CN109087819B - 一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法 - Google Patents

一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法 Download PDF

Info

Publication number
CN109087819B
CN109087819B CN201810915013.XA CN201810915013A CN109087819B CN 109087819 B CN109087819 B CN 109087819B CN 201810915013 A CN201810915013 A CN 201810915013A CN 109087819 B CN109087819 B CN 109087819B
Authority
CN
China
Prior art keywords
ruo
sno
polyaniline
electrode material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810915013.XA
Other languages
English (en)
Other versions
CN109087819A (zh
Inventor
李祥
罗咏梅
路坊海
黎应芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Institute of Technology
Original Assignee
Guizhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Institute of Technology filed Critical Guizhou Institute of Technology
Priority to CN201810915013.XA priority Critical patent/CN109087819B/zh
Priority to US16/203,359 priority patent/US10832872B2/en
Publication of CN109087819A publication Critical patent/CN109087819A/zh
Application granted granted Critical
Publication of CN109087819B publication Critical patent/CN109087819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供了一种聚苯胺/RuO2/SnO2复合电极材料的制备方法,采用磁控溅射法将SnO2薄膜溅射在钽基底上形成SnO2层;采用模板法制备得到多孔结构且孔径分散较均匀(10~15nm)的RuO2纳米粒子;采用电沉积法将聚苯胺镶嵌于RuO2纳米粒子基体,最终制备得到多层结构的聚苯胺/RuO2/SnO2复合电极材料,其比电容值可达680~702F·g‑1,组装成电化学电容器后,其循环充放电性能优良。

Description

一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法
技术领域
本发明涉及电化学电容器技术领域,尤其涉及一种聚苯胺/RuO2/SnO2复合电极材料的制备方法。
背景技术
构成电化学电容器的电极材料与电解液进行高度可逆法拉第赝电容行为而储存电荷,其中电极材料是储能器件中的关键件。
相比较其它类型的储能器件,RuO2电极材料构成的电化学电容器具有高比电容值和优良功率密度,并作为辅助电源应用于国防、军工及航空航天等相关领域。然而,该类型电化学电容器进行循环充放电时,电极基底常析出气泡冲击电极活性层而造成电极活性层脱落,加速储能器件失效。此外,RuO2电极材料属于稀贵材料,限制了其大规模化应用。
相比较碳材料(活性碳、碳纳米管及碳纤维)和大多数过渡族金属氧化物(RuO2、NiO2、MO2及Co3O4等),导电聚合物聚苯胺由于具有较高比电容且成本较低,成为一种潜在的电极材料。然而,单一聚苯胺制备成电极材料时存在两个方面的技术缺陷:一方面为充放电速率较低;另一方面,相对于碳材料和大多数过渡族金属氧化物,单一聚苯胺电极材料的循环次数偏低。
因此,在降低成本的同时确保电极材料具有高比电容值和优良的循环稳定性,是目前亟需解决的技术问题。
发明内容
本发明的目的在于提供一种聚苯胺/RuO2/SnO2复合电极材料的制备方法,该复合电极材料具有高比电容值和优良的循环稳定性,且成本低。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种聚苯胺/RuO2/SnO2复合电极材料的制备方法,包括以下步骤:
采用磁控溅射法将SnO2靶材沉积在钽基底的表面,在所述钽基底的表面形成SnO2修饰层;
将RuCl3溶液、多孔硅分子筛与NH4HCO3混合,进行合成反应,将所得生成物进行活化,得到RuO2纳米粒子;
将所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯和氮甲基吡咯烷酮混合,将所得混合浆料涂敷于所述SnO2层的表面并固化后形成RuO2中间活性层;
在所述RuO2中间活性层的表面电沉积聚苯胺,得到聚苯胺/RuO2/SnO2复合电极材料。
优选的,所述SnO2层的厚度为0.5~0.6μm。
优选的,所述钽基底为高纯钽箔,所述高纯钽箔中钽含量为99.95%。
优选的,所述磁控溅射法的压力为3~5Pa,电流为20~25mA,电压为20~25V,时间为35~45min。
优选的,所述合成反应的温度为240~260℃,时间为5~6h。
优选的,所述活化所采用的活化剂为KOH溶液,所述KOH溶液的浓度为1mol/L。
优选的,所述活化的温度为90~110℃,时间为24~30h。
优选的,所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯的质量比为44:3:3。
优选的,所述RuO2层的厚度为5~6μm。
优选的,所述电沉积的电流密度为2.5~3.5mA·cm-2
本发明提供了一种聚苯胺/RuO2/SnO2复合电极材料的制备方法,本发明采用磁控溅射法将SnO2薄膜溅射在钽基底上构成致密SnO2薄膜修饰层,能够阻止电极材料赝电容行为过程中钽电极基底析氢反应引起的电极活性层变形脱落而加速电化学电容器件失效;SnO2具有较高比电容值且成本较低廉;
本发明采用模板法制备RuO2纳米粒子,能够得到多孔结构且孔径分散较均匀(10~15nm)的RuO2纳米粒子,增大比表面积,提高电极材料的比电容值;
本发明采用电沉积法将聚苯胺镶嵌于RuO2纳米粒子的表面以及其孔结构的内部,将聚苯胺与多孔结构的RuO2纳米粒子相结合,有利于提高电极稳定性,能够得到循环次数较高的RuO2基复合电极材料并降低电极材料成本;
本发明采用磁控溅射-模板法-电沉积法的复合工艺制备的多层结构的聚苯胺/RuO2/SnO2复合电极材料,其比电容值可达702F·g-1,组装成电化学电容器后,经10000次循环后,其电容量保持84.6%,循环充放电性能优良。
具体实施方式
本发明提供了一种聚苯胺/RuO2/SnO2复合电极材料的制备方法,包括以下步骤:
采用磁控溅射法将SnO2靶材沉积在钽基底的表面,在所述钽基底的表面形成SnO2修饰层;
将RuCl3溶液、多孔硅分子筛与NH4HCO3混合,进行合成反应,将所得生成物进行活化,得到RuO2纳米粒子;
将所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯和氮甲基吡吡咯焥酮混合,将所得混合浆料涂敷于所述SnO2层的表面并固化后形成RuO2中间活性层;
在所述RuO2中间活性层的表面电沉积聚苯胺,得到聚苯胺/RuO2/SnO2复合电极材料。
本发明采用磁控溅射法将SnO2靶材沉积在钽基底的表面,在所述钽基底的表面形成SnO2修饰层。在本发明中,所述钽基底优选为高纯钽箔(钽含量99.95%),所述高纯钽箔优选为圆形,直径优选为4~100mm。在进行所述沉积之前,本发明优选将所述钽基底依次进行打磨处理和除油污处理;所述打磨处理具体优选为采用粒度为500~800目的金相砂纸打磨钽基底,直到完全去除钽基底表层的氧化层;所述除油污处理具体优选为将打磨后的钽基底置于超声清洗器中,分别使用丙酮和混合碱液进行除油污处理3~5min;所述混合碱液的成分优选为5g·L-1NaOH、10g·L-1Na2CO3、20g·L-1Na3PO4和15g·L-1Na2SiO3。完成所述除油污处理后,本发明优选使用大气等离子清洗机对除油污后的钽基底的表面进行清洗;在进行清洗时,钽基底与等离子火焰喷头之间的距离优选为2~3cm;清洗的时间优选为4~6min,更优选为5min。
在本发明中,所述磁控溅射法的过程优选为将预处理后的钽基底和SnO2靶材分别安装在磁控溅射室中相应的夹具,抽真空至0.5~0.7×10-3Pa,注入氮气使溅射室压力为3~5Pa,再开启溅射系统,使电流为20~25mA,电压为20~25V,然后进行溅射35~45min,即在钽基底上形成致密SnO2层。在本发明中,所述SnO2靶材的纯度优选为99.5%以上;所述SnO2层的厚度优选为0.5~0.6μm。
本发明将RuCl3溶液、多孔硅分子筛与NH4HCO3混合,进行合成反应,将所得生成物进行活化,得到RuO2纳米粒子。本发明优选将RuCl3.xH2O溶解在去离子水,得到RuCl3溶液,所述RuCl3溶液的质量浓度优选为1%,所述RuCl3.xH2O与NH4HCO3的质量比优选为3:5。本发明优选通过搅拌的方式进行混合,所述混合的时间优选为2~3h。在本发明中,所述合成反应的温度优选为240~260℃,时间优选为5~6h。在本发明中,所述活化所采用的活化剂优选为KOH溶液,所述KOH溶液的浓度优选为1mol/L;所述活化的温度优选为95~105℃,更优选为100℃;所述活化的时间优选为24~30h,更优选为25~28h。
完成所述活化后,本发明优选将所得活化产物进行干燥,得到RuO2纳米粒子。本发明对所述干燥的方式没有特殊的限制,选用本领域技术人员熟知的方式进行干燥即可。
在本发明中,所述多孔硅分子筛的制备方法优选为:将5g聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)与去离子水(180mL)和盐酸(9mL,浓度为34~36wt.%)混合,将所得混合物加热至35℃时,添加异丙醇(6g)后搅拌1h,然后在所得混合体系中添加正硅酸乙酯(10.5g)后搅拌24h,再在100℃条件下进行水热处理24h,将所得产物过滤、干燥,再使用乙醇和盐酸的混合溶液(乙醇质量浓度为3mol/L,盐酸质量浓度为0.5mol/L)将干燥产物进行清洗,得到15-20nm的多孔硅分子筛。本发明利用多孔硅分子筛作为模板,能够得到多孔结构且孔径分布均匀的RuO2纳米粒子。
得到RuO2纳米粒子后,本发明将所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯和氮甲基吡吡咯烷酮混合,将所得混合浆料涂敷于SnO2层的表面并固化后形成RuO2中间活性层。在本发明中,所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯的质量百分比优选为88%:6%:6%。在本发明中,所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯的总质量与氮钾基吡吡咯烷酮的体积比优选为0.3g:2~3mL。本发明对所述涂覆的方式没有特殊的限制,使用本领域技术人员熟知的方式进行涂覆即可。在本发明中,所述固化的温度优选为80~100℃;固化的时间优选为10~24h;在本发明中,所述固化优选在80~100℃条件下进行真空干燥10~24h。在本发明中,所述RuO2层的厚度为优选5~6μm。
得到RuO2中间活性层后,本发明在所述RuO2中间活性层的表面电沉积聚苯胺,得到聚苯胺/RuO2/SnO2复合电极材料。在本发明中,所述电沉积的电解液优选为苯胺和H2SO4的混合溶液,在所述电解液中,所述苯胺的质量浓度优选为0.1mol·L-1;所述H2SO4的质量浓度优选为0.5mol·L-1。在本发明中,所述电沉积的电流密度优选为2.5~3.5mA·cm-2,更优选为3.0mA·cm-2。完成所述电沉积后,本发明将所得产物自然干燥,得到聚苯胺/RuO2/SnO2复合电极材料。
下面结合实施例对本发明提供的聚苯胺/RuO2/SnO2复合电极材料进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
选取高纯度钽箔进行线切割,使其直径为50mm;采用粒度为500目的金相砂纸打磨钽基底,直到完全去除钽基底表层的氧化层;将打磨后的钽基底置于超声清洗器中,分别使用丙酮和混合碱液(成份:5g·L-1NaOH、10g·L-1Na2CO3、20g·L-1Na3PO4和15g·L-1Na2SiO3)进行除油5min;然后使用大气等离子清洗剂对除油后的钽基底表面进行超洁净清洗,且钽基底与等离子火焰喷头之间的距离保持3cm,清洗时间为5min;
将处理后的钽基底和SnO2溅射靶材分别安装在磁控溅射室中相应的夹具,抽真空至0.5×10-3Pa,接着注入N2气使溅射室压力为5Pa,再开启溅射系统并使电流保持25mA,电压保持25V,进行溅射40min,即在钽基底上形成SnO2层;
将5g共聚物P123溶解于180mL去离子水和9mL盐酸(浓度为34~36wt.%)中,加热到35℃时添加6g异丙醇搅拌1h,接着添加10.5g正硅酸乙酯,搅拌24h,再在100℃条件下进行水热处理24h,将所得产物过滤干燥,再使用乙醇和盐酸的混合溶液(乙醇质量浓度为3mol/L,盐酸质量浓度为0.5mol/L)对所得干燥产物进行清洗,得到多孔硅分子筛;
将3g RuCl3.xH2O溶于297mL去离子水中,并浸渍多孔硅分子筛模板,然后添加5gNH4HCO3并进行搅拌3h,然后加热到240℃并保温约5h,再置于100℃且浓度为1mol L-1的KOH溶液中加热24h,干燥得到RuO2纳米粒子;
将0.3g混合物(88wt.%RuO2纳米粒子、6wt.%导电碳黑及6wt.%聚偏四氟乙烯)与2mL氮甲基吡吡咯烷酮研磨成浆料后,刮涂在SnO2层表面,形成厚度为5μm的湿膜,最后置于90℃真空干燥10h进行固化,在所述SnO2层的表面形成RuO2层;
以苯胺和H2SO4的混合溶液(苯胺质量浓度为0.1mol·L-1;H2SO4质量浓度为0.5mol·L-1)为电解液,将上述涂覆有RuO2层的钽基底置于电解液中进行电化学沉积,电流密度为3mA·cm-2,沉积产物经自然干燥,得到聚苯胺/RuO2/SnO2复合电极材料。
对本实施例制备的聚苯胺/RuO2/SnO2复合电极材料进行性能测定,其比电容值为702F·g-1,组装成电化学电容器后,其循环充放电性能优良。
实施例2
选取高纯度钽箔进行线切割,使其直径为70mm;采用粒度为600目的金相砂纸打磨钽基底,直到完全去除钽基底表层的氧化层;将打磨后的钽基底置于超声清洗器中,分别使用丙酮和混合碱液(成份:5g·L-1NaOH、10g·L-1Na2CO3、20g·L-1Na3PO4和15g·L-1Na2SiO3)进行除油5min;然后使用大气等离子清洗剂对除油后的钽基底表面进行超洁净清洗,且钽基底与等离子火焰喷头之间的距离保持3cm,清洗时间为5min;
将处理后的钽基底和SnO2溅射靶材分别安装在磁控溅射室中相应的夹具,抽真空至0.5×10-3Pa,接着注入N2气使溅射室压力为5Pa,再开启溅射系统并使电流保持25mA,电压保持25V,进行溅射40min,即在钽基底上形成SnO2层;
将5g共聚物P123溶解于180mL去离子水和9mL盐酸(浓度为34~36wt.%)中,加热到35℃时添加6g异丙醇搅拌1h,接着添加10.5g正硅酸乙酯,搅拌24h,再在100℃条件下进行水热处理24h,将所得产物过滤干燥,再使用乙醇和盐酸的混合溶液(乙醇质量浓度为3mol L-1,盐酸质量浓度为0.5mol/L)对所得干燥产物进行清洗,得到多孔硅分子筛;
将3g RuCl3.xH2O溶于297mL去离子水中,并浸渍多孔硅分子筛模板,然后滴加5gNH4HCO3并进行搅拌3h,然后加热到250℃并保温约6h,再置于100℃的浓度为1mol.L-1的KOH溶液中加热30h,干燥,得到RuO2纳米粒子;
将0.3g混合物(88wt.%RuO2纳米粒子、6wt.%导电碳黑及6wt.%聚偏四氟乙烯)与3mL氮甲基吡吡咯烷酮研磨成浆料后,刮涂在SnO2层表面,形成厚度为6μm的湿膜,最后置于100℃真空干燥12h进行固化,在所述SnO2层的表面形成RuO2层;
以苯胺和H2SO4的混合溶液(苯胺质量浓度为0.1mol·L-1);H2SO4浓度为0.5mol·L-1)为电解液,将上述涂覆有RuO2层的钽基底置于电解液中进行电化学沉积,电流密度为3mA·cm-2,沉积产物经自然干燥,得到聚苯胺/RuO2/SnO2复合电极材料。
对本实施例制备的聚苯胺/RuO2/SnO2复合电极材料进行性能测定,其比电容值为685Fg-1,组装成电化学电容器后,其循环充放电性能优良。
实施例3
选取高纯度钽箔进行线切割,使其直径为80mm;采用粒度为800目的金相砂纸打磨钽基底,直到完全去除钽基底表层的氧化层;将打磨后的钽基底置于超声清洗器中,分别使用丙酮和混合碱液(成份:5g·L-1NaOH、10g·L-1Na2CO3、20g·L-1Na3PO4和15g·L-1Na2SiO3)进行除油5min;然后使用大气等离子清洗剂对除油后的钽基底表面进行超洁净清洗,且钽基底与等离子火焰喷头之间的距离保持3cm,清洗时间为5min;
将处理后的钽基底和SnO2溅射靶材分别安装在磁控溅射室中相应的夹具,抽真空至0.5×10-3Pa,接着注入N2气使溅射室压力为5Pa,再开启溅射系统并使电流保持25mA,电压保持25V,进行溅射40min,即在钽基底上形成致密SnO2薄膜层;
将5g共聚物P123溶解于180mL去离子水和9mL盐酸(浓度为34~36wt.%)中,加热到35℃时添加6g异丙醇搅拌1h,接着添加10.5g正硅酸乙酯,搅拌24h,再在100℃条件下进行水热处理24h,将所得产物过滤干燥,再使用乙醇和盐酸的混合溶液(乙醇浓度为3mol L-1,盐酸质量浓度为0.5mol L-1)对所得干燥产物进行清洗,得到多孔硅分子筛;
将3g RuCl3.xH2O溶于297mL去离子水中,并浸渍多孔硅分子筛模板,然后滴加5gNH4HCO3并进行搅拌3h,然后加热到260℃并保温约5.5h,再置于100℃的浓度为1mol L-1的KOH溶液中加热36h,干燥,得到RuO2纳米粒子;
将0.3g混合物(88wt.%RuO2纳米粒子、6wt.%导电碳黑及6wt.%聚偏四氟乙烯)与2.5mL氮甲基吡吡咯烷酮研磨成浆料后,刮涂在SnO2层的表面,形成厚度为6μm的湿膜,最后置于100℃真空干燥14h进行固化,在所述SnO2层的表面形成RuO2层;
以苯胺和H2SO4的混合溶液(苯胺质量浓度为0.1mol·L-1);H2SO4质量浓度为0.5mol·L-1)为电解液,将上述涂覆有RuO2层的钽基底置于电解液中进行电化学沉积,电流密度为3mA·cm-2,沉积产物经自然干燥,得到聚苯胺/RuO2/SnO2复合电极材料。
对本实施例制备的聚苯胺/RuO2/SnO2复合电极材料进行性能测定,其比电容值为694Fg-1,组装成电化学电容器后,其循环充放电性能优良。
将本发明实施例1~3制备的聚苯胺/RuO2/SnO2复合电极材料与现有其他工艺制备的电极材料进行性能对比,具体数据见表1。
表1超级电容器RuO2基电极材料的综合技术指标
Figure BDA0001762757340000081
由表1可知,相对于现有工艺制备的电极材料,本发明采用磁控溅射-模板法-电沉积法制备得到的聚苯胺/RuO2/SnO2复合电极材料具有高比电容值,且循环性能优异,成本低。
由以上实施例可知,本发明提供了一种聚苯胺/RuO2/SnO2复合电极材料的制备方法,采用磁控溅射-模板法-电沉积法制备的多层结构的聚苯胺/RuO2/SnO2复合电极材料,其比电容值可达680~702F·g-1,组装成电化学电容器后,其循环充放电性能优良。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种聚苯胺/RuO2/SnO2复合电极材料的制备方法,包括以下步骤:
采用磁控溅射法将SnO2靶材沉积在钽基底的表面,在所述钽基底的表面形成SnO2修饰层;
将RuCl3溶液、多孔硅分子筛与NH4HCO3混合,进行合成反应,将所得生成物进行活化,得到RuO2纳米粒子;
将所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯和氮甲基吡咯烷酮混合,获得浆料,将所得浆料涂敷于所述SnO2修饰层的表面并固化后形成RuO2中间活性层;
在所述RuO2中间活性层的表面电沉积聚苯胺,得到聚苯胺/RuO2/SnO2复合电极材料;
所述SnO2修饰层的厚度为0.5~0.6μm;
所述合成反应的温度为240~260℃,时间为5~6h;
所述RuO2中间活性层的厚度为5~6μm。
2.根据权利要求1所述的制备方法,其特征在于,所述钽基底为高纯钽箔,所述高纯钽箔中钽含量为99.95%。
3.根据权利要求1所述的制备方法,其特征在于,所述磁控溅射法的压力为3~5Pa,电流为20~25mA,电压为20~25V,时间为35~45min。
4.根据权利要求1所述的制备方法,其特征在于,所述活化所采用的活化剂为KOH溶液,所述KOH溶液的质量浓度为1mol/L。
5.根据权利要求1或4所述的制备方法,其特征在于,所述活化的温度为90~110℃,时间为24~30h。
6.根据权利要求1所述的制备方法,其特征在于,所述RuO2纳米粒子与导电碳黑、聚偏四氟乙烯的质量百分比为88%:6%:6%。
7.根据权利要求1所述的制备方法,其特征在于,所述电沉积的电流密度为2.5~3.5mA·cm-2
CN201810915013.XA 2018-08-13 2018-08-13 一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法 Active CN109087819B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810915013.XA CN109087819B (zh) 2018-08-13 2018-08-13 一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法
US16/203,359 US10832872B2 (en) 2018-08-13 2018-11-28 Method for preparing polyaniline/ruthenium oxide/tin dioxide composite electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810915013.XA CN109087819B (zh) 2018-08-13 2018-08-13 一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN109087819A CN109087819A (zh) 2018-12-25
CN109087819B true CN109087819B (zh) 2020-07-31

Family

ID=64834416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810915013.XA Active CN109087819B (zh) 2018-08-13 2018-08-13 一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法

Country Status (2)

Country Link
US (1) US10832872B2 (zh)
CN (1) CN109087819B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112499578B (zh) * 2020-11-19 2024-05-10 广州德芯半导体科技有限公司 一种半导体耐高温压力温度传感器芯片及其制备方法
CN113637946B (zh) * 2021-08-13 2022-04-01 深圳市汉嵙新材料技术有限公司 一种柔性磁控溅射金属纳米复合材料的制备方法
CN113720879B (zh) * 2021-08-17 2023-10-03 华南师范大学 丙酮气敏材料和丙酮气体传感器的制备方法及其应用
CN114295594B (zh) * 2021-12-06 2023-09-19 贵州理工学院 一种基于分子信标筛选三螺旋DNA嵌入剂的“turn on”型荧光传感器
CN115304097B (zh) * 2022-08-22 2023-11-24 大连理工大学 一种超低温制备二氧化锡晶体的方法
CN115746357B (zh) * 2022-12-08 2023-07-14 东莞理工学院 基于苯丙乳液模板的具有微纳层级结构的聚苯胺薄膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533716B (zh) * 2009-04-15 2010-12-29 中南大学 一种超级电容器用复合薄膜电极的制备工艺

Also Published As

Publication number Publication date
US10832872B2 (en) 2020-11-10
CN109087819A (zh) 2018-12-25
US20200051756A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
CN109087819B (zh) 一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法
CN108258334B (zh) 一种复合柔性电极、其制备方法和应用
CN109437172A (zh) 一种钠离子插层Ti3C2 MXene材料及其制备方法
CN102436934A (zh) 复合纳米碳纸及其制备方法
CN107934965B (zh) 一种Ti3C2-Co(OH)(CO3)0.5纳米复合材料的制备方法
CN108461300B (zh) 一种层状碳化钛-碳管复合材料及其制备和应用
CN110148534A (zh) 一种纳米金属氧化物/碳基柔性电极材料的制备方法
CN105948132B (zh) 一种三维γ‑Fe2O3纳米材料的制备方法及其应用
CN113421775A (zh) 一种NiO@CoMoO4/NF电容电极的制备方法
CN115188596A (zh) 一种基于电沉积制备铝电解电容器阳极箔的方法
CN108470634B (zh) 一种基于氮掺杂热解碳包覆的石墨烯微型超级电容器制作方法
CN112216518B (zh) 一种柔性锌离子混合电容器及其制备方法和应用
CN109763321A (zh) 一种导电石墨烯/银复合芳纶丝束及其制备方法
CN112247153B (zh) 一种金属-富勒烯复合纳米粉体的制备方法
KR101273353B1 (ko) 메탈섬유를 이용한 다공성 전극 및 그 제조방법
CN110648859B (zh) TiO2包覆δ-MnO2纳米片阵列复合材料及其制备方法
KR100647010B1 (ko) 응답특성이 빠른 고축전 수퍼캐패시터 전극의 제조 방법
KR102173010B1 (ko) 캐패시터용 전극재의 제조방법
BIAN et al. Fabrication of graphene/cotton and MnO2/graphene/cotton composite fabrics as flexible electrodes for electrochemical capacitors
CN109859955B (zh) 一种二氧化钌/炭复合电极材料的制备方法
CN112635201A (zh) 柔性全固态不对称超级电容器电极及其一分为二制备方法
CN112233911A (zh) 二氧化钒纳米碳纤维复合材料及其制备方法和用途
KR102648028B1 (ko) 그래핀 도메인 함유 활성탄 및 이를 포함하는 응용제품
CN109755029B (zh) 一种花片状纳米氧化镍的制备方法
CN110872108A (zh) 生物质纳米孔碳的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant