CN109136980A - 一种枝状CoFeCu三元合金的制备方法 - Google Patents

一种枝状CoFeCu三元合金的制备方法 Download PDF

Info

Publication number
CN109136980A
CN109136980A CN201810960651.3A CN201810960651A CN109136980A CN 109136980 A CN109136980 A CN 109136980A CN 201810960651 A CN201810960651 A CN 201810960651A CN 109136980 A CN109136980 A CN 109136980A
Authority
CN
China
Prior art keywords
cofecu
partalloy
dendritic
ternary alloy
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810960651.3A
Other languages
English (en)
Other versions
CN109136980B (zh
Inventor
王媛
严珂
李智敏
黄云霞
闫养希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810960651.3A priority Critical patent/CN109136980B/zh
Publication of CN109136980A publication Critical patent/CN109136980A/zh
Application granted granted Critical
Publication of CN109136980B publication Critical patent/CN109136980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种枝状CoFeCu三元合金的制备方法,具体包括如下步骤:分别称取CoSO4·7H2O、CuSO4·5H2O及Fe(NO3)3·9H2O溶于去离子水中在室温下搅拌至完全溶解,得溶液A;将NH4F加入到溶液A中,搅拌至其完全溶解,得溶液B;将Na2C6H5O7·7H2O加入到溶液B中,搅拌均匀;将所得溶液以泡沫镍为基底,在室温下以‑1.1V vs Ag/AgCl电压沉积;将经沉积后的泡沫镍用无水乙醇和去离子水分别清洗;将得到的泡沫镍在真空干燥箱进行干燥,即得枝状的CoFeCu三元合金。利用本发明提供的方法制得的CoFeCu三元合金具有优异的析氧催化性能。

Description

一种枝状CoFeCu三元合金的制备方法
技术领域
本发明属于纳米材料合成技术领域,涉及一种枝状CoFeCu三元合金的制备方法。
背景技术
与煤基制氢和甲烷转化制氢相比,电解水制氢以水为原料,是一种清洁、可持续的大规模制氢方法。水的分解包括阳极的析氧反应(OER)和阴极的析氢反应(HER)两部分。由于OER涉及多质子耦合电子转移步骤使得其反应动力学缓慢,从而影响整体的反应速率。除此之外,OER是许多与可再生能源相关的应用的关键之一,如可充电燃料电池、金属空气电池等。因此,开发一种合适的催化剂用以提高OER反应动力迫在眉睫。目前,贵金属及其氧化物被认为是最有效的OER电催化剂,但是其稀缺性和昂贵的价格严重限制了它们的实际应用,所以开发一种地壳含量丰富的具有优异性能的金属基催化剂是一项巨大的挑战。
目前,有研究表明,与单中心金属氧化物相比,双金属和三金属基催化剂对OER显示出更高的催化性能,这是由于多元素之间的协同效应引起的。合金化提供了混合多种元素的手段,但物理混合使得各种元素之间缺乏化学相互作用。电沉积合金化的方法克服了物理混合的缺点。因此,采用电沉积法将多种元素合金化可以进一步地改善OER催化活性。
发明内容
本发明的目的是提供一种枝状CoFeCu三元合金的制备方法,利用该方法制得的CoFeCu三元合金具有优异的析氧催化性能。
本发明所采用的技术方案是,一种枝状CoFeCu三元合金的制备方法,具体包括如下步骤:
步骤1,分别称取摩尔比为8.0:2.5:1.0~4.0的CoSO4·7H2O、CuSO4·5H2O及Fe(NO3)3·9H2O溶于100mL去离子水中在室温下搅拌至完全溶解,得溶液A;
步骤2,将1mmol~20mmol NH4F加入到步骤1所得的溶液A中,搅拌至其完全溶解,得溶液B;
步骤3,将10mmol~40mmol Na2C6H5O7·7H2O加入到步骤2所得的溶液B中,搅拌均匀;
步骤4,将步骤3所得溶液以泡沫镍为基底,在室温下以-1.1V vs Ag/AgCl电压沉积0.5h~2h;
步骤5,将经步骤4沉积后的泡沫镍用无水乙醇和去离子水分别清洗3~6次;
步骤6,将步骤5得到的泡沫镍在真空干燥箱进行干燥,即得枝状的CoFeCu三元合金。
本发明的特点还在于,
步骤6中所得的CoFeCu三元合金中Co、Fe、Cu三种元素均以金属单质的形式存在。
步骤6中所得的CoFeCu三元合金是由直径为100-500nm的小颗粒组成的枝状形貌。
步骤6中的干燥温度为60℃,干燥时间为12~24h。
本发明的有益效果是,本发明利用电沉积法,在室温下制备的枝状CoFeCu三元合金用于析氧催化剂,具有优异的催化性能,具体表现在低过电势一级高稳定性,并且操作简单,绿色环保,生产过程无污染,在燃料电池、金属-空气电池以及电解水等领域均具有潜在的应用价值。
附图说明
图1是本发明一种枝状CoFeCu三元合金的制备方法实施例3制得的枝状CoFeCu三元合金的扫描电镜图;
图2是本发明一种枝状CoFeCu三元合金的制备方法实施例3制得的枝状CoFeCu三元合金的XRD图谱;
图3是本发明一种枝状CoFeCu三元合金的制备方法实施例3制得的枝状CoFeCu三元合金43°~45°的局部XRD图;
图4是本发明一种枝状CoFeCu三元合金的制备方法实施例3制得的枝状CoFeCu三元合金的线性扫面伏安曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种枝状CoFeCu三元合金的制备方法,具体包括如下步骤:
步骤1,分别称取摩尔比为8.0:2.5:1.0~4.0的CoSO4·7H2O、CuSO4·5H2O及Fe(NO3)3·9H2O溶于100mL去离子水中在室温下搅拌至完全溶解,得溶液A;
步骤2,将1mmol~20mmol NH4F(氟化氨)加入到步骤1所得的溶液A中,搅拌至其完全溶解,得溶液B;
步骤3,将10mmol~40mmol Na2C6H5O7·7H2O(柠檬酸钠)加入到步骤2所得的溶液B中,搅拌均匀;
步骤4,将步骤3所得溶液搅拌1~5h后,以泡沫镍为基底(2cm*1cm),在室温下以-1.1V vs Ag/AgCl电压沉积0.5h~2h;
步骤5,将经步骤4沉积后的泡沫镍用无水乙醇和去离子水分别清洗3~6次;
步骤6,将步骤5得到的泡沫镍在真空干燥箱进行干燥(干燥温度为60℃,时间为12~24h),即得枝状的CoFeCu三元合金。CoFeCu三元合金中Co、Fe、Cu三种元素均以金属单质的形式存在。CoFeCu三元合金是由直径为100-500nm的小颗粒组成的枝状形貌。
在本发明中,Na2C6H5O7·7H2O主要作为配合剂,用于调节离子的共沉积电位;加入氟化氨,一方面是提高溶液的导电性,另一方面是利用F-对其形貌进行调控。
实施例1
按照摩尔比8.0:2.5:1.0分别称取CoSO4·7H2O、CuSO4·5H2O和Fe(NO3)3·9H2O,将其溶于100mL去离子水中在室温下搅拌至完全溶解,随后将1mmol NH4F加入到上述溶液中,搅拌至其完全溶解,最后将10mmol Na2C6H5O7·7H2O加入到上述溶液中,搅拌至形成均匀的溶液;
将溶液磁力搅拌1h后,用量筒量取50mL的溶液倒入电解槽中,以泡沫镍为基底(2cm*1cm),在室温下以-1.1V vs Ag/AgCl电压沉积0.5h,沉积后的泡沫镍用无水乙醇和去离子水分别清洗3次,随后将其置于真空干燥箱中以60℃干燥18h,最终得到枝状的CoFeCu三元合金。
实施例2
按照摩尔比8.0:2.5:2.0分别称取CoSO4·7H2O、CuSO4·5H2O和Fe(NO3)3·9H2O,将其溶于100mL去离子水中在室温下搅拌至完全溶解,随后将20mmol NH4F加入到上述溶液中,搅拌至其完全溶解,最后将40mmol Na2C6H5O7·7H2O加入到上述溶液中,搅拌至形成均匀的溶液;
将溶液磁力搅拌5h后,用量筒量取50mL的溶液倒入电解槽中,以泡沫镍为基底(2cm*1cm),在室温下以-1.1V vs Ag/AgCl电压沉积2h,沉积后的泡沫镍用无水乙醇和去离子水分别清洗5次,随后将其置于真空干燥箱中以60℃干燥24h,最终得到枝状的CoFeCu三元合金。
实施例3
按照摩尔比8.0:2.5:4.0分别称取CoSO4·7H2O、CuSO4·5H2O和Fe(NO3)3·9H2O,将其溶于100mL去离子水中在室温下搅拌至完全溶解,随后将10mmol NH4F加入到上述溶液中,搅拌至其完全溶解,最后将20mmol Na2C6H5O7·7H2O加入到上述溶液中,搅拌至形成均匀的溶液;
将溶液磁力搅拌3h后,用量筒量取50mL的溶液倒入电解槽中,以泡沫镍为基底(2cm*1cm),在室温下以-1.1V vs Ag/AgCl电压沉积1h,沉积后的泡沫镍用无水乙醇和去离子水分别清洗6次,随后将其置于真空干燥箱中以60℃干燥12h,最终得到枝状的CoFeCu三元合金。
采用实施例3的制备方法,由附图1可看出制备出的CoFeCu三元合金是由直径为100-500nm的小颗粒组成的枝状形貌。
由附图2和附图3的结果可看出,制备出的CoFeCu三元合金中Co、Fe、Cu三种元素均是以金属单质的形式存在,表明成功制备出CoFeCu三元合金。
由附图4可看出,当电流密度为10mA/cm2时,制备出的枝状CoFeCu三元合金的析氧过电势达到240mV,表明该材料具有优异的析氧。
本发明制备出的枝状CoFeCu三元合金具有优异的析氧催化性能,可用于燃料电池、金属-空气电池以及电解水等领域。

Claims (4)

1.一种枝状CoFeCu三元合金的制备方法,其特征在于:具体包括如下步骤:
步骤1,分别称取摩尔比为8.0:2.5:1.0~4.0的CoSO4·7H2O、CuSO4·5H2O及Fe(NO3)3·9H2O溶于100mL去离子水中在室温下搅拌至完全溶解,得溶液A;
步骤2,将1mmol~20mmol NH4F加入到步骤1所得的溶液A中,搅拌至其完全溶解,得溶液B;
步骤3,将10mmol~40mmol Na2C6H5O7·7H2O加入到步骤2所得的溶液B中,搅拌均匀;
步骤4,将步骤3所得溶液以泡沫镍为基底,在室温下以-1.1 V vs Ag/AgCl电压沉积0.5h~2h;
步骤5,将经步骤4沉积后的泡沫镍用无水乙醇和去离子水分别清洗3~6次;
步骤6,将步骤5得到的泡沫镍在真空干燥箱进行干燥,即得枝状的CoFeCu三元合金。
2.根据权利要求1所述的一种枝状CoFeCu三元合金的制备方法,其特征在于:所述步骤6中所得的CoFeCu三元合金中Co、Fe、Cu三种元素均以金属单质的形式存在。
3.根据权利要求1所述的一种枝状CoFeCu三元合金的制备方法,其特征在于:所述步骤6中所得的CoFeCu三元合金是由直径为100-500nm的小颗粒组成的枝状形貌。
4.根据权利要求1所述的一种枝状CoFeCu三元合金的制备方法,其特征在于:所述步骤6中的干燥温度为60℃,干燥时间为12~24h。
CN201810960651.3A 2018-08-22 2018-08-22 一种枝状CoFeCu三元合金的制备方法 Active CN109136980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810960651.3A CN109136980B (zh) 2018-08-22 2018-08-22 一种枝状CoFeCu三元合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810960651.3A CN109136980B (zh) 2018-08-22 2018-08-22 一种枝状CoFeCu三元合金的制备方法

Publications (2)

Publication Number Publication Date
CN109136980A true CN109136980A (zh) 2019-01-04
CN109136980B CN109136980B (zh) 2019-09-03

Family

ID=64790724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810960651.3A Active CN109136980B (zh) 2018-08-22 2018-08-22 一种枝状CoFeCu三元合金的制备方法

Country Status (1)

Country Link
CN (1) CN109136980B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782755A (zh) * 2021-08-16 2021-12-10 哈尔滨工业大学(深圳) 双功能催化剂及其制备方法、及金属空气电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222694A (zh) * 2016-08-25 2016-12-14 山东清大银光金属海绵新材料有限责任公司 海绵结构合金负载三元氧化物层析氢电极材料的制备方法
CN107081163A (zh) * 2017-05-10 2017-08-22 北京工业大学 一种三维结构的NiWP电催化剂材料制备及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222694A (zh) * 2016-08-25 2016-12-14 山东清大银光金属海绵新材料有限责任公司 海绵结构合金负载三元氧化物层析氢电极材料的制备方法
CN107081163A (zh) * 2017-05-10 2017-08-22 北京工业大学 一种三维结构的NiWP电催化剂材料制备及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782755A (zh) * 2021-08-16 2021-12-10 哈尔滨工业大学(深圳) 双功能催化剂及其制备方法、及金属空气电池
CN113782755B (zh) * 2021-08-16 2023-03-03 哈尔滨工业大学(深圳) 双功能催化剂及其制备方法、及金属空气电池

Also Published As

Publication number Publication date
CN109136980B (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
Shang et al. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction
CN105140531B (zh) 用于电解水制氢的三维阳极材料及制备方法
CN104923268A (zh) 一种自支撑过渡金属硒化物催化剂及其制备方法和应用
CN107081163B (zh) 一种三维结构的NiWP电催化剂材料制备及应用
CN109234755A (zh) 一种层状双金属氢氧化物复合结构电催化剂及制备方法
CN113430553B (zh) 基于过渡金属异质层状结构双功能催化电极及制备方法
CN110055557A (zh) 一种三维镍掺杂铁基析氧催化剂及其制备方法和应用
CN109794264B (zh) 一种微米花球状高性能全解水双功能电催化剂FeOOH/Ni3S2的制备方法
Cai et al. Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells
CN110449156B (zh) 一种金属基底上原位生长普鲁士蓝或普鲁士蓝类似物的衍生物电催化剂及其制备方法
Yang et al. Electrocatalytic properties of porous Ni-Co-WC composite electrode toward hydrogen evolution reaction in acid medium
CN111871421A (zh) 镍铁钼类水滑石纳米线双功能电催化剂及其制备方法
CN106757143A (zh) 一种水分解反应用催化电极及其制备方法
CN109746007A (zh) 一种功能化过渡金属磷化物-氧化物复合纳米材料及其制备方法与应用
CN109811365A (zh) 一种基于碳布生长的镍铁基纳米片阵列及其制备和应用
Wen et al. CoP nanoplates dotted with porous Ni3S2 nanospheres for the collaborative enhancement of hydrogen production via urea-water electrolysis
CN110433829A (zh) 一种MoO2-NiSx/CC析氢电催化剂及制备方法
CN105148920A (zh) 一种自支撑过渡金属-金属合金催化剂及其制备方法和应用
CN101717951A (zh) 煤炭电解加氢液化工艺中阴极催化电极的制备方法
Nady et al. Electroplated Zn–Ni nanocrystalline alloys as an efficient electrocatalyst cathode for the generation of hydrogen fuel in acid medium
CN109999845A (zh) 一种全铁基析氧催化剂及其制备方法与应用
Xia et al. Ternary duplex FeCoNi alloy prepared by cathode plasma electrolytic deposition as a high-efficient electrocatalyst for oxygen evolution reaction
Esmailzadeh et al. Optimization and characterization of pulse electrodeposited nickel selenide nanostructure as a bifunctional electrocatalyst by response surface methodology
CN115142073A (zh) 一种FeCoNiCuMn纳米高熵合金电催化剂的制备及应用
CN113174599B (zh) 一种用于电解水的镍基分级结构一体化电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant