CN109022886B - 一种SiCP增强铜基复合材料的制备方法 - Google Patents

一种SiCP增强铜基复合材料的制备方法 Download PDF

Info

Publication number
CN109022886B
CN109022886B CN201811130466.8A CN201811130466A CN109022886B CN 109022886 B CN109022886 B CN 109022886B CN 201811130466 A CN201811130466 A CN 201811130466A CN 109022886 B CN109022886 B CN 109022886B
Authority
CN
China
Prior art keywords
heat preservation
sample piece
boron nitride
placing
nitride crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811130466.8A
Other languages
English (en)
Other versions
CN109022886A (zh
Inventor
郝维新
郝玺
耿桂宏
李玉贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN201811130466.8A priority Critical patent/CN109022886B/zh
Publication of CN109022886A publication Critical patent/CN109022886A/zh
Application granted granted Critical
Publication of CN109022886B publication Critical patent/CN109022886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/101Pretreatment of the non-metallic additives by coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种SiCP增强铜基复合材料的制备方法,属于铜基复合材料技术领域。其特征是按以下步骤进行:一、将氮化硼坩埚放置在高频感应炉的真空箱体内,氮化硼坩埚与钼电极相连,氮化硼坩埚内装有16mm×16mm×30mm的纯铜样品件,再将表面上镀有一层厚度为0.095μm薄镍、颗粒度为10μm的SiCp放置在纯铜样品件上表面;二、用高频感应炉对氮化硼坩埚内的纯铜样品件进行加热至700℃,使样品件全部熔化;三、对金属熔体进行保温处理,保温时间为10min;四、待保温时间结束后,对保温后的金属熔体施加电脉冲,作用时间为10min。优点是工艺高效可靠,可以获得更均匀的组织,并可以对SiCP的颗粒度以及体积分数量进行调控,实现工业化生产。

Description

一种SiCP增强铜基复合材料的制备方法
技术领域
本发明属于铜基复合材料的技术领域,具体涉及一种SiCP增强铜基复合材料的制备方法。
背景技术
铜基复合材料增强相的类型有颗粒增强铜基复合材料、纤维增强铜基复合材料和层状铜基复合材料。颗粒增强铜基复合材料是人为的通过各种工艺手段将增强颗粒均匀的分散到纯铜或者铜合金机体内,弥散的第二相颗粒通过多种强化机制的作用,提高复合材料的强度和耐磨性等性质。近年来,随着复合材料制备技术的不断更新,颗粒增强铜基复合材料的工艺也取得了较大的突破。
由于碳化硅与铜的界面接触角大,润湿性差。目前,制备碳化硅.铜基复合材料的主要方法是粉末冶金和液态金属浸渗的方法,但制备的铜基复合材料存在制备工艺过于复杂、成本高、材料性能不稳定的缺点。如何改善碳化硅与铜相互问的润湿性及化学相容性,是提高铜基复合材料性能的关键。
发明内容
本发明的目的是提供一种SiCP增强铜基复合材料的制备方法,可有效地克服现有技术存在的缺点。
本发明的目的是这样实现的:其特征是按以下步骤实施:
第一步:在氮化硼坩埚内放置16mm×16mm×30mm的纯铜样品件,再将表面上镀有一层厚度为0.095μm镍、颗粒度为10μm的SiCp放置在纯铜样品件上表面,Ni的质量占Ni-SiCp的15.9%,之后将上述氮化硼坩埚放置在充满氩气的真空箱体内,对真空箱体抽真空至2×10-4Pa,同时填氩气至50kPa;
第二步,用高频感应炉对真空箱体内的样品进行加热至1150℃,使样品全部熔化,得到金属熔体;
第三步,对上述熔体进行保温处理,保温时间为10min;
第四步,待保温时间结束后,对保温后的熔体施加电脉冲,作用时间为10min,首先启动脉冲电源,然后调节脉冲电源输出电压为35V,脉宽10μs,频率为30Hz,脉冲电流是通过调整输出电压在示波器上显示的峰值来实现的;最后关闭加热装置,进入随炉冷却过程,待熔体完全凝固后,关闭脉冲电源。
本发明优点及积极效果是:(1)采用本发明操作简单,在电脉冲作用下制备的Ni-SiCp增铜基复合材料,改善了界面反应和组织稳定性差等问题,实现SiCp增强相在在晶界上析出,电脉冲有效抑制了碳化硅偏聚,使得组织更加均匀,改善了碳化硅与铜之间的润湿性,提升了材料性能。
(2)本发明使SiC颗粒在晶界上析出,使形核率增加,晶粒得到细化,组织稳定性高,从而获得组织和性能良好的铜基复合材料。
附图说明
图1是本发明装置示意图;
图中:1-示波器,2-脉冲电源,3-氩气,4-钼电极,5-金属熔体,6-氮化硼坩埚,7-真空箱体,8-感应线圈,9-红外测温孔,10-高频感应加热电源;
图2是500A电脉冲处理Ni-SiCp/Cu复合材料SEM图。
具体实施方式
以制备SiCP增强铜基复合材料为例,其制备方法是:
第一步:在电脉冲熔炼装置中的氮化硼坩埚6内放置16mm×16mm×30mm的纯铜样品件,再将表面上镀有一层厚度为0.095μm镍、颗粒度为10μm的SiCp放置在纯铜样品件上表面,Ni的质量占Ni-SiCp的17.3%,之后将氮化硼坩埚6放置在充满氩气的真空箱体7内,对真空箱体7抽真空至2×10-4 Pa,同时填氩气至50kPa;
第二步,用高频感应炉对真空箱体7内的样品进行加热至1150℃,使纯铜样品件全部熔化,得到金属熔体5;
第三步,对上述金属熔体5进行保温处理,保温时间为10min;
第四步,待保温时间结束后,对保温后的金属熔体5施加电脉冲,作用时间为10min。首先启动脉冲电源2;然后调节脉冲电源2输出电压为55V,脉宽10μs,频率为30Hz,脉冲电流是通过调整输出电压在示波器1上显示的峰值来实现的;最后关闭加热装置10,进入随炉冷却过程,待金属熔体5完全凝固后,关闭脉冲电源2。
图2中晶界上析出碳化硅颗粒,使增强相碳化硅颗粒组织中均匀的分布。

Claims (1)

1.一种SiCP增强铜基复合材料的制备方法,其特征在于实施步骤如下:
第一步:在氮化硼坩埚(6)内放置16mm×16mm×30mm的纯铜样品件,再将表面上镀有一层厚度为0.095μm镍、颗粒度为10μm的SiCp放置在纯铜样品件上表面,Ni的质量占Ni-SiCp的17.3%,之后将氮化硼坩埚(6)放置在充满氩气的真空箱体(7)内,对真空箱体(7)抽真空至2×10-4Pa,同时填氩气至50kPa;
第二步,通过高频感应炉对真空箱体(7)内的样品进行加热至1150℃,使纯铜样品件全部熔化,得到金属熔体(5);
第三步,对上述金属熔体(5)进行保温处理,保温时间为10min;
第四步,待保温时间结束后,对保温后的金属熔体(5)施加电脉冲,作用时间为10min,首先启动脉冲电源(2),然后调节脉冲电源(2)输出电压为55V,脉宽10μs,频率为30Hz,脉冲电流是通过调整输出电压在示波器(1)上显示的峰值来实现的,最后关闭加热装置(10),进入随炉冷却过程,待金属熔体(5)完全凝固后,关闭脉冲电源(2)。
CN201811130466.8A 2018-09-27 2018-09-27 一种SiCP增强铜基复合材料的制备方法 Active CN109022886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811130466.8A CN109022886B (zh) 2018-09-27 2018-09-27 一种SiCP增强铜基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811130466.8A CN109022886B (zh) 2018-09-27 2018-09-27 一种SiCP增强铜基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109022886A CN109022886A (zh) 2018-12-18
CN109022886B true CN109022886B (zh) 2020-11-24

Family

ID=64620601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811130466.8A Active CN109022886B (zh) 2018-09-27 2018-09-27 一种SiCP增强铜基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109022886B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359247B (zh) * 2020-11-16 2021-11-09 福州大学 一种Cu-Hf-Si-Ni-Ce铜合金材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021458A1 (en) * 1991-03-22 1992-12-10 Massachusetts Institute Of Technology Method and apparatus for producing metal matrix composites using electromagnetic body forces
CN104294071B (zh) * 2014-01-09 2016-08-17 郑州航空工业管理学院 一种低温玻璃相增强的SiCp/Cu复合材料及其制备方法
CN103924116B (zh) * 2014-03-31 2019-01-08 南昌航空大学 一种低压脉冲磁场作用下改善SiC颗粒在镁基复合材料中分布的方法
CN104046834B (zh) * 2014-06-19 2016-04-06 华北水利水电大学 一种提高CuCrl、CuCrlZr合金综合性能的方法
CN106191514A (zh) * 2016-08-09 2016-12-07 苏州金仓合金新材料有限公司 一种多用途的铜基复合材料及其制备方法

Also Published As

Publication number Publication date
CN109022886A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN110438444B (zh) 一种镀钨金刚石颗粒、镀钨方法、其作为铜基增强相的应用及得到的金刚石/铜复合材料
CN107723503B (zh) 一种电脉冲辅助制备高固溶度铜锡钛合金的方法
WO2016127716A1 (zh) 一种高强韧合金材料及其半固态烧结制备方法和应用
CN112658221B (zh) 一种高熵合金的连续铸造方法
CN107649688A (zh) 一种易加工的金刚石导热复合材料及其制备方法和应用
CN107119207A (zh) 一种非计量比TiC增强铜基复合材料及其制备方法
CN111206174A (zh) 一种具有磁性的超细晶高强度高熵合金及其制备方法
CN109022886B (zh) 一种SiCP增强铜基复合材料的制备方法
CN115572961B (zh) 一种微波辅助气压浸渗制备金刚石复合材料的方法
CN109590636B (zh) 一种高存留率纳米复合钎料及其制备方法
CN110724845A (zh) 一种高导热高可靠性的金刚石/铝复合材料及其制备工艺
CN109175315B (zh) 一种铜铁难混溶合金的制备方法
CN102031467B (zh) 一种利用磁场制备原位形变Cu-Ag复合材料的方法
WO2022267488A1 (zh) 一种强韧耐蚀az80镁合金的制备方法
CN110744044A (zh) 细晶Ti-48Al-2Cr-8Nb钛铝合金的放电等离子烧结制备方法
CN114393197A (zh) 高锡含量高塑性铜锡合金的定向凝固法制备方法
CN107142407A (zh) 一种表面自润滑Ti(C,N)基金属陶瓷耐磨材料的制备方法
CN107311685B (zh) 电泳与热蒸发技术原位合成难熔金属碳化物纳米线的制备方法
CN107630150B (zh) 一种时效增强型CuNiSi合金的制备方法
CN109694979B (zh) 真空感应熔炼制备高熵合金基复合材料及其方法
CN107511487A (zh) 多主元合金纳米颗粒的制备方法
CN109266894B (zh) 一种SiCP增强镁基复合材料的制备方法
CN202207799U (zh) 一种靶材制备装置
CN106957986A (zh) 一种高塑性磁致伸缩材料及其制备方法
CN103820664B (zh) 一种短流程制备沉淀强化铜铬合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant