CN109087813A - 亲水性石墨烯与二氧化锰的纳米复合材料及其制备方法 - Google Patents

亲水性石墨烯与二氧化锰的纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN109087813A
CN109087813A CN201810851676.XA CN201810851676A CN109087813A CN 109087813 A CN109087813 A CN 109087813A CN 201810851676 A CN201810851676 A CN 201810851676A CN 109087813 A CN109087813 A CN 109087813A
Authority
CN
China
Prior art keywords
graphene
hydrophilic graphene
hydrophilic
manganese dioxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810851676.XA
Other languages
English (en)
Inventor
王丽秋
刘学龙
侯亚娟
刘洋
郭晨晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201810851676.XA priority Critical patent/CN109087813A/zh
Publication of CN109087813A publication Critical patent/CN109087813A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种亲水性石墨烯与二氧化锰纳米的复合材料,它是一种将亲水性石墨烯在有或无苯胺单体和过硫酸铵存在下,与乙酸锰和高锰酸钾共混,采用共沉淀法获得前驱物,再经过马弗炉焙烧得到亲水性石墨烯与二氧化锰的纳米复合材料,其制备方法主要是在有或无苯胺单体和过硫酸铵存在下,与乙酸锰和高锰酸钾共混,制得前驱悬浮液,将制得的前驱悬浮液除去上清液、干燥,得到黑褐色固体;将黑褐色固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯与二氧化锰纳米的复合材料。本发明制备工艺简单、成本低廉和无环境污染,避免了二氧化锰的团聚,使二氧化锰分布更加均匀,增大复合材料的比表面积,使其在超级电容器和电池等方面得到更加广泛的应用。

Description

亲水性石墨烯与二氧化锰的纳米复合材料及其制备方法
技术领域
本发明属于材料技术领域,特别涉及一种纳米复合材料及其制备方法。
背景技术
拥有蜂窝状晶体结构的石墨烯只有一个碳原子的厚度,是由单层石墨片以sp2杂化的碳原子紧密排列形成的二维材料,这决定了石墨烯拥有的一系列超乎寻常的性质,如优异导电学性能(载流子迁移率超过1.5×104cm2·V-1·S-1)、巨大的比表面积(约2630m2/g)、极小的电阻率(10-6Ω·cm)、突出的导热性能和力学性能,并显现了稳定的机械性能。随着石墨烯及其复合材料的发展,使其在各个领域得到了广泛应用。
二氧化锰作为超级电容器和电池电极材料,来源广泛、经济环保、制备简单并拥有良好的理论比容量,但其存在的问题也是显而易见的比如导电性差和表面形态密集等,这使得它的实际应用被大大限制。由于石墨烯具备稳定的机械性能,良好的电化学性能,使得石墨烯负载二氧化锰成为近年来的研究热点。复合材料中的石墨烯能明显的提高电极的导电子能力,但由于石墨烯的溶解性差,复合的均匀性并不理想。
发明内容
本发明的目的在于提供一种制备工艺简单、成本低廉、无环境污染、能够避免二氧化锰的团聚、使得二氧化锰分布更加均匀、能够增大纳米复合材料的比表面积的亲水性石墨烯与二氧化锰的纳米复合材料及制备方法。
本发明的亲水性石墨烯与二氧化锰的纳米复合材料是一种将亲水性石墨烯在有或无苯胺单体和过硫酸铵存在下,与乙酸锰和高锰酸钾共混,采用共沉淀法获得前驱物,再经过马弗炉焙烧得到亲水性石墨烯与二氧化锰的纳米复合材料。
本发明采用的亲水性石墨烯为专利号为201310296390.7的一种石墨烯,其制备方法主要是将氧化石墨烯分散于水中,加入含有磺酸基团的苯肼,通过超声洗涤器超声12h,然后于85℃下反应12h,得到黑色水溶性溶液,过滤除去不溶性杂质,母液可经常压或旋转蒸发器减压浓缩,并除去过量含有磺酸基团的苯肼,然后于60℃下真空干燥,得到亲水性石墨烯。
上述亲水性石墨烯与二氧化锰的纳米复合材料的制备方法如下:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.005-0.25g/mL的亲水性石墨烯溶液;
(2)按质量比乙酸锰:高锰酸钾:亲水性石墨烯=84:36:1-2.43的比例,将乙酸锰加入到步骤(1)的亲水性石墨烯溶液中,再加入浓度为31.6mg/mL的高锰酸钾,反应4h,制得亲水性石墨烯-二氧化锰复合的前驱悬浮液;
或按质量比苯胺:盐酸=1-4:462的比例,将苯胺单体和1M盐酸形成的混合溶液,按质量比过硫酸铵:盐酸=1-4:377,将过硫酸铵和1M盐酸形成的混合溶液,按苯胺与亲水性石墨烯的质量比为8.8-35.2:1,苯胺与过硫酸铵质量比为1:2.45的比例,将苯胺的盐酸溶液和过硫酸铵的盐酸溶液依次加入到步骤(1)的亲水性石墨烯溶液,然后在冰水浴下反应12h,得到亲水性石墨烯-聚苯胺复合溶液;按乙酸锰:高锰酸钾:苯胺(制备上述亲水性石墨烯-聚苯胺复合溶液的苯胺原料量)的质量比=58:25:1-4的比例,将乙酸锰加入到制得的亲水性石墨烯-聚苯胺复合溶液中,再加入浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-聚苯胺-二氧化锰前驱悬浮液;
(3)将步骤(2)制得的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,然后离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)的黑褐色固体在马弗炉中于450℃下煅烧3h,分别得到亲水性石墨烯-二氧化锰纳米复合材料和亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料。
本发明与现有技术相比具有如下优点:
1、制备工艺简单,原料丰富,成本低廉和无环境污染。
2、避免了二氧化锰的团聚,使得二氧化锰分布更加均匀,增大了纳米复合材料的比表面积,使其在超级电容器和电池等方面得到更加广泛的应用。
附图说明
图1是本发明实施例2制得的亲水性石墨烯-二氧化锰纳米复合材料的扫描电镜图。
图2是本发明实施例2制得的亲水性石墨烯-二氧化锰纳米复合材料的X衍射图。
图3是为本发明实施例2制得的亲水性石墨烯-二氧化锰纳米复合材料的透射电镜图。
图4是本发明实施例2制得的亲水性石墨烯-二氧化锰纳米复合材料的循环伏安图。
图5是本发明实施例2制得的亲水性石墨烯-二氧化锰纳米复合材料的循环稳定性图。
图6是本发明实施例7制得的亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料的扫描电镜图。
图7是本发明实施例7制得的亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料的X衍射图。
图8是本发明实施例7制得的亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料的透射电镜图。
图9是本发明实施例7制得的亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料的循环伏安图。
图10是本发明实施例7制得的亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料的循环稳定性图。
具体实施方式
实施例1:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.005g/mL的亲水性石墨烯溶液;
(2)按乙酸锰:高锰酸钾:亲水性石墨烯=84:36:1的质量比,将1.47g乙酸锰加入到3.5mL步骤(1)制得的亲水性石墨烯溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-二氧化锰复合的前驱悬浮液;
(3)将步骤(2)制备得到的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,然后离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)中制得的固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯-二氧化锰纳米复合材料GM20
实施例2:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.109g/mL的亲水性石墨烯溶液;
(2)按乙酸锰:高锰酸钾:亲水性石墨烯=84:36:1.24的质量比,将1.47g乙酸锰加入到0.2mL步骤(1)制得的亲水性石墨烯溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-二氧化锰复合的前驱悬浮液;
(3)将步骤(2)制备得到的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,然后离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)制得的黑褐色固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯-二氧化锰纳米复合材料GM30
如图1所示,MnO2颗粒分布在薄片状的HG的表面,且颗粒大小均一,亲水性石墨烯的片层较厚,由于亲水性石墨烯较好的分散性,使得MnO2分布均匀。
如图2所示,产品在2T=12.7°、18.0°、28.7°、37.6°、42.0°、49.9°、56.2°、60.2°、65.5°处出现了衍射峰,分别对应MnO2四方晶型的(100)、(200)、(310)、(121)(301)、(411)、(600)、(521)、(022)晶面的特征衍射峰,这与标准卡片(JCPDS No:44-0141)完全一致。
如图3所示,MnO2纳米颗粒均匀的分布在薄纱状的HG的表面,由于HG的量很小,使得HG被覆盖,不能完全显现出来。
如图4所示,制得的亲水性石墨烯-二氧化锰有着矩形形状的循环伏安曲线,属于典型的二氧化锰循环伏安曲线。而且循环伏安曲线基本关于零电流基线对称,当电压发生转向时,电流几乎是在瞬间发生改变,这说明复合电极材料的内阻较小且动力学可逆性良好,具备很好的电容性能。
如图5所示,制得的亲水性石墨烯-二氧化锰GM30在电流密度为0.5F/g下的长循环测试,在500圈内比电容有微小的增加,在这之后随着圈数的增加,比电容趋于平稳,体现了复合材料良好的长循环稳定性。
实施例3:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.005g/mL的亲水性石墨烯溶液;
(2)按乙酸锰:高锰酸钾:亲水性石墨烯=84:36:1.66的质量比将1.47g乙酸锰加入到5.8mL步骤(1)制得的亲水性石墨烯溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-二氧化锰复合的前驱悬浮液;
(3)将步骤(2)制得的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,然后离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)制得的黑褐色固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯-二氧化锰纳米复合材料GM40
实施例4:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.25g/mL的亲水性石墨烯溶液;
(2)按乙酸锰:高锰酸钾:亲水性石墨烯=84:36:2.43的质量比将1.47g乙酸锰加入到0.17mL步骤(1)制得的亲水性石墨烯溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-二氧化锰复合的前驱悬浮液;
(3)将步骤(2)制得的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,然后离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)中制得的黑褐色固体在马弗炉中于450℃下煅烧3h,分别得到亲水性石墨烯-二氧化锰纳米复合材料GM50
实施例5:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.145mg/mL的亲水性石墨烯溶液;
(2)按苯胺:盐酸=1:462的质量比,将25μL苯胺单体和10mL 1M盐酸形成的混合溶液,按过硫酸铵:盐酸=1:377的质量比,将0.0625g过硫酸铵和20mL 1M盐酸形成的混合溶液,将上述苯胺的盐酸溶液与过硫酸铵的盐酸溶液加入到20mL步骤(1)制备得到的亲水性石墨烯溶液中,然后在冰水浴下反应12h,得到亲水性石墨烯-聚苯胺复合溶液;
(3)按乙酸锰:高锰酸钾:苯胺的质量比=58:25:1的比例,将1.47g乙酸锰加入到20mL(1)中制得的亲水性石墨烯-聚苯胺复合溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-聚苯胺-二氧化锰前驱悬浮液,将制得的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,然后离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)制得的黑褐色固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料GMP25
实施例6:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.145mg/mL的亲水性石墨烯溶液;
(2)按苯胺:盐酸=2:462的质量比,将50μL苯胺单体和10mL 1M盐酸形成的混合溶液,按过硫酸铵:盐酸=2:377的质量比,将0.125g过硫酸铵和20mL 1M盐酸形成的混合溶液,将上述苯胺的盐酸溶液与过硫酸铵的盐酸溶液加入到20mL步骤(1)制得的亲水性石墨烯溶液中,然后在冰水浴下反应12h,得到亲水性石墨烯-聚苯胺复合溶液;
(3)按乙酸锰:高锰酸钾:苯胺(制备上述亲水性石墨烯-聚苯胺复合溶液的苯胺原料量)的质量比=58:25:2的比例,将1.47g乙酸锰加入到20mL制得的亲水性石墨烯-聚苯胺复合溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-聚苯胺-二氧化锰前驱悬浮液,将制得的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)制得的黑褐色固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料GMP50
实施例7:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.145mg/mL的亲水性石墨烯溶液;
(2)按苯胺:盐酸=3:462的质量比,将75μL苯胺单体和10mL 1M盐酸形成的混合溶液,按过硫酸铵:盐酸=3:377的质量比,将0.187g过硫酸铵和20mL 1M盐酸形成的混合溶液,将上述苯胺的盐酸溶液与过硫酸铵的盐酸溶液加入到20mL步骤(1)制得的亲水性石墨烯溶液中,然后在冰水浴下反应12h,得到亲水性石墨烯-聚苯胺复合溶液;
(3)按乙酸锰:高锰酸钾:苯胺(制备上述亲水性石墨烯-聚苯胺复合溶液的苯胺原料量)的质量比=58:25:3的比例,将1.47g乙酸锰加入到20mL制得的亲水性石墨烯-聚苯胺复合溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-聚苯胺-二氧化锰前驱悬浮液,将制得的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)制得的黑褐色固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料GMP75
如图6所示,MnO2分布更加均匀,孔隙率更大,说明适量的聚苯胺的存在使得MnO2的分散的更加均匀,大大大的降低了MnO2的团聚现象,极大的增加MnO2与电解液之间的接触面积。
如图7所示,在2T=12.7°、18.0°、28.7°、37.6°、42.0°、49.9°、56.2°、60.2°、65.5°处出现了衍射峰,分别对应着MnO2四方晶型的(100)、(200)、(310)、(121)(301)、(411)、(600)、(521)、(022)晶面的特征衍射峰,这与标准卡片(JCPDS No:44-0141)基本一致。
如图8所示,制得的亲水性石墨烯-聚苯胺-二氧化锰GMP75共有三层结构,最下层的亲水性石墨烯薄层上均匀负载着尺寸均一的纳米颗粒,此纳米颗粒为聚苯胺。而MnO2纳米颗粒则均匀的负载到了聚苯胺纳米颗粒层。
如图9所示,制得的亲水性石墨烯-聚苯胺二氧化锰GMP75的循环伏安曲线均为明显的矩形特征,属于典型的二氧化锰循环伏安曲线。而且循环伏安曲线基本关于零电流基线对称,当电压发生转向时,电流几乎是在瞬间发生改变,这说明复合材料内阻较小且具备良好的动力学可逆性,故拥有较好的电容性能。
如图10所示,制得的亲水性石墨烯-聚苯胺-二氧化锰GMP75在电流密度为0.5F/g下的长循环测试图,在循环1000圈后,电容没有出现衰减,展现了比较稳定的长循环性能。
实施例8:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.145mg/mL的亲水性石墨烯溶液;
(2)按苯胺:盐酸=4:14.29的质量比,将100μL苯胺单体和10mL 1M盐酸形成的混合溶液,按过硫酸铵:盐酸=4:11.68的质量比,将0.25g过硫酸铵和20mL 1M盐酸形成的混合溶液,将上述苯胺的盐酸溶液与过硫酸铵的盐酸溶液加入到20mL步骤(1)制得的亲水性石墨烯溶液中,然后在冰水浴下反应12h,得到亲水性石墨烯-聚苯胺复合溶液;
(3)按乙酸锰:高锰酸钾:苯胺(制备上述亲水性石墨烯-聚苯胺复合溶液的苯胺原料量)的质量比=58:25:4的比例,将1.47g乙酸锰加入到20mL制得的亲水性石墨烯-聚苯胺复合溶液中,再加入20mL浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-聚苯胺-二氧化锰前驱悬浮液,将步骤(3)制备得到的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)制得的黑褐色固体在马弗炉中于450℃下煅烧3h,得到亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料GMP100

Claims (2)

1.一种亲水性石墨烯与二氧化锰纳米复合材料,其特征在于:它是一种将亲水性石墨烯在有或无苯胺单体和过硫酸铵存在下,与乙酸锰和高锰酸钾共混,采用共沉淀法获得前驱物,再经过马弗炉焙烧得到亲水性石墨烯与二氧化锰纳米复合材料。
2.权利要求1的亲水性石墨烯与二氧化锰纳米复合材料的制备方法,其特征在于:
(1)将亲水性石墨烯溶于去离子水中,配制得到浓度为0.005-0.25mg/mL的亲水性石墨烯溶液;所述亲水性石墨烯为专利号为201310296390.7的一种石墨烯,其制备方法主要是将氧化石墨烯分散于水中,加入含有磺酸基团的苯肼,通过超声洗涤器超声12h,然后于85℃下反应12h,得到黑色水溶性溶液,过滤除去不溶性杂质,母液可经常压或旋转蒸发器减压浓缩,并除去过量含有磺酸基团的苯肼,然后于60℃下真空干燥,得到亲水性石墨烯;
(2)按质量比乙酸锰:高锰酸钾:亲水性石墨烯=84:36:1-2.43的比例,将乙酸锰加入到步骤(1)的亲水性石墨烯溶液中,再加入浓度为31.6mg/mL的高锰酸钾,反应4h,制得亲水性石墨烯-二氧化锰复合的前驱悬浮液;
或按质量比苯胺:盐酸=1-4:462的比例,将苯胺单体和1M盐酸形成的混合溶液,按质量比过硫酸铵:盐酸=1-4:377,将过硫酸铵和1M盐酸形成的混合溶液,按苯胺与亲水性石墨烯的质量比为8.8-35.2:1,苯胺与过硫酸铵质量比为1:2.45的比例,将苯胺的盐酸溶液和过硫酸铵的盐酸溶液依次加入到步骤(1)的亲水性石墨烯溶液,然后在冰水浴下反应12h,得到亲水性石墨烯-聚苯胺复合溶液;按乙酸锰:高锰酸钾:苯胺的质量比=58:25:1-4的比例,将乙酸锰加入到制得的亲水性石墨烯-聚苯胺复合溶液中,再加入浓度为31.6mg/mL的高锰酸钾,反应4h,制备得到亲水性石墨烯-聚苯胺-二氧化锰前驱悬浮液;
(3)将步骤(2)制得的前驱悬浮液,静置,除去上清液,然后依次用去离子水和乙醇洗涤至悬浮液呈弱酸性,然后离心,除去上清液,所得固体于80℃下进行干燥,得到黑褐色固体;
(4)将步骤(3)的黑褐色固体在马弗炉中于450℃下煅烧3h,分别得到亲水性石墨烯-二氧化锰纳米复合材料和亲水性石墨烯-聚苯胺-二氧化锰纳米复合材料。
CN201810851676.XA 2018-07-30 2018-07-30 亲水性石墨烯与二氧化锰的纳米复合材料及其制备方法 Pending CN109087813A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810851676.XA CN109087813A (zh) 2018-07-30 2018-07-30 亲水性石墨烯与二氧化锰的纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810851676.XA CN109087813A (zh) 2018-07-30 2018-07-30 亲水性石墨烯与二氧化锰的纳米复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109087813A true CN109087813A (zh) 2018-12-25

Family

ID=64833365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810851676.XA Pending CN109087813A (zh) 2018-07-30 2018-07-30 亲水性石墨烯与二氧化锰的纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109087813A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930992A (zh) * 2012-11-12 2013-02-13 上海交通大学 一种掺氮石墨烯与二氧化锰复合电极材料的制备方法
CN102977602A (zh) * 2012-12-11 2013-03-20 华东理工大学 一种制备二氧化锰/碳材料/导电聚合物复合材料的方法
CN103435031A (zh) * 2013-07-16 2013-12-11 燕山大学 一种水溶性石墨烯的制备方法
CN103971941A (zh) * 2014-05-23 2014-08-06 武汉工程大学 应用于超级电容器的石墨烯/聚苯胺/氧化锡复合材料及其制备方法
CN105070514A (zh) * 2015-07-06 2015-11-18 常州大学 界面法制备聚苯胺/石墨烯/二氧化锰复合材料应用于超级电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930992A (zh) * 2012-11-12 2013-02-13 上海交通大学 一种掺氮石墨烯与二氧化锰复合电极材料的制备方法
CN102977602A (zh) * 2012-12-11 2013-03-20 华东理工大学 一种制备二氧化锰/碳材料/导电聚合物复合材料的方法
CN103435031A (zh) * 2013-07-16 2013-12-11 燕山大学 一种水溶性石墨烯的制备方法
CN103971941A (zh) * 2014-05-23 2014-08-06 武汉工程大学 应用于超级电容器的石墨烯/聚苯胺/氧化锡复合材料及其制备方法
CN105070514A (zh) * 2015-07-06 2015-11-18 常州大学 界面法制备聚苯胺/石墨烯/二氧化锰复合材料应用于超级电容器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIANHUI WU: ""Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor", 《CHEMICAL ENGINEERING JOURNAL》 *
徐晓: "石墨烯/二氧化锰复合材料的电化学性能", 《硅酸盐学报》 *

Similar Documents

Publication Publication Date Title
Qian et al. Interconnected three-dimensional V 2 O 5/polypyrrole network nanostructures for high performance solid-state supercapacitors
Itoi et al. Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors
Zhang et al. Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application
Kazazi High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors
Xie et al. Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte
CN104979105B (zh) 一种氮掺杂多孔碳材料、制备方法及其应用
CN102800432A (zh) 一种氧化石墨烯/导电聚吡咯纳米线复合材料的制备方法
Basnayaka et al. A review of supercapacitor energy storage using nanohybrid conducting polymers and carbon electrode materials
CN102768902A (zh) 一种制造有机电解质电解电容器的方法
CN114551111B (zh) 一种墨水直写3d打印导电聚合物基微型超级电容器及其制备方法
CN102832050A (zh) 分级结构石墨烯/碳纳米管杂化物的制备方法
Chen et al. Facile synthesis of MnO2/Ti3C2Tx/CC as positive electrode of all‐solid‐state flexible asymmetric supercapacitor
CN107958794A (zh) 超薄柔性全固态石墨烯水凝胶超级电容器及其制备方法
CN111883366A (zh) 一种聚吡咯纳米球@碳化钛复合材料及其制备方法和应用
CN106057493B (zh) 一种超级电容器隔膜的制备方法
Ge et al. Electrochemical performance of MoO3-RuO2/Ti in H2SO4 electrolyte as anodes for asymmetric supercapacitors
CN110970226A (zh) 一种复合电极材料及制备方法、超级电容器
CN111689523A (zh) 金属铬掺杂δ-MnO2纳米片的制备方法
KR20200068839A (ko) 구겨진 그래핀을 포함하는 슈퍼커패시터용 전극의 제조방법 및 이에 의해 제조된 슈퍼커패시터용 전극
CN110911171B (zh) 一种非对称微芯片超级电容器及其制备方法
Yu et al. Conductive hydrogels with 2D/2D β-NiS/Ti3C2Tx heterostructure for high-performance supercapacitor electrode materials
Tu et al. Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors
Xie et al. In-situ synthesis of fluorine-free MXene/TiO2 composite for high-performance supercapacitor
CN113155933B (zh) 一种基于石墨烯-三氧化钼的全固态钾离子选择性电极及其制备方法和应用
CN109036861A (zh) 柔性固态纸基超级电容器及其形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181225

RJ01 Rejection of invention patent application after publication