CN108957422A - 一种基于量化数据的云mimo雷达的根克拉美罗下界计算方法 - Google Patents

一种基于量化数据的云mimo雷达的根克拉美罗下界计算方法 Download PDF

Info

Publication number
CN108957422A
CN108957422A CN201810557904.2A CN201810557904A CN108957422A CN 108957422 A CN108957422 A CN 108957422A CN 201810557904 A CN201810557904 A CN 201810557904A CN 108957422 A CN108957422 A CN 108957422A
Authority
CN
China
Prior art keywords
quantization
transmitter
indicate
lower bound
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810557904.2A
Other languages
English (en)
Other versions
CN108957422B (zh
Inventor
王珍
何茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810557904.2A priority Critical patent/CN108957422B/zh
Publication of CN108957422A publication Critical patent/CN108957422A/zh
Application granted granted Critical
Publication of CN108957422B publication Critical patent/CN108957422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于量化数据的云MIMO雷达的根克拉美罗下界计算方法,属于雷达技术领域,它特别涉及关于雷达信号处理中的参数估计性能界克拉美罗界的计算。本发明针对背景技术的不足解决的技术问题是,获得基于量化数据的的云MIMO雷达联合目标速度和位置参数估计,采用了直接分析量化和近似分析量化两种处理方式,进行了最大似然估计,并计算了克拉美罗界。利用本发明方法计算得到的直接分析量化和将量化影响近似为高斯误差时的克拉美罗界可以用来评估云MIMO雷达联合目标速度和位置参数估计的性能,并考虑了量化对性能的影响,这降低了实现的复杂度,更贴近工程应用。

Description

一种基于量化数据的云MIMO雷达的根克拉美罗下界计算方法
技术领域
本发明属于雷达技术领域,它特别涉及关于雷达信号处理中的参数估计性能界克拉美罗界 (CRB)的计算。
背景技术
在云雷达中,每个本地接收器接收发射天线的发射信号,并通过一个回程网络与融合中心进行通信。MIMO(Multiple Input Multiple Out)是一种多天线收发技术,是雷达领域一种重要的技术。将MIMO技术应用到云雷达中,可以极大地提高云雷达的性能。
目标参数估计是雷达系统的主要功能之一,在大部分应用中,参数估计精度决定了雷达系统的整体性能。为了衡量云MIMO雷达系统的参数估计性能,需要一个量化的综合评价指标。克拉美罗界(CRB)是任何无偏估计均方误差(MSE)的下限,是经典的估计性能评价指标。
在分布式处理中,关于量化器的设计和量化的影响已经有很多的研究,其中均匀量化器就是其中一种常见的量化器,它可以将量化输出建模为输入加高斯量化误差,且该高斯量化误差与输入序列不相关,其方差由量化器的量化比特数决定。
考虑到云雷达中的局部传感器的数量可能很大,例如在诸如物联网之类的大规模网络中的移动或固定传感器,云雷达经常使用具有有限通信能力的低成本传感器。为了处理容量限制,在发送到融合中心之前需要对每个本地接收机的测量量进行量化。文献1(S.Khalili,O. Simeone,and A.M.Haimovich,“Cloud radio-multistatic radar:Jointoptimization of code vector and backhaul quantization,”IEEE Signal ProcessingLetters,vol.22,no. 4,pp.494–498,April 2015.)考虑了云雷达发射波形和回程量化的联合优化问题,将量化的影响建模为一个加性高斯量化误差矢量,优化量化误差矢量的协方差矩阵使检测性能最优。然而,文献1中的量化没有跟实际的量化器关联起来,且现有的关于分布式处理的量化问题大部分考虑的是线性信号模型和标量参数估计,因此在云MIMO中考虑实际量化器(均匀量化器) 对非线性复信号模型的向量参数估计的影响分析是十分有必要的。
发明内容
本发明针对背景技术的不足解决的技术问题是,获得基于量化数据的的云MIMO雷达联合目标速度和位置参数估计,采用了直接分析量化和近似分析量化两种处理方式,进行了最大似然估计,并计算了克拉美罗界。
本发明的技术方案为一种基于量化数据的云MIMO雷达的根克拉美罗下界计算方法,该方法包括:
步骤1:云MIMO雷达将kTs时刻第n个接收机接收到第m个发射机的信号rnm[k]为:
第m个发射机在kTs时刻的采样值为E是发射总能量,Ts为采样间隔, k(k=1,…,K)是采样数字;为目标反射系数;τnm,fnm表示对应于第n个接收机接收到第m个发射机的信号路径的时延和多普勒频率;unm[k]是第n个接收机接收到第m个发射机的信号路径的噪声,且()*表示复数的共轭,δ(k-k′)表示狄拉克函数,就是k=k'的时候这个函数取值为1,其他情况为0,k和k'代表的是采样时刻;M表示发射机的总个数;sm表示第m个发射机的发射信号;表示噪声unm[k]的方差;
对rnm[k]的实部和虚部进行量化,得到量化后的结果
进一步的,所述步骤1中对rnm[k]的量化器为:
其中,γ为量化器的输入,z(γ)为量化器的输出,D=2b是量化值的数目,b是量化比特数,得到量化结果:分别表示本地接收信号rnm[k]实部和虚部的量化结果。
步骤2:将N个接收机接收到的M个发射信号所有采样值量化后的结果按顺序排列成一列
其中,K表示采样时刻的的总个数;x[k]为N个接收机接收到M个发射机在kTs时刻的采样值量化后的数据为:
步骤3:将量化后的数据传送到融合中心,则融合中心收到的数据为
y=x
步骤4:计算xnm[k]的条件概率分布函数为:
dreal=0,1,…,D-1,dimag=0,1,…,D-1
其中,θ为待估计的目标参数,包括:目标xy方向上的位置和速度x,y,vx,vy,γdrealdimag表示量化值量为dreal,dimag的量化门限,根据实际情况决定,dreal,dimag分别表示实部和虚部量化后的结果,取值为0,1,…,D-1,其中D为量化值数目,Q(·)表示标准高斯分布的累积分布函数,定义为
且rnm[k]的实部和虚部均为高斯分布其中
步骤5:根据以下公式计算y的似然函数
步骤6:根据下式
求得直接分析量化时待估参数θ的估计值
步骤7:重复步骤1到6,根据估计到的求出其RMSE(均方根误差)为
其中num为重复次数;
步骤8:设
获得矩阵
其中,M表示发射机的个数,N表示接收机的个数,为时延τnm对目标位置 x,y的导数,τnm(n=1,...,N m=1,...,M)表示第m个发射机到第n个接收机的时延,为多普勒频率fnm对x,y的导数,fnm(n=1,...,Nm=1,...M)表示第m个发射机与第n个接收机之间的多普勒频率,为多普勒频率对目标速度的导数;
步骤9:假设xnm[k]量化后的实部和虚部取值分别为a和b,得到矩阵的第ij个元素为:
其中,当i=nm或者i=NM+nm时,否则
为矩阵中的对应元素,γa,γb,分别表示xnm[k]实部虚部对应的量化门限;
求导项可采用如下公式计算:
步骤10:根据公式:
其中,表示转置,计算出J(θ),J(θ)为对应于x,y,vx,vy的费歇尔信息矩阵,最终可得:
CRBd=J(θ)-1
对应于CRB的对角元素分别为目标位置x,y和目标速度vx,vy的克拉美罗下界;
步骤11:根据
分别计算出直接分析量化时对应于x,y,vx,vy的根克拉美罗下界(RCRB)。
一种基于量化数据的云MIMO雷达的根克拉美罗下界计算方法,该方法包括
步骤1:云MIMO雷达将kTs时刻第n个接收机接收到第m个发射机的信号rnm[k]为:
第m个发射机在kTs时刻的采样值为E是发射总能量,Ts为采样间隔k(k=1,…,K)是采样数字;ζnm为目标反射系数;τnm,fnm表示对应于第n个接收机接收到第m个发射机的信号路径的时延和多普勒频率;unm[k]是第n个接收机接收到第m个发射机的信号路径的噪声,且()*表示复数的共轭,δ(k-k′)表示狄拉克函数,就是k=k'的时候这个函数取值为1,其他情况为0,k和k'代表的是采样时刻;M表示发射机的总个数;sm表示第m个发射机的发射信号;表示噪声unm[k]的方差;
步骤2:得到采用高斯近似量化误差时的量化输出xG,nm[k];
xG,nm[k]=rnm[k]+ηnm[k]
其中,ηnm[k]是量化误差,满足零均值方差为的复高斯分布,Δ表示量化间隔;
步骤3:将N个接收机接收到的M个发射信号所有采样值量化后的结果按顺序排列成一列
其中,xG[k]为N个接收机接收到M个发射机在kTs时刻的采样值量化后的数据为
步骤4:将量化后的数据传送到融合中心,则融合中心收到的数据为
y=x
步骤5:确定信号均值向量μ和协方差矩阵C用于最大似然估计
其中,
步骤6:根据下式
求得近似分析量化时θ的估计值
步骤7:重复步骤2到6,根据估计到的求出其RMSE(均方根误差)为
其中num为重复次数;
步骤8:设
得到矩阵的第ij个元素为:
其中,Re[·]表示取实部;
步骤9:设
获得矩阵
其中,M表示发射机的个数,N表示接收机的个数,为时延τnm对目标位置 x,y的导数,τnm(n=1,...,Nm=1,...,M)表示第m个发射机到第n个接收机的时延,为多普勒频率fnm对x,y的导数,fnm(n=1,...,Nm=1,...M)表示第m个发射机与第n个接收机之间的多普勒频率,为多普勒频率对目标速度的导数;
步骤10:根据公式:
计算出J(θ),J(θ)为对应于x,y,vx,vy的费歇尔信息矩阵,最终可得:
CRBa=J(θ)-1
对应于CRB的对角元素分别为目标位置x,y和目标速度vx,vy的克拉美罗下界;
步骤11:根据
分别计算采用高斯近似量化误差时对应于x,y,vx,vy的根克拉美罗下界。
利用如上步骤计算得到的直接分析量化和将量化影响近似为高斯误差时的克拉美罗界可以用来评估云MIMO雷达联合目标速度和位置参数估计的性能,并考虑了量化对性能的影响,这降低了实现的复杂度,更贴近工程应用。
附图说明
图1是采用直接分析量化且量化比特数为5时,在不同的SNR下计算的对于x,y,vx,vy的 RMSE和RCRB示意图。
图2是采用近似分析量化且量化比特数为7时,在不同的SNR下计算的对于x,y,vx,vy的 RMSE和RCRB示意图。
图3是不同量化比特数下,直接分析和近似分析在不同的SNR下计算的对于x,y,vx,vy的 RCRB示意图。
具体实施方式
为了方便描述,首先进行如下定义:
为转置,()H为共轭转置,表示数学期望。
考虑一个云MIMO雷达,有M个单天线发射机和N个单天线接收机,在一个笛卡尔坐标系中,第m(m=1,…,M)个发射天线和第n(n=1,…,N)个接收天线分别位于第m个发射机在kTs时刻的采样值为E是发射总能量,Ts为采样间隔,k (k=1,…,K)是采样数字,假设不同发射机的发射信号时正交的。假设目标位于(x,y),运动速度为(vx,vy),所以在kTs时刻第n个接收机接收到第m个发射机的信号为,
其中为目标反射系数,假设其为已知;τnm,fnm表示对应于mn路径的时延和多普勒频率;unm[k]是第nm条路径的噪声,为零均值的复高斯圆对称变量,且
假设位置(x,y)和速度(vx,vy)是确定未知需要估计的,时延τnm是未知目标位置(x,y)函数:
其中c表示光速,表示第m个发射机与目标的距离,为第n个接收机与目标的距离。
多普勒频率fnm是未知目标位置(x,y)和速度(vx,vy)的函数
其中λ表示载波波长。
定义一个未知参数向量来表示要估计的参数:
将rnm[k]的实部和虚部分别通过一个量化器,然后分别采用直接分析和高斯量化误差近似的方式分析量化的影响。
直接分析时,对输入数据γ,量化器的输出为
其中,D=2b是量化值的数目,b是量化比特数。因此,量化的结果为其中分别表示本地接收信号rnm[k]实部和虚部的量化结果。
N个接收机接收到M个发射机的在kTs时刻的采样值直接量化后的数据为
所有采样值量化后的观测矢量为
假设一个复数的实部和虚部通过相同的均匀量化器,采用高斯近似量化误差时,当 rnm[k]被量化后,量化输出xG,nm[k]可以近似被建模
xG,nm[k]=rnm[k]+ηnm[k] (8)
其中,ηnm[k]是量化误差,满足零均值复高斯分布,且则所有接收机接收到的量化后的观测矢量为
其中
将量化后的数据通过一个理想信道传送到融合中心,则融合中心收到的数据为
y=x (11)
本发明采用如下步骤来计算直接分析量化和近似分析量化时云MIMO雷达的最大似然估计和CRB:
步骤1确定rnm[k]的实部和虚部的均值和方差,即 其中
步骤2由以上的信号模型(7),首先确定直接分析量化时融合中心的观测矢量为
步骤3确定量化后数据xnm[k]的概率分布函数
dreal=0,1,…,D-1,dimag=0,1,…,D-1
其中,Q(·)表示标准高斯分布的累积分布函数,定义为
步骤4根据以下公式计算y的似然函数
步骤5根据下式
求得直接分析量化时的θ的估计值
步骤6重复步骤1到5,根据估计到的求出其RMSE(均方根误差)为
其中num为重复次数。
步骤7假设
根据公式
进而得出矩阵
步骤8计算矩阵的第ij个元素,
其中,当i=nm或者i=NM+nm时,否则
公式(28)中的其他求导项用公式(29)和(30)类似的方法可以得到。
步骤9根据公式
计算出J(θ),最终可得直接分析量化时的CRB
CRBd=J(θ)-1 (32)
对应于CRB的对角元素分别为目标位置x,y和目标速度vx,vy的克拉美罗下界。
步骤10根据
分别计算出直接分析量化时出对应于x,y,vx,vy的RCRB(根克拉美罗下界)。
步骤11由以上的信号模型(9),首先确定采用高斯误差近似量化时融合中心的观测矢量为
步骤12确定信号均值向量μ和协方差矩阵C用于最大似然估计
其中,
步骤13根据下式
求得近似分析量化时的θ的估计值
步骤14重复步骤11到13,根据估计到的求出其RMSE(均方根误差)为
其中num为重复次数。
步骤15假设
得到矩阵它的第ij个元素为
步骤16根据公式,
和步骤6得到的矩阵计算出J(θ),最终可得近似分析量化时的CRB为
CRBa=J(θ)-1 (42)
对应于CRB的对角元素分别为目标位置x,y和目标速度vx,vy的克拉美罗下界。
步骤17根据
分别计算出采用高斯近似量化误差时对应于x,y,vx,vy的RCRB(根克拉美罗下界)。
本发明的工作原理
由于unm[k]为零均值的复高斯圆对称变量,且可知,接收信号rnm[k]为复高斯分布,均值和方差分别为
则rnm[k]的实部和虚部也分别服从高斯分布其中
由以上的信号模型(7),首先确定直接分析量化时融合中心的观测矢量为,
则xnm[k]实部和虚部的概率分布函数为,对d=0,1,…,D-1有
其中,Q(·)表示标准高斯分布的累积分布函数,定义为
因此xnm[k]的概率分布函数为
所以y的log似然函数为
关于未知参数向量θ最大似然估计为
根据链式法则
首先计算
计算矩阵的第ij个元素,
其中
公式(58)中的其他求导项用公式(59)和(60)类似的方法可以得到。
根据文献(M.Bertocco,C.Narduzzi,P.Paglierani,and D.Petri,“A noisemodel for digitized data,”IEEE Transactions on Instrumentation andMeasurement,vol.49, no.1,pp.83–86,Feb 2000),假设一个实数通过均匀量化器,量化误差可以被建模为零均值均匀分布过程,当σ>0.25Δ时(其中σ是这个实数的方差,Δ是量化间隔),可以进一步等效为高斯分布,且量化误差的方差为因此,如果一个实部和虚部是独立同分布的复数实部和虚部分别采用均匀量化器,则对复数的量化也可近似为输入加上一个零均值的高斯量化噪声,方差为因此,可得到采用高斯近似量化误差时的量化噪声为
xG,nm[k]=rnm[k]+ηnm[k] (61)
其中,ηnm[k]是量化误差,满足零均值复高斯分不,且
根据信号模型(34),近似分析量化时似然函数可以表示为
其中均值向量μ和协方差矩阵C表示为
所以其log似然函数为
lnp(y|θ)=-(y-μ)HC-1(y-μ)-logdet(C)-logπKNM (65)
忽略第二行最后两个常数项,关于未知参数向量θ最大似然估计为
根据链式法则计算费歇尔信息矩阵的公式为
根据公式(56)得到根据文献(S.Kay,“Fundamentals of StatisticalSignal Processing:Estimation Theory,”Prentice-Hall.Englewood Cli_s,NJ,1993.),可得
最终可得到
基于量化的云MIMO雷达计算最大似然估计和CRB,对量化影响采用直接分析和高斯误差近似分析两种方式,最大似然估计采用500次蒙特卡洛实验,得到的仿真结果如图1,2,3图所示,其中参数设置如下:
考虑一个目标以(25,20)m/s的速度移动,目标位于(150,130)m。假设有M=2个发射机位和N=3个接收机放置于离远点70km的位置,M个发射机和N个接收机均匀分布在[0,2π)角度上。
仿真中假设发射频率扩展高斯单脉冲信号取 T=0.01,Δf=500Hz,Ts=1/2000s。
定义SNR=10log10(E/σ2),且设置噪声方差为σ2=10-2
在图1中,对比了量化比特等于5时对量化直接分析的RCRB和RMSE。从图中可以看出所有的RMSE都随着SNR的增大而减小,并且所有的RMSE曲线都有一个阈值,大于阈值后,RMSE 开始接近RCRB,证明了直接分析量化时CRB的正确性。
在图2中,对比了量化比特等于7时对量化影响采用高斯误差近似的RCRB和RMSE,从图中可以看出所有的RMSE都随着SNR的增大而减小,并且所有的RMSE曲线都有一个阈值,大于阈值后,RMSE开始接近RCRB,证明了近似分析量化时CRB的正确性。
在图3中,对比了不同量化比特下对量化直接分析和近似分析的RCRB,未量化的结果可以通过设置公式(69)中的量化间隔为0得到。从图中可以看出,随着量化比特数的增加,两个分析方式的结果相似,并越来越接近未量化时CRB。当量化器使用的比特数足够大(b>5) 时,量化几乎没有性能损失,且高斯量化误差近似得到的结果与直接分析得到的结果基本一致。

Claims (3)

1.一种基于量化数据的云MIMO雷达的根克拉美罗下界计算方法,该方法包括:
步骤1:云MIMO雷达将kTs时刻第n个接收机接收到第m个发射机的信号rnm[k]为:
第m个发射机在kTs时刻的采样值为E是发射总能量,Ts为采样间隔,k(k=1,…,K)是采样数字;为目标反射系数;τnm,fnm表示对应于第n个接收机接收到第m个发射机的信号路径的时延和多普勒频率;unm[k]是第n个接收机接收到第m个发射机的信号路径的噪声,且()*表示复数的共轭,δ(k-k′)表示狄拉克函数,就是k=k'的时候这个函数取值为1,其他情况为0,k和k'代表的是采样时刻;M表示发射机的总个数;sm表示第m个发射机的发射信号;表示噪声unm[k]的方差;
对rnm[k]的实部和虚部进行量化,得到量化后的结果
步骤2:将N个接收机接收到的M个发射信号所有采样值量化后的结果按顺序排列成一列
其中,K表示采样时刻的的总个数;x[k]为N个接收机接收到M个发射机在kTs时刻的采样值量化后的数据为:
步骤3:将量化后的数据传送到融合中心,则融合中心收到的数据为
y=x
步骤4:计算xnm[k]的条件概率分布函数为:
dreal=0,1,…,D-1,dimag=0,1,…,D-1
其中,θ为待估计的目标参数,包括:目标xy方向上的位置和速度x,y,vx,vy表示量化值量为dreal,dimag的量化门限,根据实际情况决定,dreal,dimag分别表示实部和虚部量化后的结果,取值为0,1,…,D-1,其中D为量化值数目,Q(·)表示标准高斯分布的累积分布函数,定义为
且rnm[k]的实部和虚部均为高斯分布其中
步骤5:根据以下公式计算y的似然函数
步骤6:根据下式
求得直接分析量化时待估参数θ的估计值
步骤7:重复步骤1到6,根据估计到的求出其RMSE(均方根误差)为
其中num为重复次数;
步骤8:设
获得矩阵
其中,M表示发射机的个数,N表示接收机的个数,为时延τnm对目标位置x,y的导数,τnm(n=1,...,Nm=1,...,M)表示第m个发射机到第n个接收机的时延,为多普勒频率fnm对x,y的导数,fnm(n=1,...,Nm=1,...M)表示第m个发射机与第n个接收机之间的多普勒频率,为多普勒频率对目标速度的导数;
步骤9:假设xnm[k]量化后的实部和虚部取值分别为a和b,得到矩阵的第ij个元素为:
其中,当i=nm或者i=NM+nm时,否则
为矩阵中的对应元素,γa,γb,分别表示xnm[k]实部虚部对应的量化门限;
求导项可采用如下公式计算:
步骤10:根据公式:
其中,表示转置,计算出J(θ),J(θ)为对应于x,y,vx,vy的费歇尔信息矩阵,最终可得:
CRBd=J(θ)-1
对应于CRB的对角元素分别为目标位置x,y和目标速度vx,vy的克拉美罗下界;
步骤11:根据
分别计算出直接分析量化时对应于x,y,vx,vy的根克拉美罗下界。
2.一种基于量化数据的云MIMO雷达的根克拉美罗下界计算方法,该方法包括
步骤1:云MIMO雷达将kTs时刻第n个接收机接收到第m个发射机的信号rnm[k]为:
第m个发射机在kTs时刻的采样值为E是发射总能量,Ts为采样间隔,k(k=1,…,K)是采样数字;为目标反射系数;τnm,fnm表示对应于第n个接收机接收到第m个发射机的信号路径的时延和多普勒频率;unm[k]是第n个接收机接收到第m个发射机的信号路径的噪声,且()*表示复数的共轭,δ(k-k′)表示狄拉克函数,就是k=k'的时候这个函数取值为1,其他情况为0,k和k'代表的是采样时刻;M表示发射机的总个数;sm表示第m个发射机的发射信号;表示噪声unm[k]的方差;
步骤2:得到采用高斯近似量化误差时的量化输出xG,nm[k];
xG,nm[k]=rnm[k]+ηnm[k]
其中,ηnm[k]是量化误差,满足零均值方差为的复高斯分布,Δ表示量化间隔;
步骤3:将N个接收机接收到的M个发射信号所有采样值量化后的结果按顺序排列成一列
其中,xG[k]为N个接收机接收到M个发射机在kTs时刻的采样值量化后的数据为
步骤4:将量化后的数据传送到融合中心,则融合中心收到的数据为
y=x
步骤5:确定信号均值向量μ和协方差矩阵C用于最大似然估计
其中,
步骤6:根据下式
求得近似分析量化时θ的估计值
步骤7:重复步骤2到6,根据估计到的求出其RMSE(均方根误差)为
其中num为重复次数;
步骤8:设
得到矩阵的第ij个元素为:
其中,Re[·]表示取实部;
步骤9:设
获得矩阵
其中,M表示发射机的个数,N表示接收机的个数,为时延τnm对目标位置x,y的导数,τnm(n=1,...,Nm=1,...,M)表示第m个发射机到第n个接收机的时延,为多普勒频率fnm对x,y的导数,fnm(n=1,...,Nm=1,...M)表示第m个发射机与第n个接收机之间的多普勒频率,为多普勒频率对目标速度的导数;
步骤10:根据公式:
计算出J(θ),J(θ)为对应于x,y,vx,vy的费歇尔信息矩阵,最终可得:
CRBa=J(θ)-1
对应于CRB的对角元素分别为目标位置x,y和目标速度vx,vy的克拉美罗下界;
步骤11:根据
分别计算采用高斯近似量化误差时对应于x,y,vx,vy的根克拉美罗下界。
3.如权利要求1所述的一种基于量化数据的云MIMO雷达的根克拉美罗下界计算方法,其特征在于所述步骤1中对rnm[k]的量化器为:
其中,γ为量化器的输入,z(γ)为量化器的输出,D=2b是量化值的数目,b是量化比特数,得到量化结果:分别表示本地接收信号rnm[k]实部和虚部的量化结果。
CN201810557904.2A 2018-06-01 2018-06-01 一种基于量化数据的云mimo雷达的根克拉美罗下界计算方法 Active CN108957422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810557904.2A CN108957422B (zh) 2018-06-01 2018-06-01 一种基于量化数据的云mimo雷达的根克拉美罗下界计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810557904.2A CN108957422B (zh) 2018-06-01 2018-06-01 一种基于量化数据的云mimo雷达的根克拉美罗下界计算方法

Publications (2)

Publication Number Publication Date
CN108957422A true CN108957422A (zh) 2018-12-07
CN108957422B CN108957422B (zh) 2022-07-29

Family

ID=64492534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810557904.2A Active CN108957422B (zh) 2018-06-01 2018-06-01 一种基于量化数据的云mimo雷达的根克拉美罗下界计算方法

Country Status (1)

Country Link
CN (1) CN108957422B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782249A (zh) * 2019-02-22 2019-05-21 南京航空航天大学 一种两目标相关时延估计算法
CN110161471A (zh) * 2019-04-03 2019-08-23 电子科技大学 一种针对云mimo雷达的采样率和量化比特的计算方法
CN110426687A (zh) * 2019-08-08 2019-11-08 南京航空航天大学 双基地雷达射频隐身波形优化设计方法
CN113189574A (zh) * 2021-04-02 2021-07-30 电子科技大学 基于量化时延的云mimo雷达目标定位克拉美罗界计算方法
CN113359095A (zh) * 2021-04-27 2021-09-07 电子科技大学 一种相干被动mimo雷达克拉美罗界的计算方法
CN113406583A (zh) * 2021-06-22 2021-09-17 电子科技大学长三角研究院(衢州) 一种云mimo雷达目标检测概率的近似计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111411A1 (en) * 2007-10-24 2009-04-30 The Trustees Of Princeton University System and Method for Blind Estimation of Multiple Carrier Frequency Offsets and Separation of User Signals in Wireless Communications Systems
CN102723978A (zh) * 2012-06-29 2012-10-10 上海师范大学 多天线信道特征参数联合估计的下界建立方法
CN105068041A (zh) * 2015-08-28 2015-11-18 哈尔滨工程大学 互耦条件下基于协方差矢量稀疏表示的单基地mimo雷达角度估计方法
CN105068049A (zh) * 2015-07-27 2015-11-18 电子科技大学 一种分置天线mimo雷达的克拉美罗界计算方法
US20160294532A1 (en) * 2015-03-31 2016-10-06 Huawei Technologies Canada Co., Ltd. Joint Radio-Frequency/Baseband Self-Interference Cancellation Methods
CN106886011A (zh) * 2017-01-19 2017-06-23 电子科技大学 一种反映直达波影响的mimo雷达克拉美罗界计算方法
CN106909779A (zh) * 2017-02-17 2017-06-30 电子科技大学 基于分布式处理的mimo雷达克拉美罗界计算方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111411A1 (en) * 2007-10-24 2009-04-30 The Trustees Of Princeton University System and Method for Blind Estimation of Multiple Carrier Frequency Offsets and Separation of User Signals in Wireless Communications Systems
CN102723978A (zh) * 2012-06-29 2012-10-10 上海师范大学 多天线信道特征参数联合估计的下界建立方法
US20160294532A1 (en) * 2015-03-31 2016-10-06 Huawei Technologies Canada Co., Ltd. Joint Radio-Frequency/Baseband Self-Interference Cancellation Methods
CN105068049A (zh) * 2015-07-27 2015-11-18 电子科技大学 一种分置天线mimo雷达的克拉美罗界计算方法
CN105068041A (zh) * 2015-08-28 2015-11-18 哈尔滨工程大学 互耦条件下基于协方差矢量稀疏表示的单基地mimo雷达角度估计方法
CN106886011A (zh) * 2017-01-19 2017-06-23 电子科技大学 一种反映直达波影响的mimo雷达克拉美罗界计算方法
CN106909779A (zh) * 2017-02-17 2017-06-30 电子科技大学 基于分布式处理的mimo雷达克拉美罗界计算方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
QIAN HE等: "Generalized Cramér–Rao Bound for Joint Estimation of Target Position and Velocity for Active and Passive Radar Networks", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
何茜: "MIMO雷达检测与估计理论研究", 《中国优秀博硕士学位论文全文数据库(博士)信息科技辑》 *
吴永刚: "外辐射源MIMO雷达的参数估计问题研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *
胡建宾: "MIMO雷达联合参数估计性能分析", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *
马鹏 等: "基于多目标CRLB的分布式相干MIMO雷达阵列优化", 《数据采集与处理》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782249A (zh) * 2019-02-22 2019-05-21 南京航空航天大学 一种两目标相关时延估计算法
CN110161471A (zh) * 2019-04-03 2019-08-23 电子科技大学 一种针对云mimo雷达的采样率和量化比特的计算方法
CN110161471B (zh) * 2019-04-03 2022-10-14 电子科技大学 一种针对云mimo雷达的采样率和量化比特的计算方法
CN110426687A (zh) * 2019-08-08 2019-11-08 南京航空航天大学 双基地雷达射频隐身波形优化设计方法
CN113189574A (zh) * 2021-04-02 2021-07-30 电子科技大学 基于量化时延的云mimo雷达目标定位克拉美罗界计算方法
CN113359095A (zh) * 2021-04-27 2021-09-07 电子科技大学 一种相干被动mimo雷达克拉美罗界的计算方法
CN113359095B (zh) * 2021-04-27 2022-10-14 电子科技大学 一种相干被动mimo雷达克拉美罗界的计算方法
CN113406583A (zh) * 2021-06-22 2021-09-17 电子科技大学长三角研究院(衢州) 一种云mimo雷达目标检测概率的近似计算方法
CN113406583B (zh) * 2021-06-22 2022-08-02 电子科技大学长三角研究院(衢州) 一种云mimo雷达目标检测概率的近似计算方法

Also Published As

Publication number Publication date
CN108957422B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN108957422A (zh) 一种基于量化数据的云mimo雷达的根克拉美罗下界计算方法
CN106909779B (zh) 基于分布式处理的mimo雷达克拉美罗界计算方法
Chen et al. Adaptive distributed MIMO radar waveform optimization based on mutual information
CN107167785B (zh) 一种稳健的大阵列mimo雷达目标收发角联合估计方法
Tajer et al. Optimal joint target detection and parameter estimation by MIMO radar
CN105068049B (zh) 一种分置天线mimo雷达的克拉美罗界计算方法
EP3953729B1 (en) Radar detection of moving object with waveform separation residual
CN109507641B (zh) 一种合作的mimo雷达和mimo通信系统性能计算方法
CN105656819A (zh) 一种基于压缩感知和大规模mimo的自适应信道估计方法
CN105636197A (zh) 距离估计方法和装置、以及节点定位方法和设备
CN104023395B (zh) 大规模mimo中基于波束空间转换的散射信源定位方法
CN105554882B (zh) 基于能量检测的60GHz非视距识别与无线指纹定位方法
CN103616661A (zh) 一种稳健的远场窄带信号源个数估计方法
KR20090087557A (ko) 실내 측위 시스템 및 방법
CN106886011A (zh) 一种反映直达波影响的mimo雷达克拉美罗界计算方法
CN112887901A (zh) 一种基于量化toa量测的凸优化目标定位方法
US11181630B2 (en) High-throughput wireless communications encoded using radar waveforms
CN108828504A (zh) 基于部分相关波形的mimo雷达目标方向快速估计方法
CN105738866B (zh) 一种基于能量检测的60GHz非视距识别与无线指纹定位方法
CN110161471A (zh) 一种针对云mimo雷达的采样率和量化比特的计算方法
CN116634358A (zh) 终端定位方法、装置及非易失性存储介质
Wang et al. Parameter estimation using quantized cloud MIMO radar measurements
CN113359095B (zh) 一种相干被动mimo雷达克拉美罗界的计算方法
CN104459680A (zh) Mimo雷达估计目标方向的快速方法
CN113189574B (zh) 基于量化时延的云mimo雷达目标定位克拉美罗界计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant