CN109045026A - 一种基于天然色素的无载体纳米药物的制备方法及应用 - Google Patents

一种基于天然色素的无载体纳米药物的制备方法及应用 Download PDF

Info

Publication number
CN109045026A
CN109045026A CN201810905307.4A CN201810905307A CN109045026A CN 109045026 A CN109045026 A CN 109045026A CN 201810905307 A CN201810905307 A CN 201810905307A CN 109045026 A CN109045026 A CN 109045026A
Authority
CN
China
Prior art keywords
carrier
preparation
nano medication
natural pigment
prodigiosin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810905307.4A
Other languages
English (en)
Other versions
CN109045026B (zh
Inventor
邵敬伟
赵瑞瑞
张冰晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201810905307.4A priority Critical patent/CN109045026B/zh
Publication of CN109045026A publication Critical patent/CN109045026A/zh
Application granted granted Critical
Publication of CN109045026B publication Critical patent/CN109045026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供一种基于天然色素的无载体纳米药物的制备方法,具体做法为用疏水性药物灵菌红素制备成纳米药物。本发明的目的是基于疏水性药物灵菌红素,在水中自组装形成具有肿瘤靶向性的无载体纳米粒,从而达到抗肿瘤作用,更重要的是解决了纳米载体带来的诸多临床安全性问题。

Description

一种基于天然色素的无载体纳米药物的制备方法及应用
技术领域
本发明涉及生物医药技术领域,特别涉及一种基于天然色素的无载体纳米药物的制备方法及应用。
背景技术
癌症(Cancer)通常又称为恶性肿瘤,在发达国家和发展中国家都是导致人类死亡的主要原因,并且随着全球人口不断增长和老龄化的日益严重,以及人们过度肥胖、缺乏锻炼、抽烟、经济发展等因素都将会导致癌症患者人数的不断增加。目前肿瘤的治疗方法主要有:化疗、手术切除、放疗、光动力治疗、基因治疗等。
灵菌红素(Prodigiosin, PG) 是由细菌、放线菌(Actinomycetes)等产生的一种典型的生物碱类次级代谢产物,是一类具有三砒咯环结构的天然红色素的总称。灵菌红素具有多样的生物活性,包括抗菌、抗真菌、抗疟疾、抗细胞毒性、抗癌、抗肿瘤转移、免疫抑制活性等。近年来,研究者发现灵菌红素在癌症治疗方面具有一定的功效,一直用于体外多种抗肿瘤细胞系的试验,并且在抑制肺癌转移方面也取得了一定的进展。因此灵菌红素在医药领域具有广泛的应用前景,市场价值极高。尽管灵菌红素的药物活性得到了广泛的认同,但其疏水性强,在水中几乎不溶解,导致其体内生物利用度低,严重影响了其在临床上的广泛使用。
为了解决化疗药物水溶性不好,没有靶向性,且生物利用度低等限制因素, 纳米载体如脂质体,胶束,介孔二氧化硅,金纳米粒子等被用于提高癌症的治疗。 然而,纳米载体的制备极其复杂,纳米载体的降解,代谢和排泄可引起显着的毒性问题。 因此,开发“绿色”方法以获得没有“有毒”溶剂或纳米载体的纳米药物制剂是非常重要的。
本专利基于疏水性药物灵菌红素,在水中自组装形成具有肿瘤靶向性的无载体纳米粒,从而达到抗肿瘤作用,更重要的是解决了纳米载体带来的诸多临床安全性问题。
发明内容
基于天然色素的无载体纳米药物是由一种天然抗癌药物灵菌红素通过一种绿色、简单的自组装方法自组装而成。利用高通透性和滞留效应 (EPR效应)可以准确的到达肿瘤组织,从而将药物选择性地运送到肿瘤部位,把药物效应尽量限定在肿瘤细胞上,而不对正常组织产生损害,达到抗肿瘤效果。
本发明的目的在于提供一种基于天然色素的无载体纳米药物的制备方法,另一目的是提供无载体纳米药物在制备防治肿瘤药物中的应用。
为实现上述目的,本发明采用的技术方案如下:
所述的基于天然色素的无载体纳米药物是通过自组装技术由疏水性天然色素自组装而成。
所述的疏水性天然色素为灵菌红素。
所述的制备方法包括如下具体步骤:
(1)将灵菌红素溶于良性溶剂A中,得到溶液A,所述溶液A中的灵菌红素浓度范围为1000μM-10000μM,所述良性溶剂A为二氯甲烷、氯仿、乙酸乙酯、乙酸甲酯、丙酮、正丙醇、甲醇、吡啶、乙酸、二甲基亚砜中的一种或多种;
(2)将溶液A缓慢滴入到不良溶剂水中,超声一定的时间后得溶液B,吹干里面的有机溶剂,即得到PG纳米粒。
所述步骤(2)中的超声时间为5-60 min。
所述步骤(2)的溶液B中药物灵菌红素的浓度范围为10μM-640μM。
所述制得的PG纳米药物的粒径为100-200nm。
所述任意一项所制备的无载体纳米药物在制备防治肿瘤药物中的应用。
上述所述的PG的结构式如图式Ⅰ所示
式Ⅰ
本发明的优点在于:
1、本发明所制备的纳米药物中是由天然抗癌药物灵菌红素自组装而成,对正常细胞毒副作用小,水溶性效果好,又具有良好的抗肿瘤效果;
2、本发明所制备的一种基于天然色素的无载体纳米药物制备过程简单,方便,可以解决传统纳米载体在体内代谢不明确,体系复杂等问题,消除了人工合成载体带来的临床安全性问题,并能为以后新药研发和制备提供新的思路。
3、本发明所制备的一种基于天然色素的无载体纳米药物中的灵菌红素在水中可以通过溶剂交换法自组装成为纳米粒,有效地解决了抗癌药物灵菌红素的水溶性和生物利用度的问题;
4、本发明所制备的一种基于天然色素的无载体纳米药物通过EPR效应提高纳米药物在肿瘤部位的集聚作用。
5、本发明的无载体纳米药物在pH7.4生理环境下具有良好的稳定性。
附图说明
图1为实施例2中PG纳米粒径分布图。
图2为实施例2中PG纳米电势图。
图3为实施例3中PG纳米的紫外吸收。
图4为实施例4中PG纳米的荧光检测图。
图5为实施例5中PG纳米的pH响应结果。
图6为实施例6中PG纳米在不同pH溶液中粒径测定结果。
图7为实施例7中PG纳米对LO2细胞的毒性结果。
图8为实施例8中PG纳米对A549细胞的毒性实验结果。
图9为实施例9中PG纳米对HeLa细胞的毒性实验结果。
图10为实施10中A549细胞和HeLa细胞对PG纳米的摄取结果。
具体实施方式
根据下述实施例,可以更好地理解本发明,下面结合具体实施方式对本发明所述的技术方案作进一步的说明,但是本发明不仅限于此。
实施例1 灵菌红素纳米的制备方法 准确称取0.00324g PG粉末,溶于1ml甲醇中,超声溶解,配置成10 mM的溶液;取不同体积的上述溶液溶解在100μL甲醇中,在搅拌过程中逐滴滴加到含有1 mL二次水(重蒸水)中(注:滴加过程中进行涡旋),此时PG在溶液中的浓度为10μM-640μM,超声10min后,吹干甲醇,即得PG纳米;并用沉淀的方法测定纳米药物中PG分子的载药量(Drug loading capacity)。本实施例制备的不同浓度的PG纳米平均粒径、PDI、电势及载药量如表1所示。
表1 不同浓度的PG纳米平均粒径、PDI、电势及载药量
实施例2
准确称取0.00324g PG粉末,溶于1mL甲醇中,超声溶解,配置成10 mM的溶液;取不同体积的甲醇溶液,在搅拌过程中逐滴滴加到含有1 mL二次水(重蒸水)中(注:滴加过程中进行涡旋),此时PG在溶液中的浓度为160μM,超声10min后,吹干甲醇,即得PG纳米;
本实施例制备的PG纳米粒径155.6及电势50.2mV如图1和图2所示。
实施例3
将实施例2制备的PG纳米药物以及相同浓度的PG甲醇溶液通过紫外可见分光光度计进行紫外检测,结果显示本发明制备的纳米抗癌药物仍具有PG特征吸收峰,如图3所示,证明本发明PG自组装形成了PG NPs 抗癌纳米药物。
实施例4
将实施例2制备的PG纳米药物以及相同浓度的PG甲醇溶液通过荧光检测器进行荧光检测,结果显示本发明制备的纳米药物荧光强度低于相同浓度PG的荧光强度如图4所示,证明了PG自组装形成了PG NPs 抗癌纳米药物。
实施例5
将实施例2制备的PG纳米粒各取250µL两份于透明玻璃瓶中,然后分别加入pH为5.5和7.4的PBS溶液1750µL, 静置6小时,然后用激光笔照射,观察现象,如图5所示。
本案例结果如图5所示,pH5.5的环境中溶液有微弱的丁达尔效应,在pH7.4的情况下纳米药物能够均一的存在,有很强的丁达尔效应,表明PG纳米粒在pH7.4的生理环境下可以稳定存在。
实施例6
将实施例2制备的PG纳米粒各取250µL两份于透明玻璃瓶中,然后分别加入pH为5.5和7.4的PBS溶液1750µL, 静置6小时,通过紫外分光光光度计检测其现象,如图6所示。
本案例结果如图6所示,pH5.5的环境中溶液PG NPs不稳定,在pH7.4的情况下纳米药物能够均一的存在,表明PG纳米粒在pH7.4的生理环境下可以稳定存在。
实施例7
PG纳米药物的抗癌活性,采用标准MTT法测定Free PG和PG NPs对LO2细胞的增殖抑制活性,具体步骤为:
(1)取处于对数生长期状态良好的LO2细胞,经胰蛋白酶消化后,计数并调整细胞密度为0.8×个/mL,配成细胞悬液。于每孔100 µl接种到96孔板中,周围用NaCl封板,置于37℃, 5% CO2培养箱中培养24 h。
(2)弃去旧的培养液,设置不同浓度的药物组和阴性空白细胞对照组,每组设置5个复孔,于培养箱中继续孵育24h。
(3)取出 96 孔板,在避光条件下,移除培养基,于每孔中加入100 µL MTT溶液(无血清、无酚红的RMPI1640培养基:MTT母液=9:1,V:V),继续孵育4 h。
(4)取出96孔板终止培养,用移液枪轻轻吸去96孔板中的上清液,每孔加入DMSO溶液 100 µl,振荡摇匀10 min,使蓝紫色结晶全部溶解。
(5)用酶标仪于490nm波长处测定每孔的OD值,使用GraphPad Prism 5处理实验结果如图7所示。
结果显示,Free PG对正常细胞LO2也具有很强的细胞毒性,而PG NPs纳米药物减弱了其对正常细胞的毒性。
实施例8
PG NPs纳米药物的抗癌活性,通过细胞毒性来实现,采用标准MTT法测定Free PG和PGNPs对A549细胞的增殖抑制活性,具体步骤见实施例6,其结果显示本发明制备的纳米抗癌药物对HeLa细胞具有显著的杀伤作用,如图8所示,表明本研究,与Free PG相比,在相同浓度下PG NPs仍对细胞具有较强的抗肿瘤活性。
实施例9
PG NPs纳米药物的抗癌活性,通过细胞毒性来实现,采用标准MTT法测定Free PG和PGNPs对HeLa细胞的增殖抑制活性,具体步骤见实施例6,其结果显示本发明制备的纳米抗癌药物对HeLa细胞具有显著的杀伤作用,如图9所示,表明本研究,与Free PG相比,在相同浓度下PG NPs仍对细胞具有较强的抗肿瘤活性。
实施例10
观察细胞生长至铺满整个培养瓶底部时消化A549, HeLa细胞并重悬细胞团为单细胞悬浮液,A549和 HeLa 细胞接种在六孔板上,摇晃均匀后置于37℃的二氧化碳培养箱中,孵育 24 h后,将配制好的Free PG和PG NPs与细胞共孵育,继续培养2 h,吸取培养液,PBS洗两次,用4%的多聚甲醛固定20 min,然后用DAPI染色20 min,最后在激光共聚焦下根据PG的荧光检测摄取情况。结果如图10所示。
结果表明,与Free PG相比,PG NPs更容易被A549和 HeLa细胞摄取,更容易进入细胞。PG NPs通过渗透压进入肿瘤细胞,因此在短时间内能够进入肿瘤细胞,会表现出更强的荧光强度。

Claims (7)

1.一种基于天然色素的无载体纳米药物的制备方法,其特征在于,所述的基于天然色素的无载体纳米药物是通过自组装方法由疏水性天然色素自组装而成。
2.根据权利要求1所述一种基于天然色素的无载体纳米药物的制备方法,其特征在于,所述的疏水性天然色素为灵菌红素。
3.根据权利要求2所述的制备方法,其特征在于,所述的制备方法包括如下具体步骤:
(1)将灵菌红素溶于良性溶剂A中,得到溶液A,所述溶液A中的灵菌红素浓度范围为1000μM-10000μM,所述良性溶剂A为二氯甲烷、氯仿、乙酸乙酯、乙酸甲酯、丙酮、正丙醇、甲醇、吡啶、乙酸、二甲基亚砜中的一种或多种;
(2)将溶液A缓慢滴入到不良溶剂水中,超声一定的时间后得溶液B,吹干里面的有机溶剂,即得到PG纳米粒。
4.根据权利要求3所述的一种基于天然色素的无载体纳米药物的制备方法,其特征在于,所述步骤(2)中的超声时间为5-60 min。
5.根据权利要求3所述的一种基于天然色素的无载体纳米药物的制备方法,其特征在于,所述步骤(2)的溶液B中药物灵菌红素的浓度范围为10μM-640μM。
6.根据权利要求3所述的一种基于天然色素的无载体纳米药物的制备方法,其特征在于,所述制得的PG纳米药物的粒径为100-200nm。
7.如权利要求1-5所述任意一项所制备的无载体纳米药物在制备防治肿瘤药物中的应用。
CN201810905307.4A 2018-08-10 2018-08-10 一种基于天然色素的无载体纳米药物的制备方法及应用 Active CN109045026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810905307.4A CN109045026B (zh) 2018-08-10 2018-08-10 一种基于天然色素的无载体纳米药物的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810905307.4A CN109045026B (zh) 2018-08-10 2018-08-10 一种基于天然色素的无载体纳米药物的制备方法及应用

Publications (2)

Publication Number Publication Date
CN109045026A true CN109045026A (zh) 2018-12-21
CN109045026B CN109045026B (zh) 2021-03-02

Family

ID=64683225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810905307.4A Active CN109045026B (zh) 2018-08-10 2018-08-10 一种基于天然色素的无载体纳米药物的制备方法及应用

Country Status (1)

Country Link
CN (1) CN109045026B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109646403A (zh) * 2019-01-11 2019-04-19 福州大学 一种无载体大环内酯类免疫抑制药物纳米粒的制备方法
CN114642637A (zh) * 2022-03-09 2022-06-21 吉林大学 一种纯萘醌类化合物纳米粒子及其无载体无表面活性剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106420664A (zh) * 2016-11-03 2017-02-22 福州大学 一种具有抗癌活性的阿司匹林偶联物作为药物载体或者分子探针载体的应用
CN107158014A (zh) * 2017-05-19 2017-09-15 福州大学 无载体共组装肿瘤靶向抗癌纳米药物及其制备方法与应用
CN107349429A (zh) * 2017-07-18 2017-11-17 福州大学 一种核酸适配体‑熊果酸的偶联物无载体自组装纳米粒及其制备和应用
CN107812008A (zh) * 2017-11-15 2018-03-20 福州大学 一种近红外荧光成像小分子抗癌纳米药物的制备方法
CN107875158A (zh) * 2017-11-15 2018-04-06 福州大学 一种兼具化疗/光治疗的无载体纳米药物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106420664A (zh) * 2016-11-03 2017-02-22 福州大学 一种具有抗癌活性的阿司匹林偶联物作为药物载体或者分子探针载体的应用
CN107158014A (zh) * 2017-05-19 2017-09-15 福州大学 无载体共组装肿瘤靶向抗癌纳米药物及其制备方法与应用
CN107349429A (zh) * 2017-07-18 2017-11-17 福州大学 一种核酸适配体‑熊果酸的偶联物无载体自组装纳米粒及其制备和应用
CN107812008A (zh) * 2017-11-15 2018-03-20 福州大学 一种近红外荧光成像小分子抗癌纳米药物的制备方法
CN107875158A (zh) * 2017-11-15 2018-04-06 福州大学 一种兼具化疗/光治疗的无载体纳米药物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANFANG ZHOU 等: "Self-assembled small molecular weight hydrogels of prodrugs", 《CHINESE CHEMICAL LETTERS》 *
任燕飞 等: "微生物合成纳米色素染色研究", 《针织工业》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109646403A (zh) * 2019-01-11 2019-04-19 福州大学 一种无载体大环内酯类免疫抑制药物纳米粒的制备方法
CN109646403B (zh) * 2019-01-11 2021-06-22 福州大学 一种无载体大环内酯类免疫抑制药物纳米粒的制备方法
CN114642637A (zh) * 2022-03-09 2022-06-21 吉林大学 一种纯萘醌类化合物纳米粒子及其无载体无表面活性剂的制备方法
CN114642637B (zh) * 2022-03-09 2022-12-30 吉林大学 一种纯萘醌类化合物纳米粒子及其无载体无表面活性剂的制备方法

Also Published As

Publication number Publication date
CN109045026B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
Gupta et al. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness
CN107875158B (zh) 一种兼具化疗/光治疗的无载体纳米药物的制备方法
Yang et al. Construction of pH/glutathione responsive chitosan nanoparticles by a self-assembly/self-crosslinking method for photodynamic therapy
CN104491868B (zh) 新型基于抗体偶联化疗药物纳米adc及制备方法和应用
CN107669632A (zh) 一种药物载体、胶束、抗肿瘤和抗肿瘤细胞转移药物制剂、及其制备方法和用途
Zhang et al. Reactive oxygen species and glutathione dual responsive nanoparticles for enhanced prostate cancer therapy
CN106344924B (zh) 一种联合代谢阻断的纳米剂型及其耐药逆转应用
CN109045026A (zh) 一种基于天然色素的无载体纳米药物的制备方法及应用
CN105859990B (zh) 侧链含硫辛酰基的聚合物、其制备方法及由其制备的聚合物囊泡及其应用
CN111053911A (zh) 还原响应型交联剂及其交联羟基药物分子的制备及应用
CN108888775A (zh) 一种透明质酸-甲氨蝶呤自组装纳米胶束及其制备方法
CN108503845A (zh) 带有儿茶酚配体的两亲性接枝聚合物及其合成方法和应用
CN106344539A (zh) 一种新型多功能靶向纳米胶囊抗癌药物的分子设计与制备技术
Li et al. Folate chitosan conjugated doxorubicin and pyropheophorbide acid nanoparticles (FCDP–NPs) for enhance photodynamic therapy
Liu et al. Curcumin copolymerized drugs mediated by enteric-coated polymers: Their design, synthesis and biocompatibility cell imaging studies
Li et al. Chemosensitivity enhanced by autophagy inhibition based on a polycationic nano-drug carrier
CN107007550B (zh) 一种氧化还原响应性两亲性共聚物及其制备方法和应用
CN111592634B (zh) 一种光还原自降解高分子及其制备方法和应用
CN105832668A (zh) 基于聚磷酸酯的叶酸靶向酸敏感核交联载药胶束
CN109953974B (zh) 一种酶-还原双响应性透明质酸-聚硫化丙烯共聚物纳米胶囊的制备方法
Adriouach et al. Squalene-PEG: Pyropheophorbide-a nanoconstructs for tumor theranostics
CN107028882B (zh) 一种物理包裹的肿瘤靶向纳米递药系统及制备方法和应用
Liu et al. A versatile supramolecular nanoagent for three-pronged boosting chemodynamic therapy
CN113384698B (zh) 一种协同化疗/声-光动力治疗的自组装纳米药物及其应用
Huang et al. Ag nanoparticles green-mediated by Scrophularia striata aqueous extract induce apoptosis via P53 and signal transducer and activator of transcription 3 signaling pathways in gastric cancer cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant