CN109037590A - 一种打孔锂离子电池极片和锂离子二次电池 - Google Patents

一种打孔锂离子电池极片和锂离子二次电池 Download PDF

Info

Publication number
CN109037590A
CN109037590A CN201810815281.4A CN201810815281A CN109037590A CN 109037590 A CN109037590 A CN 109037590A CN 201810815281 A CN201810815281 A CN 201810815281A CN 109037590 A CN109037590 A CN 109037590A
Authority
CN
China
Prior art keywords
lithium
punching
pole piece
electrodes
ion batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810815281.4A
Other languages
English (en)
Inventor
严涛
翟传鑫
徐子福
张明慧
张小海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ann Price (wuxi) Co Ltd
Original Assignee
Ann Price (wuxi) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ann Price (wuxi) Co Ltd filed Critical Ann Price (wuxi) Co Ltd
Priority to CN201810815281.4A priority Critical patent/CN109037590A/zh
Publication of CN109037590A publication Critical patent/CN109037590A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种打孔的锂离子电池极片和含有此种极片的锂离子二次电池。此种打孔极片拥有十分丰富的孔结构,且孔排列有序,这一方面增大了极片的孔隙率,有利于电解液的浸润和吸收,另一方面同时极大缩短了锂离子的扩散距离,有效减少了锂离子的传质阻力。因此,此种打孔极片可有效提高锂离子电池的克容量发挥、首次效率、放电容量、低温放电性能和循环性能。该打孔极片尤其适用于高涂敷量的锂离子电池极片,对电池的性能提升效果尤为明显。

Description

一种打孔锂离子电池极片和锂离子二次电池
技术领域
本发明涉及锂离子电池领域,具体涉及一种打孔锂离子电池极片和锂离子二次电池。
背景技术
随着对锂离子电池能量密度的进一步需求,高涂敷电池设计已成为一种提升能量密度有效的手段。然而,高涂敷的极片由于极片超厚,电解液不易渗透,导致了锂离子的扩散距离增长,使得电解液无法接触极片内部的部分活性物质,从而严重影响电池的容量发挥和循环寿命。为解决上述问题,多孔极片的设计已被证实时一种有效的改善方法。多孔极片由于孔径丰富、孔隙率高,易于吸收和存储电解液,极大减少了锂离子的扩散距离。因此,可明显提升锂离子电池的循环性能和倍率性能等。如公开号CN105633350A公开了一种多孔极片及其制备方法,此种多孔极片的制备需要前期在浆料中引入造孔剂实现,这样一方面减少了活性物质比例,导致容量部分损失,另一方面造孔剂的残留可能会影响电池其它方面性能。此外,引入造孔剂生成的孔为无序的孔结构,孔径差异显著,不利于电极的后续加工。因此,开发一种有序、易加工的多孔极片显得尤为重要。本发明所述的打孔锂离子电池极片无需引入造孔剂,仅需在极片碾压工序结束后,通过增添一道机械打孔工序即可获得所需的多孔极片。该种打孔极片孔径统一,打孔深度可调,孔隙率高,即满足实际的生产要求,又可有效提升锂离子电池的综合性能。
发明内容
本发明的目的是提供一种打孔的锂离子电池极片和含有此种打孔极片的锂离子二次电池。通过有序孔结构的引入,大幅提升锂离子电池综合性能。
为实现上述发明目的,本发明的技术方案是:
一种打孔锂离子电池极片,在锂离子电池极片上具有肉眼可分辨的人造孔结构,为电极碾压工序结束后,通过机械加工的方式在极片表面打入密集的孔单元,形成打孔极片;所述锂离子电池极片包含了金属箔材层和在金属箔材表面涂敷的活性粉料层,其中,金属箔材层无通孔结构,而活性粉料层具有盲孔或通孔结构。进一步的,所述的肉眼可分辨是指通过眼睛或者借助普通放大镜可感知其存在性;所述的机械加工方式是指利用金属细针阵列模具通过机械方式在极片表面定点定速实施打孔。
进一步的,所述的金属箔材的可选类型包括铜箔或铝箔,金属箔材层不含盲孔或含有盲孔结构,盲孔深度0-30um。
优选的,最大盲孔孔深为金属箔材厚度的三分之二。
进一步的,所述的活性粉料层的主材成分主要包括钴酸锂、三元材料、富锂材料、磷酸铁锂、锰酸锂、钛酸锂、石墨及硅等中的一种或多种
进一步的,所述的活性粉料层具有通孔或盲孔结构,其中,单面活性粉料层的盲孔深度1-150um。
优选地,在单面活性粉料层的盲孔深度为单面活性粉料层厚度的四分之一至二分之一。
进一步的,所述的打孔极片具有一种或多种不同孔径的孔结构,打孔孔径分布在1-150um;优选地,打孔孔径在5-50um。
进一步的,所述的打孔锂离子电池极片上人造孔的孔隙率为10%-60%;优选地,孔隙率25%-45%。
所述的打孔锂离子电池极片在打孔过程中不严重影响电池极片的原始面密度,或仅发生低于1%改变量的微小影响。
本发明还公布一种锂离子二次电池,其正极或负极选用上述的打孔锂离子电池极片。
进一步的,该锂离子二次电池的负极极片中含有硅、硅合金、硅碳复合物、硅氧化物、硅碳氧化物中的一种或多种。
所述的锂离子二次电池包含正极片、负极片、隔膜、电解液、电极引出端和外壳。
本发明的各优选方案可互相组合使用。
与现有技术相比,本发明具有的有益效果是:
(1)本发明中的打孔锂离子电池极片,孔径一致性好,分布规律有序,且打孔深度可调。以此用于锂离子电池中,可极大减少锂离子扩散距离,提高电池循环性能和倍率性能等。
(2)本发明中打孔锂离子电池极片主要为可见的人造孔结构,通过在电极碾压后以机械加工方式引入,加工性强,易于操作,不引入其它杂质,在实际生产过程中不存在其它技术难题,应用性强。
(3)本发明的锂离子二次电池由于额外丰富的多孔结构存在,表现出了高的容量和杰出的循环性能,尤其适用于高涂敷的锂离子电池极片,提升效果尤为明显。
附图说明
图1是实施例1中打孔负极极片的扫描电镜图。
图2是实施例5中所装配的锂离子二次电池在0.5C倍率下200次的循环寿命曲线。
图3是实施例4低温放电曲线。
具体实施方式
为了使本发明所解决的技术问题、技术方案以及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。本发明中所述的“室温”、“常压”是指日常操作间的温度和气压。为了有效对比打孔极片的有益效果,特对以下实施例中材料体系、涂敷量、压实密度、电解液以及加压化成工艺等参数作统一规定,仅研究打孔极片对电池性能的影响。本次锂离子二次电池为软包电池,型号E385779CH,额定容量3200mAh,具体规定的参数如表1:
表1:锂离子二次电池制作参数
对比组:使用常规未打孔的正、负极片卷绕制作而成的锂离子二次电池。
实施例1
使用未打孔的正极极片和打孔的负极极片卷绕制作锂离子二次电池。其中,负极极片打孔的孔隙率为35%,孔径为80um,负极极片每一面活性粉料层的打孔深度分别为30um、50um和70um,制作三种不同打孔深度的锂离子二次电池,分别标记为A3、A5和A7。其电化学性能见表2所示:
表2:不同打孔深度的负极极片装配而成的锂离子二次电池性能参数
以上数据可以看出,负极引入打孔极片对电池的净注液量、首次效率、克容量发挥均有明显的提升效果。且随着打孔深度的增加,电池的净注液量、首次效率和克容量发挥随之增加。以上数据说明,在不影响极片加工的情况下,在极片活性粉料层打孔深度越深,越有利于提升电池的放电容量。然而,打孔深度过深易磨损针头,且深度过深还易导致极片内部粉料挤压剧烈,造成局部区域粉料松散,粘接力下降,从而对电池性能起到了副作用。因此,权衡利弊影响,打孔深度适中即可满足生产能力,又可提升电池性能。
图1为实施例1中所用的打孔负极片的扫描电镜图。可以看出,通过机械方式在负极进行打孔,可以引入十分丰富的孔单元,这些孔单元整齐规律的分布在负极极片表面。此外,还可以看出,在打完孔的负极片表面,未出现大量活性材料的脱落或松散,说明此种打孔方式操作性强,可应用于实际生产环节。
实施例2
使用未打孔的正极极片和打孔的负极极片卷绕制作锂离子二次电池。其中,负极极片每一面的活性粉料层打孔深度为50um,孔隙率为35%,打孔的孔径分别为30um、60um和80um,制作三种不同打孔深度的锂离子二次电池,分别标记为B3、B6和B8。其电性能见表3所示:
表2:不同打孔孔径的负极极片装配而成的锂离子二次电池性能参数
以上数据显示,在打孔深度和孔隙率一定情况下,随着孔径的增加,电池的净注液量、首次效率和克容量发挥随之增加,说明了打孔孔径的大小对电池性能提升具有一定的正作用。然后,过大的孔径易导致极片掉粉,影响了电极的后续加工性能和安全性能,因此选择合适的孔径是极其必要的。
实施例3
使用未打孔的正极极片和打孔的负极极片卷绕制作锂离子二次电池。其中,负极极片每一面的活性粉料层打孔深度为50um,打孔孔径60um,可见孔的孔隙率分别为15%、25%和35%,制作三种不同打孔深度的锂离子二次电池,分别标记为C1、C2和C3。其电性能见表3所示:
表3:不同孔隙率的负极极片装配而成的锂离子二次电池性能参数
以上数据显示,在打孔深度和孔径一定情况下,随着打孔孔隙率的增加,电池的净注液量、首次效率和克容量发挥随之增加,说明了打孔孔隙率的大小对电池性能提升也具有正效果。然而,打孔的孔隙率不易过大,过大容易导致孔间距过小,粉料彼此的收缩空间减小,易造成极片表面形成凹凸点或掉粉,因此打孔的孔隙率适中即可。
实施例4
使用打孔的正极极片和未打孔的负极极片卷绕制作锂离子二次电池。其中,正极极片每一面的活性粉料层打孔深度为45um,打孔孔径60um,打孔孔隙率为35%,制作锂离子二次电池
实施例5
使用打孔的正极极片和打孔的负极极片卷绕制作锂离子二次电池。其中,正极极片每一面的活性粉料层打孔深度为45um,打孔孔径60um,打孔孔隙率为35%;负极极极片每一面的活性粉料层打孔深度为45um,打孔孔径60um,打孔孔隙率为35%,制作锂离子二次电池
表4为实施例1至实例5中五种最优方案制作的锂离子二次电池的电性能参数。由表4综合数据所知,实施例5中锂离子二次电池使用了打孔正极片和打孔负极片,表现出最佳的电化学性能。这主要是因为打孔的极片有利于电解液的吸收和存储,极大减少了锂离子的扩散距离,减少传质阻力,有利于锂离子的低阻力交换。
表4实施例1-5锂离子二次电池性能参数
图2为实施例5所制备的锂离子二次电池的循环寿命曲线,可以看出,在0.5C倍率连续循环200次后,实施例5中的锂离子二次电池仍拥有高达93.8%容量保持率,远高于参比组锂离子二次电池的84%,意味着对极片进行打孔操作可有效提升电池的循环寿命。
表5实施例1-5锂离子电池低温放电性能参数
表5为实施例1-5锂离子电池的低温放电容量、容量保持率和重量能量密度。比较可看出,实施例4中的锂离子电池展现出最高的容量保持率,在0℃,-10℃,-20℃和-40℃下分别达97.7%,94.7%,90.6%和82.4%。而实施例4中的锂电池表现出了最高重量能量密度,在0℃下达302.8Wh/kg的重量能量密度,综合而言,无论在容量保持上还是在重量能量密度上,以上实施例均展现出不同特色的低温性能。
图3为实施例4中锂离子电池在25℃、0℃、-10℃、-20℃和-40℃温度下的放电曲线。可看出,随着温度降低,锂离子电池的放电电压平台逐步下移,且容量随之减少。这主要是由于随着温度降低,浓差极化愈大,放电过程中克服阻力做功增加,导致放电电量的减少。然而,由于极片表面打孔技术应用,极大缩短了锂离子的扩散距离,减少了离子阻抗所引起的电压平台大幅衰降。因此,锂离子电池的电压平台和容量在温度下降过程中均小幅减少,这显示打孔极片所制成的锂离子电池具有优异的低温性能。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (10)

1.一种打孔锂离子电池极片,其特征在于:在锂离子电池极片上具有肉眼可分辨的人造孔结构,为电极碾压工序结束后,通过机械加工的方式在极片表面打入密集的孔单元,形成打孔极片;所述锂离子电池极片包含了金属箔材层和在金属箔材表面涂敷的活性粉料层,其中,金属箔材层无通孔结构,而活性粉料层具有盲孔或通孔结构。
2.根据权利要求1所述的一种打孔锂离子电池极片,其特征在于:所述的肉眼可分辨是指通过眼睛或者借助普通放大镜可感知其存在性;所述的机械加工方式是指利用金属细针阵列模具通过机械方式在极片表面定点定速实施打孔。
3.根据权利要求1所述的一种打孔锂离子电池极片,其特征在于:所述的金属箔材的可选类型包括铜箔或铝箔,金属箔材层不含盲孔或含有盲孔结构,盲孔深度0-30um。
4.根据权利要求3所述的一种打孔锂离子电池极片,其特征在于:金属箔材层的最大盲孔孔深为金属箔材厚度的三分之二。
5.根据权利要求1所述的一种打孔锂离子电池极片,其特征在于:所述的活性粉料层具有通孔或盲孔结构,其中,单面活性粉料层的盲孔深度1-150um。
6.根据权利要求5所述的一种打孔锂离子电池极片,其特征在于:在单面活性粉料层的盲孔最佳深度为单面活性粉料层厚度的四分之一至二分之一。
7.根据权利要求1所述的一种打孔锂离子电池极片,其特征在于:所述的打孔极片具有一种或多种不同孔径的孔结构,打孔孔径分布在1-150um。
8.根据权利要求1所述的一种打孔锂离子电池极片,其特征在于:所述的打孔锂离子电池极片上人造孔的孔隙率为10%-60%。
9.一种锂离子二次电池,其特征为:其正极或负极选用权利要求1-9任一项所述的打孔锂离子电池极片。
10.根据权利要求9所述的一种锂离子二次电池,其特征在于:负极极片中含有硅、硅合金、硅碳复合物、硅氧化物、硅碳氧化物中的一种或多种。
CN201810815281.4A 2018-07-24 2018-07-24 一种打孔锂离子电池极片和锂离子二次电池 Pending CN109037590A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810815281.4A CN109037590A (zh) 2018-07-24 2018-07-24 一种打孔锂离子电池极片和锂离子二次电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810815281.4A CN109037590A (zh) 2018-07-24 2018-07-24 一种打孔锂离子电池极片和锂离子二次电池

Publications (1)

Publication Number Publication Date
CN109037590A true CN109037590A (zh) 2018-12-18

Family

ID=64644405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810815281.4A Pending CN109037590A (zh) 2018-07-24 2018-07-24 一种打孔锂离子电池极片和锂离子二次电池

Country Status (1)

Country Link
CN (1) CN109037590A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370648A (zh) * 2020-04-23 2020-07-03 湖北亿纬动力有限公司 一种电极极片及其制备方法和锂离子电池
CN113964375A (zh) * 2021-10-25 2022-01-21 东莞新能源科技有限公司 一种电化学装置及电子装置
CN114784228A (zh) * 2022-06-24 2022-07-22 宁德新能源科技有限公司 二次电池及电子装置
CN114883568A (zh) * 2022-06-29 2022-08-09 河南工业大学 负极材料及包含该负极材料的负极极片、电化学装置和电子装置
WO2022267510A1 (zh) * 2021-06-26 2022-12-29 宁德时代新能源科技股份有限公司 平板式钠金属电池、电化学装置
CN116722150A (zh) * 2023-07-03 2023-09-08 广州方邦电子股份有限公司 一种复合箔材及其应用
CN116885103A (zh) * 2023-09-08 2023-10-13 浙江锂威电子科技有限公司 一种石墨阳极及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250510A (ja) * 2006-02-15 2007-09-27 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
CN102361085A (zh) * 2011-10-25 2012-02-22 华南理工大学 具有异形盲孔阵列结构的锂离子电池集流体及制造方法
JP2012190625A (ja) * 2011-03-10 2012-10-04 Hitachi Ltd 非水二次電池
CN203156234U (zh) * 2013-03-19 2013-08-28 宁德新能源科技有限公司 锂离子电池极片及其处理装置
JP2013171712A (ja) * 2012-02-21 2013-09-02 Seiko Epson Corp 電極活物質層、電極体およびリチウムイオン二次電池
CN106688126A (zh) * 2014-09-10 2017-05-17 三菱综合材料株式会社 锂离子二次电池用正极及锂离子二次电池
CN206834275U (zh) * 2017-06-13 2018-01-02 中能国盛动力电池技术(北京)股份公司 一种高倍率锂离子电池
CN208690386U (zh) * 2018-07-24 2019-04-02 安普瑞斯(无锡)有限公司 一种打孔锂离子电池极片和锂离子二次电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250510A (ja) * 2006-02-15 2007-09-27 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2012190625A (ja) * 2011-03-10 2012-10-04 Hitachi Ltd 非水二次電池
CN102361085A (zh) * 2011-10-25 2012-02-22 华南理工大学 具有异形盲孔阵列结构的锂离子电池集流体及制造方法
JP2013171712A (ja) * 2012-02-21 2013-09-02 Seiko Epson Corp 電極活物質層、電極体およびリチウムイオン二次電池
CN203156234U (zh) * 2013-03-19 2013-08-28 宁德新能源科技有限公司 锂离子电池极片及其处理装置
CN106688126A (zh) * 2014-09-10 2017-05-17 三菱综合材料株式会社 锂离子二次电池用正极及锂离子二次电池
CN206834275U (zh) * 2017-06-13 2018-01-02 中能国盛动力电池技术(北京)股份公司 一种高倍率锂离子电池
CN208690386U (zh) * 2018-07-24 2019-04-02 安普瑞斯(无锡)有限公司 一种打孔锂离子电池极片和锂离子二次电池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370648A (zh) * 2020-04-23 2020-07-03 湖北亿纬动力有限公司 一种电极极片及其制备方法和锂离子电池
WO2022267510A1 (zh) * 2021-06-26 2022-12-29 宁德时代新能源科技股份有限公司 平板式钠金属电池、电化学装置
CN113964375A (zh) * 2021-10-25 2022-01-21 东莞新能源科技有限公司 一种电化学装置及电子装置
CN114784228A (zh) * 2022-06-24 2022-07-22 宁德新能源科技有限公司 二次电池及电子装置
CN114883568A (zh) * 2022-06-29 2022-08-09 河南工业大学 负极材料及包含该负极材料的负极极片、电化学装置和电子装置
CN116722150A (zh) * 2023-07-03 2023-09-08 广州方邦电子股份有限公司 一种复合箔材及其应用
CN116722150B (zh) * 2023-07-03 2024-03-01 广州方邦电子股份有限公司 一种复合箔材及其应用
CN116885103A (zh) * 2023-09-08 2023-10-13 浙江锂威电子科技有限公司 一种石墨阳极及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109037590A (zh) 一种打孔锂离子电池极片和锂离子二次电池
CN107732168B (zh) 一种蛛网状石墨烯包裹β-FeOOH纳米棒聚集体锂离子电池负极材料的制备方法
CN108539124A (zh) 具有补锂电极的二次电池及其制备方法
CN106654289A (zh) 一种多孔铝箔负极及其制备方法和锂二次电池
JP6203399B2 (ja) 二次電池用電極及びその製造方法
CN208690386U (zh) 一种打孔锂离子电池极片和锂离子二次电池
CN107887572A (zh) 一种锂离子电池负极极片及其制备方法和锂离子二次电池
WO2015056417A1 (ja) 制御弁式鉛蓄電池
CN110313086A (zh) 锂复合氧化物烧结体板
CN110350178A (zh) 一种锂离子电池复合石墨负极材料的制备方法
CN109860603A (zh) 锂电池极片及其制备方法及锂电池
CN109817887A (zh) 一种高体积能量密度金属锂电池
CN108584907A (zh) 一种硬碳材料及其制备方法和应用
CN114195136A (zh) 一种3d打印氮掺杂高吡咯石墨烯气凝胶的制备方法与应用
CN1909265B (zh) 一种金属纳米线制作的锂离子电池负极及其制备方法
CN107919471A (zh) 凹土包覆镍锰酸锂正极材料及其制备方法
WO2013128792A1 (ja) エキスパンド格子及びその製造方法、それを用いる鉛蓄電池用極板、並びに鉛蓄電池
JP2014534553A (ja) 蓄積部材および当該蓄積部材の製造方法
EP3014679B1 (en) Robust amorphous silicon anodes, rechargable batteries having amorphous silicon anodes, and associated methods
JP2002198055A (ja) 電池用ペースト式薄型電極、その製造方法及び二次電池
CN107710474B (zh) 改进的高容量充电电池
CN111575761B (zh) 氧化铝模板、高度垂直有序锑纳米线阵列及其制备方法
CN210692673U (zh) 一种纳米尺度孔材料、电极及储能设备
CN110249457A (zh) 锂复合氧化物烧结体板及锂二次电池
CN107528052A (zh) 一种双网络水凝胶衍生的石墨烯/锡镍合金复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination