CN106344539A - 一种新型多功能靶向纳米胶囊抗癌药物的分子设计与制备技术 - Google Patents

一种新型多功能靶向纳米胶囊抗癌药物的分子设计与制备技术 Download PDF

Info

Publication number
CN106344539A
CN106344539A CN201610727088.6A CN201610727088A CN106344539A CN 106344539 A CN106344539 A CN 106344539A CN 201610727088 A CN201610727088 A CN 201610727088A CN 106344539 A CN106344539 A CN 106344539A
Authority
CN
China
Prior art keywords
medicament
capsule
trail
solution
carried nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610727088.6A
Other languages
English (en)
Other versions
CN106344539B (zh
Inventor
王行国
刘欣
顾豪爽
李岳彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201610727088.6A priority Critical patent/CN106344539B/zh
Publication of CN106344539A publication Critical patent/CN106344539A/zh
Application granted granted Critical
Publication of CN106344539B publication Critical patent/CN106344539B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • A61K38/1761Apoptosis related proteins, e.g. Apoptotic protease-activating factor-1 (APAF-1), Bax, Bax-inhibitory protein(s)(BI; bax-I), Myeloid cell leukemia associated protein (MCL-1), Inhibitor of apoptosis [IAP] or Bcl-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提出了一种新型多功能靶向纳米胶囊抗癌药物的分子设计与合成技术,利用羧基化的嵌段共聚物F127‑COOH和P123将紫杉醇包裹形成纳米胶束,并使用四甲氧基硅烷在胶束中形成一层二氧化硅壳稳定胶束结构以形成载药纳米胶囊;然后通过偶联剂将纳米胶囊表面的羧基与TRAIL蛋白表面的氨基偶联,形成表面偶联TRAIL蛋白的载药纳米胶囊。本发明的技术方法重复性好、条件温和,制备的多功能靶向纳米胶囊抗癌药物稳定,抗癌谱广且疗效显著。

Description

一种新型多功能靶向纳米胶囊抗癌药物的分子设计与制备 技术
技术领域
本发明涉及的是一种新型多功能靶向纳米胶囊抗癌药物的设计与合成技术,特别是一种包载紫杉醇的纳米胶囊表面偶联肿瘤坏死因子相关凋亡诱导配体TRAIL蛋白的抗癌药物的设计与制备。
背景技术
在全球范围内,恶性肿瘤的治疗是当今生命科学研究领域的一个难点。化疗是当前肿瘤治疗的主要手段之一,化疗常用的药物有紫杉醇(PTX)、阿霉素、柔红霉素、丝裂霉素等,但由于化疗药物的选择性不强,在杀灭癌细胞的同时也会不可避免地损伤人体正常的细胞,常常出现药物不良反应,存在毒性、非特异性和耐药性问题。
肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor-related apoptosisinducing ligand ,TRAIL)是一种人源性蛋白,作为一种新的抗肿瘤药物,可以在体内选择性地诱导肿瘤细胞系凋亡而不会对正常细胞有毒性,在肿瘤的治疗中有广泛的潜在应用前景。但是,单独使用TRAIL蛋白也存在不足之处,有些癌肿瘤对TRAIL蛋白不敏感。
目前国内外的研究多集中在TRAIL蛋白与化疗药物的联合用药上,试图发挥TRAIL蛋白和化疗药物的双重功效以解决TRAIL蛋白敏感性问题并增强杀癌疗效。联合使用紫杉醇等化疗药物虽可提高非敏感性肿瘤细胞表面TRAIL蛋白受体,但仍缺乏靶向性和存在毒性问题。近年来TRAIL在动物体内的靶向性已经得到证实,综合利用TRAIL的抗肿瘤作用和靶向作用是新的研究方向。
随着科技的发展,性能优良的高分子材料在医药行业发展迅速。载药纳米微粒是纳米技术与现代医药学结合的产物,是一种新型的药物输送载体。它能缓释药物、延长药物作用时间,透过生物屏障输送药物等,尤其在药物控释方面显示出其它输送体系无法比拟的优势。因此,我们试图将化疗药物包载进羧基化的嵌段共聚物F127-COOH和P123纳米微粒内,并在胶束中添加四甲氧基硅烷形成一层二氧化硅壳以稳定胶束结构,形成载药纳米胶囊;然后通过载药纳米胶囊表面的羧基(-COOH)与 TRAIL蛋白的氨基(-NH2)偶联,形成一种在细胞和肿瘤水平均具有良好杀癌效果的新型多功能靶向纳米胶囊抗癌药物。
发明内容
本发明的目的是提出一种新型多功能靶向纳米胶囊抗癌药物的分子设计与制备方法。首先通过嵌段共聚物F127羧基化修饰获得F127-COOH,然后将化疗药物包载进羧基化的嵌段共聚物F127-COOH和P123纳米微粒内,并添加四甲氧基硅烷形成一层二氧化硅壳以稳定胶束结构,形成载药纳米胶囊,最后通过载药胶囊表面的羧基(-COOH)与 TRAIL蛋白的氨基(-NH2)偶联,制备出一种同时兼具靶向、抗癌、缓释等特点的新型多功能靶向纳米胶囊抗癌药物,其分子结构见图1。这种新型人工合成的纳米紫杉醇荷载胶囊-TRAIL蛋白药物(TRAIL-PTX-NCs))既具有靶向性、缓释化学药物又具有TRAIL蛋白和化学药物双重杀癌作用。同时,它有效地发挥了TRAIL蛋白和化学药物的杀癌特性,克服彼此存在的缺点。纳米紫杉醇荷载胶囊-TRAIL蛋白药物既可用于治疗TRAIL蛋白敏感的瘤细胞又可用于治疗TRAIL蛋白不敏感的癌细胞。
一种新型多功能靶向纳米胶囊抗癌药物的设计与合成技术,其步骤为:
1、嵌段共聚物F127的羧基化修饰
将F127加入到无水甲苯中,搅拌至F127完全溶解,形成溶液A;向溶液A中加入与F127等重的丁二酸酐,搅拌后形成溶液B;将溶液B在150℃下沸浴加热5h,减压下蒸馏将甲苯蒸发,蒸馏后残液用二氯甲烷洗涤,然后加入乙醚沉淀产物,产物用乙醚重结晶,最后得到F127-COOH;所述F127与无水甲苯的质量体积比为1:1,质量体积比单位为mg:ml。
2、载药纳米胶囊的制备
称取P123和F127-COOH超声溶解于氯仿溶液,并加入紫杉醇或其它疏水性药物,100 W超声分散15 min,得到的混合溶液在75℃下真空干燥1 h以上,待氯仿完全蒸发完后得到一层纳米薄膜,向薄膜内加入去离子水,200 W超声分散12 min即得到包载紫杉醇的载药纳米胶束;取四甲氧基硅烷超声分散于四氢呋喃溶液中,逐滴加入到载药纳米胶束中,并置于磁力搅拌仪上以750 rpm转速搅拌3天,四甲氧基硅烷在胶束中水解形成一层二氧化硅壳,形成载药纳米胶囊;
所述P123与F127-COOH的质量比为2:1-0.5, 紫杉醇与P123、F127-COOH混合物的质量比为1: 70-300;
所述的四甲氧基硅烷与四氢呋喃的用量为:四甲氧基硅烷与四氢呋喃的体积比为7:100,四甲氧基硅烷与载药纳米胶束的体积比为1:100-1000。
3、载药纳米胶囊与TRAIL蛋白的偶联
在pH7.4磷酸盐缓冲液(PBS)中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺(NHS)以及载药纳米胶囊,室温避光旋转反应1 h活化胶囊表面的羧基;将反应后的溶液装入截留分子量为8000 g/mol的透析袋,置于PBS溶液中透析24 h以除去未反应的EDC和NHS,再向透析后的溶液中加入TRAIL蛋白,4℃避光旋转反应8-16 h,即得到偶联TRAIL蛋白的载药纳米胶囊,所述磷酸盐缓冲液、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、N-羟基琥珀酰亚胺、载药纳米胶囊的用量比为3:5:6:1,单位为ml:mg:mg:ml;
所述TRAIL蛋白用量与载药纳米胶囊用量比为1:10-40;单位为mg:ml。
4、载药纳米胶囊的形态检测和稳定性测定
取20 μl载药纳米胶囊滴加在碳支持膜型铜网上,室温条件下晾干。然后使用TecanaiG2 20 S-TWIN透射电子显微镜观察和拍照。使用Malvern Zetasizer Nano-S粒度分析仪测定载药纳米胶囊的粒径,并将胶囊稀释100倍、200倍、500倍、1000倍后测定胶囊粒径变化。
5、纳米紫杉醇荷载胶囊载药量和缓释的测定
取1 mL制备的载药纳米胶囊,加入2 mL乙腈超声溶胀后使用岛津分光光度计测定229nm处吸光值,并结合紫杉醇浓度-吸光度标准曲线计算紫杉醇含量以及胶囊载药量、包封率以及载药浓度。载药量=载药胶囊中实际负载的PTX含量/胶囊质量,包封率=载药胶囊中实际负载的PTX含量/反应加入的紫杉醇含量,载药浓度=载药胶囊中实际负载的PTX含量/胶囊溶液体积。取3 mL制备的载药纳米胶囊装入截留分子量为8000 g/mol的透析袋,置于30 mL含0.1% Twain80的PBS(pH7.4)溶液中透析,在0.5h、1h、2h、4h、6h、8h、10h、12h、24h分别取样200 μL,使用戴安UltiMate 3000PumP HPLC测定紫杉醇含量,并绘制缓释曲线。
6、纳米紫杉醇荷载胶囊-TRAIL蛋白药物对癌细胞杀伤效果检测
复苏肝癌细胞株HepG2于DMEM完全培养基(含10%胎牛血清、1%青霉素-链霉素),在37℃、5% CO2条件下培养至对数生长期。胰酶消化,离心收集对数生长期HepG2细胞重悬于DMEM培养基,以8×103细胞/孔的密度接种于96孔板,每孔含细胞培养液100 μL,在37℃、5%CO2条件下培养8 h使细胞贴壁,加入10 μL不同浓度的偶联TRAIL载药纳米胶囊,共培养24h后加入10 μL cck-8溶液,显色反应1-4 h后使用Bio-RAD酶标仪测定吸光值并计算细胞存活率。
7、纳米紫杉醇荷载胶囊-TRAIL蛋白药物对癌细胞靶向效果观测
使用荧光染料芘代替紫杉醇包载进纳米胶囊后偶联TRAIL蛋白。收集对数生长期的HepG2细胞,以1x106 个/孔的密度接种于6孔板,每孔含细胞培养液2 mL,待细胞贴壁后加入200 μL不同浓度偶联TRAIL的芘胶囊,对照组加入相同浓度的PBS。共培养24 h后使用Olympus Fluoview 1000荧光显微镜观测并拍照。
8、纳米紫杉醇荷载胶囊-TRAIL蛋白药物对荷瘤裸鼠治疗效果检测
取4-5周龄Balb/c裸鼠在动物实验中心恒温恒湿条件下饲养,垫料、饲料和饮水均经灭菌处理,高效过滤器每小时换气10~15次,相对湿度保持在46%~60%,每日保持10 h的光照、14 h无光的阴暗周期。待裸鼠体重达到15 g后,于右下肢接种HepG-2或MCF-7细胞,5x106个细胞/只,待肿瘤直径长至0.4-0.6 cm,建成荷瘤裸鼠模型。采用随机数字法将荷瘤裸鼠分为5组,每组5-8只。将偶联TRAIL载药纳米胶囊于腹腔注射给药,200 μL/只(含TRAIL蛋白7 μg,紫杉醇70 μg),给药后每天测定肿瘤大小(V),给药当天肿瘤体积记为V0,两周后杀死裸鼠取出肿瘤观察,计算相对肿瘤体积V/V0并绘制肿瘤体积变化趋势图。
本发明具有独特的优点:
1、本发明首次将TRAIL作为靶向载体, TRAIL蛋白的氨基(-NH2)与载药纳米胶囊的羧基(-COOH)偶联,制备成一种新型多功能靶向纳米胶囊抗癌药物,应用于肿瘤治疗。这种多功能靶向纳米胶囊抗癌药物借助TRAIL蛋白的靶向作用将药物运送至癌肿瘤处,有效地避免常规化疗药物对正常细胞的毒害作用。此外,TRAIL蛋白为人源性蛋白,无免疫源性。
2、本发明首次使用P123-F127-COOH-硅化纳米胶囊包载紫杉醇,纳米胶囊可使紫杉醇在活体内缓慢释放,减少紫杉醇对人体内的非特异毒害作用。P123-F127-COOH-硅化纳米胶囊本身对细胞无明显毒害作用。除紫杉醇外,P123-F127-COOH-硅化纳米胶囊还可用于包埋其它疏水性较强的化疗药物。
3、本发明将使用TRAIL蛋白与纳米载药胶囊偶联,除制备的多功能靶向纳米胶囊抗癌药物具有靶向性外,纳米载药胶囊中包载的化疗药物和偶联的TRAIL蛋白都具有杀癌作用。此外,包载的化疗药物还能增强癌细胞表面的TRAIL蛋白受体,增强TRAIL蛋白对癌细胞的识别和促凋亡作用,使纳米紫杉醇荷载胶囊-TRAIL蛋白药物既可用于TRAIL蛋白敏感性肿瘤又可用于TRAIL蛋白非敏感性肿瘤。所以,本发明所制备的多功能靶向纳米胶囊抗肿瘤药物可以同时发挥TRAIL的靶向作用、促凋亡作用、纳米载药胶囊的缓释作用以及常规化疗药物的抗癌作用,大大增强了对肿瘤的治疗效果和杀癌谱。
附图说明
图1为本发明发明内容中新型多功能靶向纳米载药胶囊抗癌药物分子结构示意图。
图2为本发明实施例1为TEM观测到的载药纳米胶囊形态,胶囊呈壳层结构,大小均一。
图3为本发明实施例1制备载药纳米胶囊的粒径分布,胶囊平均粒径为24 nm,具有良好的分散性。
图4为本发明实施例1制备载药纳米胶囊在稀释不同倍数后的粒径分布,结果显示制备的纳米胶囊具有良好的稳定性。
图5为本发明实施例2制备的载药纳米胶囊缓释曲线,纳米胶囊载药浓度为256.4μg/mL,比紫杉醇固有的溶解度0.3μg/mL增溶了855倍,载药量为0.39%,包封率为26.5%。当载药胶囊置于PBS溶液中透析时,胶囊在12 h内持续稳定均匀地释放紫杉醇,在24 h释放量达到85.8%,结果表明胶囊结构对紫杉醇有很好的控制释放功能。
图6为本发明实施例3制备的偶联TRAIL载药纳米胶囊对癌细胞HepG2杀伤性检测结果。如图所示,空胶囊对细胞无杀伤作用,即本发明所使用纳米材料对细胞无毒害作用;而包载紫杉醇表面偶联TRAIL蛋白的纳米胶囊,相较于紫杉醇注射剂、载紫杉醇胶囊以及纯的TRAIL蛋白,对癌细胞HepG2具有更好的杀伤效果。图注说明:NCs:空胶囊;PTX:紫杉醇;PTX-NCs:紫杉醇纳米胶囊;TRAIL:TRAIL蛋白;TRAIL-PTX-NCs:TRAIL偶联的紫杉醇纳米胶囊。
图7为本发明实施例4制备的偶联TRAIL载药纳米胶囊对HepG2荷瘤裸鼠治疗后的肝癌肿瘤体积变化趋势图。如图所示,与对照组相比,包载紫杉醇表面偶联TRAIL蛋白的纳米胶囊对HepG2细胞种植的裸鼠皮下移植瘤有良好的疗效,在腹腔注射药物后,肿瘤停止生长或消失。图注说明:PBS:磷酸缓冲液;PTX:紫杉醇;PTX-NCs:紫杉醇纳米胶囊;TRAIL:TRAIL蛋白;TRAIL-PTX-NCs:TRAIL偶联的紫杉醇纳米胶囊。
图8为本发明实施例5制备的偶联TRAIL载药纳米胶囊对MCF-7荷瘤裸鼠治疗后的乳腺癌肿瘤体积变化趋势图。MCF-7细胞株是对TRAIL蛋白不敏感的细胞株,如图所示,当TRAIL蛋白偶联纳米紫杉醇荷载胶囊后,对MCF-7细胞种植的裸鼠皮下移植瘤有良好的疗效,肿瘤基本停止生长。图注说明:PBS:磷酸缓冲液;PTX:紫杉醇;PTX-NCs:紫杉醇纳米胶囊;TRAIL-PTX-NCs:TRAIL偶联的紫杉醇纳米胶囊。
具体实施方式
为能清楚说明本发明方案的技术特点,下面结合具体实施例,对本发明进行阐述。但是本发明的保护范围并不限于这些实施例。凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
实施例1
1、将200 mg F127加入到200 mL无水甲苯中,搅拌至F127完全溶解,形成溶液A。向溶液A中加入0.2g丁二酸酐,搅拌后形成溶液B。将溶液B在150℃下沸浴加热5h,减压下蒸馏除去甲苯,用二氯甲烷洗涤蒸馏残液,然后加入乙醚沉淀,再用乙醚重结晶,最后得到产物F127-COOH。
2、准确称取180 mg P123和90 mg F127-COOH,超声溶解于1 mL氯仿溶液,并加入4mg紫杉醇,100 W超声分散15 min。得到的混合溶液在75℃下真空干燥至氯仿完全蒸发完后得到纳米薄膜。向薄膜内加入4 mL去离子水,200 W超声分散12 min即得到包载紫杉醇的纳米胶束。取35 μL四甲氧基硅烷超声分散于0.5 mL四氢呋喃溶液中,并逐滴加入上述制备好的载药纳米胶束中,并置于磁力搅拌仪上以750 rpm转速搅拌三天,四甲氧基硅烷在胶束中水解形成一层二氧化硅壳,稳定胶束的结构从而形成载药纳米胶囊。
3、在3 ml磷酸盐缓冲液(PBS,pH7.4)中加入5 mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、6 mg N-羟基琥珀酰亚胺(NHS)以及1 mL载药纳米胶囊,室温避光旋转反应1 h活化胶囊表面的羧基。将反应后的上述溶液装入截留分子量为8000 g/mol透析袋,置于PBS溶液中透析24 h以除去未反应的EDC和NHS。再向透析后的溶液中加入1 mL TRAIL(25 μg/mL)蛋白,4℃避光旋转反应12 h,即得到偶联TRAIL蛋白的载药纳米胶囊。使用Tecanai G2 20 S-TWIN透射电子显微镜观察胶囊形态并拍照。使用Malvern ZetasizerNano-S粒度分析仪测定载药纳米胶囊的粒径,并将胶囊稀释100倍、200倍、500倍、1000倍后测定胶囊粒径变化,结果见图2、图3和图4。
实施例2
首先按实例1制备TRAIL蛋白偶联的载药纳米胶囊,然后取1 mL制备的载药纳米胶囊,加入2 mL乙腈超声溶胀后使用岛津分光光度计测定229nm处吸光值,并结合紫杉醇浓度-吸光度标准曲线计算紫杉醇含量以及胶囊载药量、包封率以及载药浓度。载药量=载药胶囊中实际负载的PTX含量/胶囊质量,包封率=载药胶囊中实际负载的PTX含量/反应加入的紫杉醇含量,载药浓度=载药胶囊中实际负载的PTX含量/胶囊溶液体积。取3 mL制备的载药纳米胶囊装入截留分子量为8000 g/mol的透析袋,置于含0.1% Twain80的PBS(pH7.4)溶液中透析,在0.5h、1h、2h、4h、6h、8h、10h、12h、24h分别取样200 μL使用戴安UltiMate 3000PumPHPLC测定紫杉醇含量,并绘制缓释曲线,结果见图5。
实施例3
首先按实例1制备TRAIL蛋白偶联的载药纳米胶囊,再使用DMEM完全培养基(含10%胎牛血清、1%青霉素-链霉素)培养肝癌细胞HepG2,培养条件为37℃、5% CO2。待细胞生长至对数期后,胰酶消化,离心收集细胞并重悬于DMEM完全培养基(含10%胎牛血清、1%青霉素-链霉素),以8000个/孔的密度接种于96孔板(LAB‐TEK, Chambered Coverglass System),每孔含细胞培养液100 μL,在37℃、5% CO2条件下培养8 h使细胞贴壁。加入10 μL不同浓度的偶联TRAIL载药纳米胶囊,共培养24 h后加入10 μL cck-8溶液,显色反应1 h后使用Bio-RAD酶标仪测定吸光值并计算细胞存活率,并使用荧光显微镜观察胶囊对细胞的杀伤效果,结果见图6。
实施例4
首先按实例1制备TRAIL蛋白偶联的载药纳米胶囊。同时使用DMEM完全培养基(含10%胎牛血清、1%青霉素-链霉素)扩大培养HepG2细胞。培养条件为37℃、5% CO2。取4-5周龄Balb/c裸鼠在动物实验中心恒温恒湿条件下饲养,垫料、饲料和饮水均经灭菌处理,高效过滤器每小时换气10~15次,相对湿度保持在46%~60%,每日保持10 h的光照、14 h无光的阴暗周期。待裸鼠体重达到15 g后,于右下肢接种HepG-2细胞,5×106个细胞/只,待肿瘤直径长至0.4-0.6 cm,建立荷瘤裸鼠模型。采用随机数字法将荷瘤裸鼠分为5组,每组5-8只。将偶联TRAIL载药纳米胶囊于腹腔注射给药,200 μL只(含TRAIL蛋白7 μg,紫杉醇70 μg),给药后每天测定肿瘤大小V,给药当天肿瘤体积记为V0,两周后杀死裸鼠取出肿瘤观察,计算相对肿瘤体积V/V0并绘制肿瘤体积变化趋势图,实验结果见图7。
实施例5
首先按实例1制备TRAIL蛋白偶联的载药纳米胶囊。使用DMEM完全培养基(含10%胎牛血清、1%青霉素-链霉素)扩大培养乳腺癌细胞株MCF-7,培养条件为37℃、5% CO2。取4-5周龄Balb/c裸鼠按实施例4条件饲养,收集对数生长期MCF-7细胞于右下肢接种,5 x106个细胞/只,待肿瘤直径长至0.4-0.6 cm,建立荷瘤裸鼠模型。采用随机数字法将荷瘤裸鼠分为5组,每组5-8只。将偶联TRAIL载药纳米胶囊于腹腔注射给药,200 μl/只(含TRAIL蛋白7 μg,紫杉醇70 μg),给药后每天测定肿瘤大小V,给药当天肿瘤体积记为V0,两周后杀死裸鼠取出肿瘤观察,计算相对肿瘤体积V/V0并绘制肿瘤体积变化趋势图,实验结果见图8。

Claims (2)

1.一种新型多功能靶向纳米胶囊抗癌药物的的分子设计与制备技术,其特征在于:该制备技术包括如下步骤:
(1)嵌段共聚物F127的羧基化修饰
将F127加入到无水甲苯中,搅拌至F127完全溶解,形成溶液A;向溶液A中加入与F127等重的丁二酸酐,搅拌后形成溶液B;将溶液B在150℃下沸浴加热5h,减压下蒸馏将甲苯蒸发,蒸馏后残液用二氯甲烷洗涤,然后加入乙醚沉淀产物,产物用乙醚重结晶,最后得到F127-COOH;
所述F127与无水甲苯的质量体积比为1:1,质量体积比单位为mg:ml;
(2)载药纳米胶囊的制备
称取P123和F127-COOH超声溶解于氯仿溶液,并加入紫杉醇或其它疏水性药物,100 W超声分散15 min,得到的混合溶液在75℃下真空干燥1 h以上,待氯仿完全蒸发完后得到一层纳米薄膜,向薄膜内加入去离子水,200 W超声分散12 min即得到包载紫杉醇的载药纳米胶束;取四甲氧基硅烷超声分散于四氢呋喃溶液中,逐滴加入到载药纳米胶束中,并置于磁力搅拌仪上以750 rpm转速搅拌3天,四甲氧基硅烷在胶束中水解形成一层二氧化硅壳,形成载药纳米胶囊;
所述P123与F127-COOH的质量比为2:1-0.5, 紫杉醇与P123、F127-COOH混合物的质量比为1:70-300;
所述的四甲氧基硅烷与四氢呋喃的用量为:四甲氧基硅烷与四氢呋喃的体积比为7:100,四甲氧基硅烷与载药纳米胶束的体积比为1:100-1000;
(3)载药纳米胶囊与TRAIL蛋白的偶联
在磷酸盐缓冲液(PBS)中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺(NHS)以及载药纳米胶囊,室温避光旋转反应1 h活化胶囊表面的羧基;将反应后的溶液装入截留分子量为8000 g/mol的透析袋,置于PBS溶液中透析24 h以除去未反应的EDC和NHS,再向透析后的溶液中加入TRAIL蛋白,4℃避光旋转反应8-16 h,即得到偶联TRAIL蛋白的载药纳米胶囊;
所述磷酸盐缓冲液、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、N-羟基琥珀酰亚胺、载药纳米胶囊的用量比为3:5:6:1,单位为ml:mg:mg:ml;
所述TRAIL蛋白用量与载药纳米胶囊用量比为1:10-40;单位为mg:ml。
2.如权利要求1所述的一种新型多功能靶向纳米胶囊抗癌药物的的分子设计与制备技术,其特征在于:步骤(3)中磷酸盐缓冲液的pH为7.4。
CN201610727088.6A 2016-08-25 2016-08-25 一种多功能靶向纳米胶囊抗癌药物的制备方法 Expired - Fee Related CN106344539B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610727088.6A CN106344539B (zh) 2016-08-25 2016-08-25 一种多功能靶向纳米胶囊抗癌药物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610727088.6A CN106344539B (zh) 2016-08-25 2016-08-25 一种多功能靶向纳米胶囊抗癌药物的制备方法

Publications (2)

Publication Number Publication Date
CN106344539A true CN106344539A (zh) 2017-01-25
CN106344539B CN106344539B (zh) 2019-01-29

Family

ID=57855614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610727088.6A Expired - Fee Related CN106344539B (zh) 2016-08-25 2016-08-25 一种多功能靶向纳米胶囊抗癌药物的制备方法

Country Status (1)

Country Link
CN (1) CN106344539B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785219A (zh) * 2017-02-22 2020-02-11 特拉波雷技术有限公司 配体结合的mbp膜、用途和制造方法
US11572424B2 (en) 2017-05-12 2023-02-07 Terapore Technologies, Inc. Chemically resistant fluorinated multiblock polymer structures, methods of manufacturing and use
US11571667B2 (en) 2018-03-12 2023-02-07 Terapore Technologies, Inc. Isoporous mesoporous asymmetric block copolymer materials with macrovoids and method of making the same
US11628409B2 (en) 2016-04-28 2023-04-18 Terapore Technologies, Inc. Charged isoporous materials for electrostatic separations
US11802200B2 (en) 2016-11-17 2023-10-31 Terapore Technologies, Inc. Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
US12012492B2 (en) 2011-05-04 2024-06-18 Cornell University Multiblock copolymer films, methods of making same, and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265392A1 (en) * 2001-08-31 2004-12-30 Gunter Tovar Nanoparticles comprising biologically active tnf which is immobilized on the same
CN101797387A (zh) * 2009-12-14 2010-08-11 中南大学 一种可携带基因和药物的磁性靶向载体及其制备方法和应用
CN102272239A (zh) * 2008-11-26 2011-12-07 爱尔兰国家大学科克学院 制备二氧化硅微粒的方法
US20120141380A1 (en) * 2007-09-24 2012-06-07 Henry Ford Hospital Polymer nanoparticles coated by magnetic metal oxide and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265392A1 (en) * 2001-08-31 2004-12-30 Gunter Tovar Nanoparticles comprising biologically active tnf which is immobilized on the same
US20120141380A1 (en) * 2007-09-24 2012-06-07 Henry Ford Hospital Polymer nanoparticles coated by magnetic metal oxide and uses thereof
CN102272239A (zh) * 2008-11-26 2011-12-07 爱尔兰国家大学科克学院 制备二氧化硅微粒的方法
CN101797387A (zh) * 2009-12-14 2010-08-11 中南大学 一种可携带基因和药物的磁性靶向载体及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
TERRI B. HUNTER ET AL.: ""Paclitaxel and TRAIL Synergize to Kill Paclitaxel-resistant Small Cell Lung Cancer Cells through a Caspase-independent Mechanism Mediated through AIF"", 《ANTICANCER RESEARCH》 *
WEI ZHANG ET AL.: ""Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors"", 《BIOMATERIALS》 *
ZHANG WEI ET AL.: ""Enhanced antitumor efficacy by Paclitaxel-loaded Pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance"", 《EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS》 *
ZHANG WEI ET AL.: ""Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles:Formulation, optimization and in vitro characterization"", 《INTERNATIONAL JOURNAL OF PHARMACEUTICS》 *
徐玲等: ""紫杉醇增强TRAIL诱导的胃癌BGC823细胞凋亡的机制"", 《山东医药》 *
林翠英等: ""Pluronic Fl27和Pl23嵌段共聚物胶束结构"", 《福州大学学报(自然科学版)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12012492B2 (en) 2011-05-04 2024-06-18 Cornell University Multiblock copolymer films, methods of making same, and uses thereof
US11628409B2 (en) 2016-04-28 2023-04-18 Terapore Technologies, Inc. Charged isoporous materials for electrostatic separations
US11802200B2 (en) 2016-11-17 2023-10-31 Terapore Technologies, Inc. Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
CN110785219A (zh) * 2017-02-22 2020-02-11 特拉波雷技术有限公司 配体结合的mbp膜、用途和制造方法
US11567072B2 (en) 2017-02-22 2023-01-31 Terapore Technologies, Inc. Ligand bound MBP membranes, uses and method of manufacturing
US11572424B2 (en) 2017-05-12 2023-02-07 Terapore Technologies, Inc. Chemically resistant fluorinated multiblock polymer structures, methods of manufacturing and use
US11571667B2 (en) 2018-03-12 2023-02-07 Terapore Technologies, Inc. Isoporous mesoporous asymmetric block copolymer materials with macrovoids and method of making the same

Also Published As

Publication number Publication date
CN106344539B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN106344539A (zh) 一种新型多功能靶向纳米胶囊抗癌药物的分子设计与制备技术
CN101791411B (zh) 两亲性多糖偶联物及其药物组合物的制备和应用
CN105778021B (zh) β-环糊精基星形聚合物和制备方法及其单分子胶束诊疗一体化系统
CN106806344A (zh) 聚多巴胺和聚乙二醇维生素e琥珀酸酯修饰的介孔二氧化硅纳米粒及其制备方法与应用
CN105030795B (zh) 一种纳米载药系统及其制备方法和应用
CN108578364A (zh) 偶联物、靶向肿瘤活性氧响应性载药纳米胶束及其制备方法及应用
CN102038690B (zh) 沙蟾毒精在制备抗肿瘤药物制剂中的应用
CN106265514B (zh) 一种盐酸阿霉素磁性纳米粒及其制备方法
CN110408047A (zh) 纳米配位聚合物及其制备方法和应用
CN111053911A (zh) 还原响应型交联剂及其交联羟基药物分子的制备及应用
CN109999197A (zh) 肿瘤靶向的纳米复合物、制备方法及其在声动力介导的肿瘤精准治疗中的应用
CN108948152A (zh) 一种两亲性穿膜肽键合物、其制备方法及用途
CN110840837B (zh) 一种汉防己甲素纳米混悬液及其制备方法和应用
CN110448699B (zh) 包含功能性多肽修饰七甲川花菁素类染料的肿瘤细胞核靶向载药纳米粒子及制备方法
CN102552934B (zh) 阿霉素纳米粒及其制备方法
Yoon et al. CD44 receptor-mediated/reactive oxygen species-sensitive delivery of nanophotosensitizers against cervical cancer cells
CN109674764A (zh) 一种抗肿瘤磁性载药杂化纳米胶囊及其制备方法
CN107007550A (zh) 一种氧化还原响应性两亲性共聚物及其制备方法和应用
CN104840957B (zh) 赫赛汀修饰的载多西他赛的三重靶向纳米粒载体系统
CN107028882B (zh) 一种物理包裹的肿瘤靶向纳米递药系统及制备方法和应用
CN110317281A (zh) 透明质酸-g-叶酸两亲性聚合物及其应用
CN109700761A (zh) 一种肿瘤靶向自运载体系及其制备方法、应用
CN107496936A (zh) 一种两性小分子自组装靶向性纳米粒子载药系统及其制备方法
CN105770912A (zh) 具有肿瘤近红外荧光显像功能的载药atp敏感脂质体及其制备方法
CN101125150A (zh) 纳米氧化锌在制备治疗恶性肿瘤的药物中的用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190129

Termination date: 20210825

CF01 Termination of patent right due to non-payment of annual fee