 증식 및 이동 능력 예측용 바이오마커 및 이의 용도

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1114416A (en) * 1964-07-13 1968-05-22 Plessey Uk Ltd Improvements relating to the determination of oxygen distribution
US4331871A (en) * 1979-09-18 1982-05-25 The United States Of America As Represented By The Secretary Of The Air Force Fluorescent detection of flaws
US4851687A (en) * 1987-01-13 1989-07-25 Scientific Innovations, Inc. Detection of nitrogen in explosives
CN1073013A (zh) * 1992-11-17 1993-06-09 水利部交通部能源部南京水利科学研究院 用中子技术检测钢板下混凝土空洞的方法
US5608767A (en) * 1994-05-09 1997-03-04 General Electric Company Neutron-activated direct current source
CN102109476A (zh) * 2009-12-29 2011-06-29 同方威视技术股份有限公司 基于光核反应检测材料缺陷的方法及系统
CN102419335A (zh) * 2010-09-28 2012-04-18 北京大学 一种中子无损检测系统
US20130285068A1 (en) * 2012-04-25 2013-10-31 Westinghouse Electric Company Llc Solid state radiation detector with enhanced gamma radiation sensitivity
JP2014085161A (ja) * 2012-10-19 2014-05-12 Tohoku Univ 構造物欠陥の非破壊検査方法および構造物欠陥の非破壊検査装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3025399A (en) * 1958-10-31 1962-03-13 Gen Electric Flaw detection
FR1338192A (fr) * 1962-11-06 1963-09-20 Huettenwerk Oberhausen Ag Procédé et dispositif d'essai de matériaux sans destruction
DE2703562A1 (de) * 1977-01-28 1978-08-03 Max Planck Gesellschaft Verfahren und einrichtung zur roentgenfluoreszenzanalyse
US4293767A (en) * 1979-08-24 1981-10-06 Helmut Fischer Apparatus for measuring the thickness of thin layers
DE3003909A1 (de) * 1980-02-02 1981-08-06 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Detektoreinrichtung
US4870669A (en) * 1987-05-01 1989-09-26 Florida Nuclear Associates, Inc. Gamma ray flaw detection system
RU2085937C1 (ru) * 1994-06-06 1997-07-27 Березкина Надежда Георгиевна Способ неразрушающего контроля материалов и изделий, устройство для нанесения пенетранта и индикаторный материал
JP3144243B2 (ja) * 1994-11-08 2001-03-12 株式会社日立製作所 ヘリウムを含む金属材料の熱加工方法及びその設備
FR2727525B1 (fr) * 1994-11-25 1997-01-10 Centre Nat Rech Scient Detecteur de rayonnements ionisants a microcompteurs proportionnels
US5781602A (en) * 1996-05-17 1998-07-14 Westinghouse Electric Corporation PGNAA system for non-invasively inspecting RPV weld metal in situ, to determine the presence and amount of trace embrittlement-enhancing element
US5940460A (en) * 1997-09-15 1999-08-17 The United States Of America As Represented By The United States Department Of Energy Solid state neutron detector array
US20030165213A1 (en) * 1998-02-18 2003-09-04 Maglich Bogdan C. Method and apparatus for neutron microscopy with stoichiometric imaging
US6157699A (en) * 1999-05-14 2000-12-05 Scannex, Inc. Method and apparatus for non-destructive detection of hidden flaws
US6936835B2 (en) * 2000-09-21 2005-08-30 Hitachi, Ltd. Method and its apparatus for inspecting particles or defects of a semiconductor device
US7630469B2 (en) * 2001-08-17 2009-12-08 Battelle Energy Alliance, Llc Method for on-line evaluation of materials using prompt gamma ray analysis
US6777238B1 (en) * 2001-11-27 2004-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dual use corrosion inhibitor and penetrant for anomaly detection in neutron/X radiography
US7151815B2 (en) * 2004-04-06 2006-12-19 Westinghouse Electric Co Llc Nonintrusive method for the detection of concealed special nuclear material
US7430479B1 (en) * 2004-08-17 2008-09-30 Science Applications International Corporation System and method for analyzing content data
US20110272146A1 (en) * 2005-08-09 2011-11-10 Green John W Methods and compositions for determination of fracture geometry in subterranean formations
US8486545B2 (en) * 2005-09-28 2013-07-16 Southwest Research Institute Systems and methods for flaw detection and monitoring at elevated temperatures with wireless communication using surface embedded, monolithically integrated, thin-film, magnetically actuated sensors, and methods for fabricating the sensors
US7933718B2 (en) * 2006-08-09 2011-04-26 Momentive Specialty Chemicals Inc. Method and tool for determination of fracture geometry in subterranean formations based on in-situ neutron activation analysis
JP5089210B2 (ja) * 2007-03-22 2012-12-05 富士フイルム株式会社 撮像素子画像処理方法
US8718219B2 (en) * 2007-06-14 2014-05-06 Passport Systems, Inc. Non-intrusive method to identify presence of nuclear materials using energetic prompt neutrons from photon-induced fission
US7952075B2 (en) * 2008-08-14 2011-05-31 Ut-Battelle, Llc Neutron absorption detector
US8143885B2 (en) * 2008-10-30 2012-03-27 Og Technologies, Inc. Surface flaw detection and verification on metal bars by Eddy current testing and imaging system
US20110233418A1 (en) * 2008-12-05 2011-09-29 Bae Systems Plc Radiation detector
FR2939895B1 (fr) * 2008-12-15 2011-01-14 Commissariat Energie Atomique Procede de detection non intrusive d'element chimique
CN201419335Y (zh) * 2009-04-30 2010-03-10 安徽晶菱机床制造有限公司 立式升降台铣床三向刻度盘
WO2011012155A1 (en) * 2009-07-27 2011-02-03 Icx Technologies Gmbh Apparatus and method for neutron detection with neutron-absorbing calorimetric gamma detectors
JP5347896B2 (ja) * 2009-10-15 2013-11-20 株式会社Ihi 非破壊検査方法及びその装置
US20110144952A1 (en) * 2009-12-10 2011-06-16 Zaidi Nasir J Measurement apparatus and method for rapid verification of critical radiological levels in medical diagnostic, treatment and noninvasive screening equipment
WO2011149574A2 (en) * 2010-02-25 2011-12-01 Rapiscan Systems, Inc. Systems and methods for detecting nuclear material
US8588370B2 (en) * 2010-06-30 2013-11-19 Tsinghua University Article inspection device and inspection method
CN102313752B (zh) * 2010-06-30 2014-07-23 清华大学 物品检测设备及其检测方法
JP5894916B2 (ja) * 2010-07-21 2016-03-30 国立大学法人広島大学 ホスウィッチ型熱中性子検出器
DE102010031844A1 (de) * 2010-07-22 2012-01-26 Forschungszentrum Jülich GmbH Verfahren zur zerstörungsfreien Elementanalyse großvolumiger Proben und Vorrichtung zur Durchführung
CA2821682A1 (en) * 2010-09-29 2012-04-19 Aerobotics, Inc. Novel systems and methods for non-destructive inspection of airplanes
US20120326043A1 (en) * 2011-06-27 2012-12-27 Saint-Gobain Ceramics & Plastics, Inc. Neutron detection apparatus and a method of using the same
US8831895B2 (en) * 2011-06-27 2014-09-09 Honeywell International Inc. Structural damage index mapping system and method
KR101267822B1 (ko) * 2011-07-22 2013-05-27 한국표준과학연구원 화학적 발열을 이용한 적외선 열화상 비파괴 검사 장치, 시스템, 검사방법 및 검출방법
WO2013142902A2 (en) * 2012-03-29 2013-10-03 Rosebank Engineering Pty Ltd Methods for treating aircraft structures
US9194828B2 (en) * 2012-05-22 2015-11-24 Aribex, Inc. Handheld x-ray system for 3D scatter imaging
US9897556B2 (en) * 2014-05-08 2018-02-20 National Technology & Engineering Solutions Of Sandia, Llc Elemental analysis using temporal gating of a pulsed neutron generator
US9505977B2 (en) * 2014-07-30 2016-11-29 The United States of America Department of Energy Gadolinium-loaded gel scintillators for neutron and antineutrino detection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1114416A (en) * 1964-07-13 1968-05-22 Plessey Uk Ltd Improvements relating to the determination of oxygen distribution
US4331871A (en) * 1979-09-18 1982-05-25 The United States Of America As Represented By The Secretary Of The Air Force Fluorescent detection of flaws
US4851687A (en) * 1987-01-13 1989-07-25 Scientific Innovations, Inc. Detection of nitrogen in explosives
CN1073013A (zh) * 1992-11-17 1993-06-09 水利部交通部能源部南京水利科学研究院 用中子技术检测钢板下混凝土空洞的方法
US5608767A (en) * 1994-05-09 1997-03-04 General Electric Company Neutron-activated direct current source
CN102109476A (zh) * 2009-12-29 2011-06-29 同方威视技术股份有限公司 基于光核反应检测材料缺陷的方法及系统
CN102419335A (zh) * 2010-09-28 2012-04-18 北京大学 一种中子无损检测系统
US20130285068A1 (en) * 2012-04-25 2013-10-31 Westinghouse Electric Company Llc Solid state radiation detector with enhanced gamma radiation sensitivity
JP2014085161A (ja) * 2012-10-19 2014-05-12 Tohoku Univ 構造物欠陥の非破壊検査方法および構造物欠陥の非破壊検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. PUGLIESI ET AL.: "Study of Cracking in Concrete Radiography by Neutron", 《APPLIED RADIATION AND ISOTOPES》 *

Also Published As

Publication number Publication date
JP2019521313A (ja) 2019-07-25
CN113624795A (zh) 2021-11-09
KR20180137579A (ko) 2018-12-27
EP3458847A1 (en) 2019-03-27
EP3458847A4 (en) 2020-02-26
KR102397712B1 (ko) 2022-05-12
US9528952B1 (en) 2016-12-27
JP6981998B2 (ja) 2021-12-17
EP3458847B1 (en) 2021-06-09
CN109154578B (zh) 2021-11-05
WO2017200666A1 (en) 2017-11-23
CN113624795B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US7400706B2 (en) Method and apparatus for liquid safety-detection by backscatter with a radiation source
EP1650583A2 (en) Linear array detector system and inspection method
US6862087B2 (en) Radiation source position detection method, radiation source position detection system and radiation source position detection probe
JP2010501860A (ja) 散乱減衰式断層撮影
CA2443509A1 (en) X-ray inspection system
CN109154578A (zh) 用于表面缺陷检测和分析的产生脉冲中子的瞬时伽马发射测量系统
JP6524484B2 (ja) 放射線計測方法及び放射線計測装置
WO2018116584A1 (ja) 放射能分布測定装置及び方法
Abdul-Majid et al. Single side imaging of corrosion under insulation using single photon gamma backscattering
Pietropaolo et al. A neutron resonance capture analysis experimental station at the ISIS spallation source
EP2920582B1 (en) Identification of materials
US20060034768A1 (en) Method and device for molecular imaging with the aid of molecular probe
US9841390B2 (en) Identification of materials from a hydrogen to electron ratio
Xiong et al. A compact, high signal-to-noise ratio line-detector array Compton scatter imaging system based on silicon photomultipliers
KR20180049066A (ko) 염소-36 동위원소를 함유하는 방사성 폐기물을 원 위치에서 분석하기 위한 장치
JP7223420B2 (ja) 温度測定装置、温度測定方法
EP1491915A1 (en) Method and system for gamma ray positron imaging
Das et al. Application of Radiometry Technique for Quality Control of Different components in Nuclear Industry
Casali et al. X-ray computed tomography for damage assessment of cultural heritage assets
JPH10282019A (ja) 中性子線ct装置
Boldo et al. Positioning of steel rods inclusions in reinforced concrete simulant by Compton backscattering
Kemper Wear measurements by means of γ-X-fluorescence
Bronson Finding, Identifying, Localizing, and Quantifying Hidden Radioactivity Using Non-Invasive InSitu Gamma Spectroscopy
Smith et al. An Improved NDE (Non-Destructive Evaluation) Capability for Aerospace Components.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant