CN108949785A - 芽孢形成相关基因spo0A在产酶中的应用 - Google Patents

芽孢形成相关基因spo0A在产酶中的应用 Download PDF

Info

Publication number
CN108949785A
CN108949785A CN201810886539.XA CN201810886539A CN108949785A CN 108949785 A CN108949785 A CN 108949785A CN 201810886539 A CN201810886539 A CN 201810886539A CN 108949785 A CN108949785 A CN 108949785A
Authority
CN
China
Prior art keywords
spo0a
follows
pcr amplification
enzyme
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810886539.XA
Other languages
English (en)
Other versions
CN108949785B (zh
Inventor
肖静
汪俊卿
王瑞明
原梨萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201810886539.XA priority Critical patent/CN108949785B/zh
Publication of CN108949785A publication Critical patent/CN108949785A/zh
Application granted granted Critical
Publication of CN108949785B publication Critical patent/CN108949785B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01011Pectinesterase (3.1.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01015Polygalacturonase (3.2.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02002Pectate lyase (4.2.2.2)

Abstract

本发明涉及芽孢形成相关基因spo0A在产酶中的应用。本发明首次公开了芽孢形成相关基因spo0A在产酶方面的作用,通过插入式失活的方式,将spo0A部分基因片段与Cmr基因融合,融合基因spo0A‑Cmr插入克劳氏芽孢杆菌spo0A基因序列中,使spo0A基因无法正常表达而失活,细胞代谢发生变化,在菌株芽孢生成率降低和蛋白酶削弱表达的同时,使淀粉酶酶活较之出发菌株提高85.8%,果胶酶酶活提高235%,脂肪酶酶活提高70.0%。本发明构建的工程菌株提高了淀粉酶、果胶酶和脂肪酶的发酵酶活,有利于芽孢杆菌类酶制剂生产菌株的遗传育种及工业化生产。

Description

芽孢形成相关基因spo0A在产酶中的应用
技术领域
本发明涉及芽孢形成相关基因spo0A在产酶中的应用,属于分子生物学技术领域及酶工程领域。
背景技术
克劳氏芽孢杆菌(Bacillus clausii)是一株野生型革兰氏阳性菌株,在发酵生产过程中能产蛋白酶、淀粉酶、果胶酶、脂肪酶等多种降解酶,是良好的胞外酶发酵工厂。基因工程菌的构建作为一种高效便捷的育种手段,可以从种质资源水平及发酵源头上降低酶生产成本,从而推进目标酶或目标酶组分在食品、饲料等领域的应用。构建基因工程菌的传统手段之一是提高目标酶拷贝数或强化目标酶的表达元件,但微生物发酵产酶是一个复杂的代谢调控过程,通过细胞结构基因或代谢基因的改造构建细胞工厂是一种更加注重微生物细胞综合发酵性能的遗传育种方法。
构建芽孢缺失菌是对克劳氏芽孢杆菌等细胞工厂进行改造的一个重要方向。芽孢形成相关基因很多,如spo0A、sigmaE、sigmaK等,这些基因在芽孢形成过程中的单基因功能及基因间互作关系已有研究报道。研究发现,芽孢基因不仅影响芽孢的形成,对于菌株的结构、生长、代谢产物生成等也有调节作用,例如一定阈值的spo0A能够促进菌体被膜的形成;spoⅢD在苏云金芽孢杆菌中不仅为形成芽孢所必须,也与晶体蛋白表达相关;在产芽孢梭菌中,芽孢形成相关基因既能影响芽孢形成,也与丙酮,丁醇等有机物的发酵生产有关。但是芽孢形成相关基因与淀粉酶、果胶酶、脂肪酶等降解酶的关系尚未明确,需进一步研究。
发明内容
针对现有技术的不足,本发明提供了芽孢形成相关基因spo0A在产酶中的应用,通过选择性敲除芽孢形成相关基因spo0A,构建芽孢缺失菌,可有效提高菌株代谢产生的淀粉酶、果胶酶和脂肪酶的酶活。
发明概述:
本发明选择性敲除克劳氏芽孢杆菌芽孢形成相关基因spo0A,将克劳氏芽孢杆菌芽孢形成相关基因spo0A与Cmr片段进行重叠连接,通过酶切、浓缩后转化克劳氏芽孢杆菌,使芽孢形成相关基因spo0A失活,细胞代谢发生变化,在菌株芽孢生成率降低和蛋白酶削弱表达的同时,使淀粉酶酶活较之出发菌株提高85.8%,果胶酶酶活提高235%,脂肪酶酶活提高70.0%。
发明详述:
本发明的技术方案如下:
芽孢形成相关基因spo0A在产酶中的应用,所述基因spo0A的核苷酸序列如SEQ IDNO.1所示。
根据本发明优选的,所述产酶为产淀粉酶、果胶酶和脂肪酶,其中,淀粉酶酶活较出发菌株提高85.8%,果胶酶酶活较出发菌株提高235%,脂肪酶酶活较出发菌株提高70.0%。
根据本发明优选的,所述芽孢形成相关基因spo0A在产酶中的应用,步骤如下:
(1)提取克劳氏芽孢杆菌基因组DNA,以基因组DNA为模板进行PCR扩增,获得克劳氏芽孢杆菌芽孢形成相关基因spo0A,所述基因spo0A的核苷酸序列如SEQ ID NO.1所示;
(2)以pHT01质粒为模板,经PCR扩增获得Cmr片段,所述Cmr片段的核苷酸序列如SEQID NO.2所示;
(3)采用重叠PCR技术将步骤(1)获得的基因spo0A与步骤(2)获得的Cmr片段进行融合,制得融合基因spo0A-Cmr,所述融合基因spo0A-Cmr的核苷酸序列如SEQ ID NO.3所示;
(4)将步骤(3)制得的融合基因spo0A-Cmr经酶切后,浓缩,转化克劳氏芽孢杆菌感受态细胞,经筛选获得阳性重组菌,即可应用于产酶。
根据本发明优选的,所述步骤(1)中,PCR扩增的引物核苷酸序列如下,下划线为BamHI酶切位点:
spo0A-F:CGCGGATCC TGCAGATGATAACCGCGAATTAGTCCATTTATTGAG,
spo0A-R:AAAAGGCCAGCAAAAAGGGCGAGGAGCAGTATGA;
PCR扩增体系如下,总体积50μL:
2×HiFi-PCR Master 25μL,上游引物spo0A-F 2.5μL,下游引物spo0A-R 2.5μL,克劳氏芽孢杆菌基因组DNA 2.5μL,ddH2O 17.5μL;
PCR扩增程序如下:
95℃预变性5min;95℃变性30s,54℃退火30s,72℃延伸1min,共30个循环;72℃继续延伸10min。
根据本发明优选的,所述步骤(2)中,PCR扩增的引物核苷酸序列如下,下划线为BamHI酶切位点:
Cmr-F:CTTGTAGGAACGCTTTTTGCTGGCCTTTTGCTC,
Cmr-R:CGCGGATCC TAGTGACTGGCGATGCTGTCGGAATGG;
PCR扩增体系如下,总体积50μL:
2×HiFi-PCR Master 25μL,上游引物Cmr-F 2.5μL,下游引物Cmr-R 2.5μL,pHT01质粒2.5μL,ddH2O 17.5μL;
PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸2min45s,共30个循环;72℃继续延伸10min。
根据本发明优选的,所述步骤(3)中,重叠PCR的引物核苷酸序列如下,下划线为BamHI酶切位点:
spo0A-F:CGCGGATCC TGCAGATGATAACCGCGAATTAGTCCATTTATTGAG,
Cmr-R:CGCGGATCC TAGTGACTGGCGATGCTGTCGGAATGG;
第一轮重叠PCR扩增体系如下,总体积25μL:
2×HiFi-PCR Master 12.5μL,基因spo0A 2μL,Cmr片段2μL,ddH2O 8.5μL;
第一轮重叠PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸2min45s,5个循环;72℃继续延伸10min;
第二轮重叠PCR扩增体系为在第一轮PCR扩增体系的基础上补加如下试剂:
2×HiFi-PCR Master 12.5μL,上游引物spo0A-F 1μL,下游引物Cmr-R 1μL,ddH2O10.5μL;
第二轮重叠PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸4min,共30个循环;72℃继续延伸10min。
根据本发明优选的,所述步骤(4)中,酶切的反应体系如下,总体积40μL:
重叠PCR产物20μL,10×K Buffer 4μL,BamHⅠ内切酶2μL,ddH2O 14μL;
酶切条件为:37℃,1.5h。
根据本发明优选的,所述步骤(4)中,浓缩的融合基因spo0A-Cmr的浓度为300~500ng/μL。
根据本发明优选的,所述步骤(4)中,克劳氏芽孢杆菌感受态细胞的制备方法如下:
挑取新鲜的克劳氏芽孢杆菌单菌落,37℃,220r/min培养至菌体浓度OD600=0.9~1.0,置于冰上冷却,冷却后离心,然后用预冷的电转缓冲液洗涤菌体3~5次,电转缓冲液重悬菌体后分装至预冷的无菌EP管,制得克劳氏芽孢杆菌感受态细胞。
进一步优选的,所述电转缓冲液组分如下:
质量百分比为9.1%的山梨醇,质量百分比为9.1%的甘露醇,体积百分比为10%的甘油,余量水。
根据本发明优选的,所述步骤(4)中,转化克劳氏芽孢杆菌感受态细胞的步骤如下:
将经酶切浓缩后的融合基因spo0A-Cmr电转化克劳氏芽孢杆菌感受态细胞,电转化的电压为1500~1800V,电击时间为4~5ms,然后在37℃条件下于液体复苏培养基中培养3~4h,即得。
进一步优选的,所述液体复苏培养基组分如下,均为质量百分比:
蛋白胨1%,酵母浸粉0.5%,氯化钠1%,山梨醇9%,甘露醇7%,pH=7.0~7.4。
根据本发明优选的,所述步骤(4)中,筛选步骤如下:
将转化后的克劳氏芽孢杆菌感受态细胞涂布含氯霉素的LB平板,37℃培养12~24h,然后经菌落PCR进行转化子鉴定,筛选获得阳性重组菌。
进一步优选的,所述含氯霉素的LB平板为氯霉素浓度为25μmol/mL的LB固体培养基。
有益效果:
1、本发明首次公开了芽孢形成相关基因spo0A在产酶方面的作用,通过插入式失活的方式,将spo0A部分基因片段与Cmr基因融合,融合基因spo0A-Cmr插入克劳氏芽孢杆菌spo0A基因序列中,使spo0A基因无法正常表达而失活,细胞代谢发生变化,在菌株芽孢生成率降低和蛋白酶削弱表达的同时,使淀粉酶酶活较之出发菌株提高85.8%,果胶酶酶活提高235%,脂肪酶酶活提高70.0%。
2、本发明构建的工程菌株提高了淀粉酶、果胶酶和脂肪酶的发酵酶活,有利于芽孢杆菌类酶制剂生产菌株的遗传育种及工业化生产。
附图说明
图1为本发明克劳氏芽孢杆菌spo0A基因片段的琼脂糖凝胶电泳图;
图中泳道M为DNA分子量标记(DNA marker),泳道1~4为spo0A基因片段条带,大小为418bp。
图2为本发明Cmr基因片段的琼脂糖凝胶电泳图;
图中泳道M为DNA分子量标记(DNA marker),泳道1~4为Cmr基因片段条带,大小为1264bp。
图3为本发明克劳氏芽孢杆菌spo0A基因失活转化子验证的琼脂糖凝胶电泳图;
图中泳道M为DNA分子量标记(DNA marker),泳道1~4为转化子条带,大小为1648bp。
具体实施方式
下面结合实施例对本发明的技术方案做进一步说明,但本发明所保护范围不限于此。
本方法中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。
在以下的实施例中,未详细描述的和各种过程和方法是本领域中公知的常规方法。所用试剂的来源、商品名称以及有必要列出其组成成分者,均在首次出现时标明,其后所用相同试剂如无特殊说明,均以首次标明的内容相同。
生物材料来源:
实施例中的克劳氏芽孢杆菌(Bacillus clausii)购自北京北纳创联生物技术研究院,菌种编号:BNCC160124,为普通市售菌株;
质粒pHT01购自杭州宝赛生物有限公司。
LB固体培养基组分如下,均为质量百分比:
蛋白胨1%,酵母浸粉0.5%,氯化钠1%,琼脂2%,pH=7.0~7.4
LB培养基组分如下,均为质量百分比:
蛋白胨1%,酵母浸粉0.5%,氯化钠1%,pH=7.0~7.4
实施例1:目的片段的构建
(ⅰ)提取克劳氏芽孢杆菌基因组DNA(按照Ezup柱式细菌基因组DNA抽提试剂盒说明书)。
根据基因spo0A的核苷酸序列设计引物,在上游引物中引入BamHI酶切位点,下游引物加上Cmr片段的5'端15个碱基,引物由生工生物工程(上海)股份有限公司合成。采用宝生物工程有限公司的2×HiFi-PCR Master聚合酶,以提取的克劳氏芽孢杆菌基因组DNA为模板扩增spo0A基因。
其中,引物核苷酸序列如下,其中下划线为BamHI酶切位点:
Spo0A-F:CGCGGATCC TGCAGATGATAACCGCGAATTAGTCCATTTATTGAG,
Spo0A-R:AAAAGGCCAGCAAAAAGGGCGAGGAGCAGTATGA;
PCR扩增体系如下,总体积50μL:
2×HiFi-PCR Master 25μL,上游引物spo0A-F 2.5μL,下游引物spo0A-R 2.5μL,克劳氏芽孢杆菌基因组DNA 2.5μL,ddH2O 17.5μL;
PCR扩增程序如下:
95℃预变性5min;95℃变性30s,54℃退火30s,72℃延伸1min,共30个循环;72℃继续延伸10min。
琼脂糖凝胶电泳检验PCR产物,结果如图1所示,目的基因spo0A的长度为418bp(SEQ ID NO.1),将扩增得到的PCR产物spo0A使用SanPrep柱式DNA胶回收试剂盒进行胶回收,将所得到的DNA溶液置于-20℃保存,备用。
(ⅱ)Cmr片段的获得
以pHT01质粒为模板,经PCR扩增获得Cmr片段。
其中,PCR扩增的引物核苷酸序列如下,下游引物中引入BamHI酶切位点,上游引物加上基因spo0A 3'端19个碱基,其中下划线为BamHI酶切位点:
Cmr–F:TCATACTGCTCCTCGCCCTTTTTGCTGGCCTTTT
Cmr-R:CGCGGATCC TAGTGACTGGCGATGCTGTCGGAATGG;
PCR扩增体系如下,总体积50μL:
2×HiFi-PCR Master 25μL,上游引物Cmr-F 2.5μL,下游引物Cmr-R 2.5μL,pHT01质粒2.5μL,ddH2O 17.5μL;
PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸2min45s,共30个循环;72℃继续延伸10min。
琼脂糖凝胶电泳检验PCR产物,结果如图2所示,Cmr片段的长度为1264bp(SEQ IDNO.2),将扩增得到的PCR产物Cmr使用SanPrep柱式DNA胶回收试剂盒进行胶回收,将所得到的DNA溶液置于-20℃保存,备用。
(ⅲ)将步骤(ⅰ)获得的基因spo0A与步骤(ⅱ)获得的Cmr片段采用重叠PCR进行融合,制得融合基因spo0A-Cmr
其中,重叠PCR的引物核苷酸序列如下,下划线为BamHⅠ酶切位点:
Spo0A-F:CGCGGATCC TGCAGATGATAACCGCGAATTAGTCCATTTATTGAG,
Cmr-R:CGCGGATCC TAGTGACTGGCGATGCTGTCGGAATGG;
第一轮重叠PCR扩增体系如下,总体积25μL:
2×HiFi-PCR Master 12.5μL,基因spo0A 2μL,Cmr片段2μL,ddH2O 8.5μL;
第一轮重叠PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸2min45s,5个循环;72℃继续延伸10min;
第二轮重叠PCR扩增体系为在第一轮PCR扩增体系的基础上补加如下试剂:
2×HiFi-PCR Master 12.5μL,上游引物spo0A-F 1μL,下游引物Cmr-R 1μL,ddH2O10.5μL;
第二轮重叠PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸4min,共30个循环;72℃继续延伸10min。
同样,琼脂糖凝胶电泳检验PCR产物,检测到目的基因Spo0A-Cmr的长度为1648bp(SEQ ID NO.3),将扩增得到的PCR产物spo0A-Cmr使用SanPrep柱式DNA胶回收试剂盒进行胶回收,将所得到的DNA溶液置于-20℃保存,备用。
实施例2:制备克劳氏芽孢杆菌感受态细胞
(ⅰ)挑取新鲜LB固体培养基表面的克劳氏芽孢杆菌单菌落,接种于10mL LB培养基中,37℃、220r/min,过夜培养;
(ⅱ)取2mL菌液转接到50mL GM培养基,37℃、220r/min,培养4h至OD600=1.0;
(ⅲ)将菌液转移至50mL离心管,冰浴10min,使菌体停止生长;
(IV)冰浴后4℃、5000r/min离心5min,收集菌体;
(Ⅴ)离心后的菌体用预冷的电转缓冲液(ETM)洗涤3次;
(Ⅵ)洗涤结束后,使用1000μL电转缓冲液重悬菌体;
(Ⅶ)将制备好的感受态细胞分装100μL/管,-80℃保存,备用。
其中,GM培养基:LB培养基+0.5mol/L山梨醇,
电转缓冲液(ETM):0质量百分比为9.1%的山梨醇,质量百分比为9.1%的甘露醇,体积百分比为10%的甘油,余量水。
实施例3:融合基因spo0A-Cmr电转化克劳氏芽孢杆菌感受态细胞
(ⅰ)将融合基因spo0A-Cmr用限制性内切酶BamHⅠ消化;
酶切体系(40μL)如下:
10×K Buffer 4μL,BamHⅠ内切酶2μL,重叠PCR产物20μL,ddH2O 14μL;
酶切条件为:37℃,1.5h。
(ⅱ)浓缩纯化酶切产物
(1)取酶切产物,加入1/10体积3mol/L醋酸钠和2.5倍体积无水乙醇,-20℃冷浴20min;
(2)12000r/min,离心5min得沉淀;
(3)沉淀中加入300μL 75%(体积百分比)的无水乙醇溶液,重悬沉淀;
(4)12000r/min离心5min,37℃风干30min除去乙醇;
(5)加入20μL ddH2O重悬DNA,并置于-20℃保存,备用。
(ⅲ)电转化
首先利用核酸超微量分光光度计测定浓缩的融合基因spo0A-Cmr浓度,达到469ng/μL浓度后,将感受态细胞与浓缩产物加入电转杯,冰浴5min后进行电转化,电转化电压为1500V,电击时间5ms,将电转完成后的细胞经液体复苏培养基RM在37℃复苏培养3~4h,4000r/min,5min离心后,100μL上清悬浮沉淀,涂布25μmol/mL氯霉素LB平板,在37℃恒温培养12~24h,筛选具有氯霉素抗性的转化子。
所述液体复苏培养基RM组分如下,均为质量百分比:
蛋白胨1%,酵母浸粉0.5%,氯化钠1%,山梨醇9%,甘露醇7%,pH=7.2。
实施例4:阳性重组菌的培养和鉴定
挑取上述具有氯霉素抗性的转化子,接种到含氯霉素抗性的液体LB培养基中,37℃培养12h,培养完成后,将菌液反复冻融3~4次,以菌液为模版,spo0A-F和Cmr-R为引物进行PCR扩增,扩增产物利用琼脂糖凝胶电泳进行验证;
所述的PCR引物序列如下,下划线为BamHI酶切位点:
spo0A-F:CGCGGATCC TGCAGATGATAACCGCGAATTAGTCCATTTATTGAG
Cmr-R:CGCGGATCC TAGTGACTGGCGATGCTGTCGGAATGG
所述的PCR扩增体系为25uL:
2×HiFi-PCR Master 12.5μL,菌液2μL,上游引物spo0A-F 1μL,下游引物Cmr-R 1μL,ddH2O 8.5μL;
PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸4min,30个循环;72℃继续延伸10min,琼脂糖凝胶电泳检验PCR产物,验证结果如图3所示。
实施例5:淀粉酶酶活的测定
(1)实施例4鉴定为阳性重组菌的菌种在含有25μmol/mL氯霉素的LB固体培养基中反复活化2次,37℃静置培养20h;挑单菌落于10mL液体LB培养基,37℃,200r/min培养12h,以3%的接种量接种于含有25μmol/mL氯霉素的100mL液体LB培养基中,37℃,200r/min培养;取发酵液,离心去除菌体得待测酶液;
(2)淀粉酶酶活测定的具体方法为:吸取20.0mL可溶性淀粉溶液于试管中,加入磷酸缓冲液5.0mL,摇匀后,置于60℃恒温水浴中预热8min;加入1.0mL稀释好的待测酶液,立即计时,摇匀,反应5min;立即用自动移液器吸取1.0mL反应液,加入到预先盛有0.5mL0.1mol/L盐酸溶液中终止反应,再加入5.0mL稀碘液与未发生反应的淀粉结合显色,并以稀碘液为空白对照,于660nm波长下测定吸光度,根据数据表查得吸光度所对应的酶液浓度。
(3)淀粉酶活力计算公式:X=c×n
式中:X-样品的酶活力,U/mL
c-样品酶液的浓度,U/mL
n-样品的稀释倍数
酶活定义:1mL液体酶,于60℃,pH=6.0条件下,1h液化1g可溶性淀粉所需酶量,即为1个酶活力单位(U/mL)。
通过菌体干重的测定,将淀粉酶酶活单位换算为U/g。
所述的可溶性淀粉溶液配制方法如下:
称取2.000g(精确至0.001g)可溶性淀粉于烧杯中,用少量水调成浆状物,边搅拌边缓缓加入70mL沸水中,然后用水分次冲洗装淀粉的烧杯,洗液倒入其中,搅拌加热至完全透明,冷却定容至100mL。
所述的磷酸缓冲液配制方法如下:称取45.23g磷酸氢二钠和8.07g柠檬酸,用水溶解并定容至1000mL,调节pH=6.0。
经测定,阳性重组菌的淀粉酶酶活为47.4×104U/g,出发菌株的淀粉酶酶活为25.5×104U/g,淀粉酶酶活较之出发菌株提高85.8%。
实施例6:果胶酶酶活测定
菌种发酵液及待测酶液的获得同实施例5步骤(1)。
(1)标准曲线制作:准确称量1.0g半乳糖醛酸,乙酸-乙酸钠缓冲液溶解并定容至100mL,获得浓度为10.0mg/mL的半乳糖醛酸溶液,用乙酸-乙酸钠缓冲液作系列稀释,分别配制0mg/mL,0.2mg/mL,0.4mg/mL,0.6mg/mL,0.8mg/mL,1.0mg/mL,1.2mg/mL的半乳糖醛酸溶液。分别吸取2.0mL上述系列标准溶液和2.0mL ddH2O加入试管,振荡混匀,加入5.0mLDNS试剂,振荡混匀后蒸煮5min,置于冰水中冷却后使用ddH2O定容至25.0mL,振荡摇匀,5000r/min离心10min,取清液,540nm处测定吸光度,以标准溶液浓度为0mg/mL的反应液调零。每个浓度做2个平行,取平均值,以半乳糖醛酸溶液浓度为横坐标,以OD540为纵坐标,绘制标准曲线。
(2)酶液测定:取2.0mL待测酶液及2.0mL果胶底物于试管中,混匀,40℃水浴30min,加入5.0mL DNS,混匀,煮沸5min,于冰水中终止反应,ddH2O定容至25.0mL,震荡混匀,5000r/min离心10min,取清液,于540nm波长下测吸光度,以步骤(1)中标准溶液浓度为0mg/mL的反应液调零。
(3)酶空白样测定:取2.0mL果胶底物于40℃水浴30min后加入5.0mL DNS,混匀后加入2.0mL待测酶液,混匀后煮沸5min,于冰水中终止反应,ddH2O定容至25.0mL,震荡混匀,5000r/min离心10min,取清液,于540nm处测吸光度,以步骤(1)中标准溶液浓度为0mg/mL的反应液调零。
(4)果胶酶的活力根据以下公式计算:A=(AX-AO)×K×1000×D/(W×t×V)
式中:AX--酶样的吸光度;
AO--酶空白样的吸光度;
K--标准曲线的斜率;
1000--转换因子1mmol=1000μmol;
Df--稀释倍数;
W--半乳糖醛酸的分子量(212.16);
V--酶液体积(mL);
t--反应时间(min)。
酶活定义:1mL液体酶于pH5.5,40℃条件下,每分钟水解果胶底物产生1umol还原物质(表述为半乳糖醛酸),即为一个酶活单位。
通过菌体干重的测定,将淀粉酶酶活单位换算为U/g。
经测定,阳性重组菌的果胶酶酶活为16.89×103U/g,出发菌株的果胶酶酶活为5.04×103U/g,果胶酶酶活较之出发菌株提高235%。
实施例7:脂肪酶酶活测定
菌种发酵液及待测酶液的获得同实施例5步骤(1)。
(1)于a瓶(空白)及b瓶(样品)中各加4.0mLPVA(聚乙烯醇)乳化液底物和5.0mL缓冲液,a瓶加入15.0mL95%(体积百分比)乙醇,40℃水浴5min,a、b瓶各加1.0mL待测酶液,混匀后于40℃反应15min,b瓶中立即补加15.0mL95%(体积百分比)乙醇终止反应,取出;
(2)a、b瓶各加酚肽指示液2滴,0.1mol/L氢氧化钠标准溶液滴定至微红色并保持30s不褪色,记录所消耗的体积;
(3)脂肪酶活力计算公式:X=(V1-V2)×C×100×n1/(15×0.1)
式中:V1--滴定a瓶消耗氢氧化钠标准溶液的体积,单位为毫升(mL);
V2--滴定b瓶消耗氢氧化钠标准溶液的体积,单位为毫升(mL);
C--氢氧化钠标准溶液的浓度,单位为摩尔每升(mol/L);
100--0.1mol/L氢氧化钠溶液1.00mL相当于脂肪酸100μmol;
n1--样品稀释倍数;
0.1--氢氧化钠标准溶液换算系数;
15--15min。
酶活定义:1mL液体酶,于pH7.5,40℃条件下,每分钟水解底物产生1μmol可滴定脂肪酸,即为1个酶活力单位。
通过菌体干重的测定,将淀粉酶酶活单位换算为U/g。
经测定,阳性重组菌的脂肪酶酶活为41.33×104U/g,出发菌株的脂肪酶酶活为24×104U/g,脂肪酶酶活较之出发菌株提高70.0%。
SEQUENCE LISTING
<110> 齐鲁工业大学
<120> 芽孢形成相关基因spo0A在产酶中的应用
<160> 3
<170> PatentIn version 3.5
<210> 1
<211> 418
<212> DNA
<213> Bacillus clausii
<400> 1
tgcagatgat aaccgcgaat tagtccattt attgagtgaa tatgtaggtg ctcaaccaga 60
tatggaagta atcggcacag cctttaatgg gcaagaatgt ttaacggttg tagaagaaaa 120
aatgccagat gtgctactgc ttgacatcat tatgccccat ttggatgggc ttgctgtgct 180
ggaacgttta agtcaacgag agaaaaagcc acaaattatc atgttgactg cttttggcca 240
ggaagatgta acgaaaagag ccgtcgattt tggcgcttcc tattatgtat taaaaccatt 300
tgatatggat gcattaatgg agaagatcag agagataggc ggcagcaaaa aagcgaagcg 360
gacaagaaca tcctctttgt cgtttcatac tgctcctcgc cctttttgct ggcctttt 418
<210> 2
<211> 1264
<212> DNA
<213> 人工序列
<400> 2
tcatactgct cctcgccctt tttgctggcc ttttgctcac atgttctttc ctgcgttatc 60
ccctgattct gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgccgcag 120
ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg gaagagcgcc caatacgcat 180
gcttaagtta ttggtatgac tggttttaag cgcaaaaaaa gttgcttttt cgtacctatt 240
aatgtatcgt tttagaaaac cgactgtaaa aagtacagtc ggcattatct catattataa 300
aagccagtca ttaggcctat ctgacaattc ctgaatagag ttcataaaca atcctgcatg 360
ataaccatca caaacagaat gatgtacctg taaagatagc ggtaaatata ttgaattacc 420
tttattaatg aattttcctg ctgtaataat gggtagaagg taattactat tattattgat 480
atttaagtta aacccagtaa atgaagtcca tggaataata gaaagagaaa aagcattttc 540
aggtataggt gttttgggaa acaatttccc cgaaccatta tatttctcta catcagaaag 600
gtataaatca taaaactctt tgaagtcatt ctttacagga gtccaaatac cagagaatgt 660
tttagataca ccatcaaaaa ttgtataaag tggctctaac ttatcccaat aacctaactc 720
tccgtcgcta ttgtaaccag ttctaaaagc tgtatttgag tttatcaccc ttgtcactaa 780
gaaaataaat gcagggtaaa atttatatcc ttcttgtttt atgtttcggt ataaaacact 840
aatatcaatt tctgtggtta tactaaaagt cgtttgttgg ttcaaataat gattaaatat 900
ctcttttctc ttccaattgt ctaaatcaat tttattaaag ttcatttgat atgcctccta 960
aatttttatc taaagtgaat ttaggaggct tacttgtctg ctttcttcat tagaatcaat 1020
ccttttttaa aagtcaatat tactgtaaca taaatatata ttttaaaaat atcccacttt 1080
atccaatttt cgtttgttga actaatgggt gctttagttg aagaataaaa gaccacatta 1140
aaaaatgtgg tcttttgtgt ttttttaaag gatttgagcg tagcgaaaaa tccttttctt 1200
tcttatcttg ataataaggg taactattgc cgatcgtcca ttccgacagc atcgccagtc 1260
acta 1264
<210> 3
<211> 1648
<212> DNA
<213> 人工序列
<400> 3
tgcagatgat aaccgcgaat tagtccattt attgagtgaa tatgtaggtg ctcaaccaga 60
tatggaagta atcggcacag cctttaatgg gcaagaatgt ttaacggttg tagaagaaaa 120
aatgccagat gtgctactgc ttgacatcat tatgccccat ttggatgggc ttgctgtgct 180
ggaacgttta agtcaacgag agaaaaagcc acaaattatc atgttgactg cttttggcca 240
ggaagatgta acgaaaagag ccgtcgattt tggcgcttcc tattatgtat taaaaccatt 300
tgatatggat gcattaatgg agaagatcag agagataggc ggcagcaaaa aagcgaagcg 360
gacaagaaca tcctctttgt cgtttcatac tgctcctcgc cctttttgct ggccttttgc 420
tcacatgttc tttcctgcgt tatcccctga ttctgtggat aaccgtatta ccgcctttga 480
gtgagctgat accgctcgcc gcagccgaac gaccgagcgc agcgagtcag tgagcgagga 540
agcggaagag cgcccaatac gcatgcttaa gttattggta tgactggttt taagcgcaaa 600
aaaagttgct ttttcgtacc tattaatgta tcgttttaga aaaccgactg taaaaagtac 660
agtcggcatt atctcatatt ataaaagcca gtcattaggc ctatctgaca attcctgaat 720
agagttcata aacaatcctg catgataacc atcacaaaca gaatgatgta cctgtaaaga 780
tagcggtaaa tatattgaat tacctttatt aatgaatttt cctgctgtaa taatgggtag 840
aaggtaatta ctattattat tgatatttaa gttaaaccca gtaaatgaag tccatggaat 900
aatagaaaga gaaaaagcat tttcaggtat aggtgttttg ggaaacaatt tccccgaacc 960
attatatttc tctacatcag aaaggtataa atcataaaac tctttgaagt cattctttac 1020
aggagtccaa ataccagaga atgttttaga tacaccatca aaaattgtat aaagtggctc 1080
taacttatcc caataaccta actctccgtc gctattgtaa ccagttctaa aagctgtatt 1140
tgagtttatc acccttgtca ctaagaaaat aaatgcaggg taaaatttat atccttcttg 1200
ttttatgttt cggtataaaa cactaatatc aatttctgtg gttatactaa aagtcgtttg 1260
ttggttcaaa taatgattaa atatctcttt tctcttccaa ttgtctaaat caattttatt 1320
aaagttcatt tgatatgcct cctaaatttt tatctaaagt gaatttagga ggcttacttg 1380
tctgctttct tcattagaat caatcctttt ttaaaagtca atattactgt aacataaata 1440
tatattttaa aaatatccca ctttatccaa ttttcgtttg ttgaactaat gggtgcttta 1500
gttgaagaat aaaagaccac attaaaaaat gtggtctttt gtgttttttt aaaggatttg 1560
agcgtagcga aaaatccttt tctttcttat cttgataata agggtaacta ttgccgatcg 1620
tccattccga cagcatcgcc agtcacta 1648

Claims (10)

1.芽孢形成相关基因spo0A在产酶中的应用,其特征在于,所述基因spo0A的核苷酸序列如SEQ ID NO.1所示。
2.如权利要求1所述的芽孢形成相关基因spo0A在产酶中的应用,其特征在于,所述产酶为产淀粉酶、果胶酶和脂肪酶,其中,淀粉酶酶活较出发菌株提高85.8%,果胶酶酶活较出发菌株提高235%,脂肪酶酶活较出发菌株提高70.0%。
3.如权利要求1所述的芽孢形成相关基因spo0A在产酶中的应用,其特征在于,步骤如下:
(1)提取克劳氏芽孢杆菌基因组DNA,以基因组DNA为模板进行PCR扩增,获得克劳氏芽孢杆菌芽孢形成相关基因spo0A,所述基因spo0A的核苷酸序列如SEQ ID NO.1所示;
(2)以pHT01质粒为模板,经PCR扩增获得Cmr片段,所述Cmr片段的核苷酸序列如SEQ IDNO.2所示;
(3)采用重叠PCR技术将步骤(1)获得的基因spo0A与步骤(2)获得的Cmr片段进行融合,制得融合基因spo0A-Cmr,所述融合基因spo0A-Cmr的核苷酸序列如SEQ ID NO.3所示;
(4)将步骤(3)制得的融合基因spo0A-Cmr经酶切后,浓缩,转化克劳氏芽孢杆菌感受态细胞,经筛选获得阳性重组菌,即可应用于产酶;优选的,所述浓缩后的融合基因spo0A-Cmr的浓度为300~500ng/μL。
4.如权利要求3所述的应用,其特征在于,步骤(1)中,所述PCR扩增的引物核苷酸序列如下,下划线为BamHI酶切位点:
spo0A-F:CGCGGATCC TGCAGATGATAACCGCGAATTAGTCCATTTATTGAG,
spo0A-R:AAAAGGCCAGCAAAAAGGGCGAGGAGCAGTATGA;
PCR扩增体系如下,总体积50μL:
2×HiFi-PCR Master 25μL,上游引物spo0A-F 2.5μL,下游引物spo0A-R 2.5μL,克劳氏芽孢杆菌基因组DNA 2.5μL,ddH2O 17.5μL;
PCR扩增程序如下:
95℃预变性5min;95℃变性30s,54℃退火30s,72℃延伸1min,共30个循环;72℃继续延伸10min。
5.如权利要求3所述的应用,其特征在于,步骤(2)中,所述PCR扩增的引物核苷酸序列如下,下划线为BamHI酶切位点:
Cmr-F:CTTGTAGGAACGCTTTTTGCTGGCCTTTTGCTC,
Cmr-R:CGCGGATCC TAGTGACTGGCGATGCTGTCGGAATGG;
PCR扩增体系如下,总体积50μL:
2×HiFi-PCR Master 25μL,上游引物Cmr-F 2.5μL,下游引物Cmr-R 2.5μL,pHT01质粒2.5μL,ddH2O 17.5μL;
PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸2min45s,共30个循环;72℃继续延伸10min。
6.如权利要求3所述的应用,其特征在于,步骤(3)中,所述重叠PCR的引物核苷酸序列如下,下划线为BamHI酶切位点:
spo0A-F:CGCGGATCC TGCAGATGATAACCGCGAATTAGTCCATTTATTGAG,
Cmr-R:CGCGGATCC TAGTGACTGGCGATGCTGTCGGAATGG;
第一轮重叠PCR扩增体系如下,总体积25μL:
2×HiFi-PCR Master 12.5μL,基因spo0A 2μL,Cmr片段2μL,ddH2O 8.5μL;
第一轮重叠PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸2min45s,5个循环;72℃继续延伸10min;
第二轮重叠PCR扩增体系为在第一轮PCR扩增体系的基础上补加如下试剂:
2×HiFi-PCR Master 12.5μL,上游引物spo0A-F 1μL,下游引物Cmr-R 1μL,ddH2O 10.5μL;
第二轮重叠PCR扩增程序如下:
95℃预变性5min;95℃变性30s,56℃退火30s,72℃延伸4min,共30个循环;72℃继续延伸10min。
7.如权利要求3所述的应用,其特征在于,步骤(4)中,所述酶切的反应体系如下,总体积40μL:
重叠PCR产物20μL,10×K Buffer 4μL,BamHⅠ内切酶2μL,ddH2O 14μL;
酶切条件为:37℃,1.5h。
8.如权利要求3所述的应用,其特征在于,步骤(4)中,所述克劳氏芽孢杆菌感受态细胞的制备方法如下:
挑取新鲜的克劳氏芽孢杆菌单菌落,37℃,220r/min培养至菌体浓度OD600=0.9~1.0,置于冰上冷却,冷却后离心,然后用预冷的电转缓冲液洗涤菌体3~5次,电转缓冲液重悬菌体后分装至预冷的无菌EP管,制得克劳氏芽孢杆菌感受态细胞;
其中,所述电转缓冲液组分如下:
质量百分比为9.1%的山梨醇,质量百分比为9.1%的甘露醇,体积百分比为10%的甘油,余量水。
9.如权利要求3所述的应用,其特征在于,步骤(4)中,所述转化克劳氏芽孢杆菌感受态细胞的步骤如下:
将经酶切浓缩后的融合基因spo0A-Cmr电转化克劳氏芽孢杆菌感受态细胞,电转化的电压为1500~1800V,电击时间为4~5ms,然后在37℃条件下于液体复苏培养基中培养3~4h,即得;
其中,所述液体复苏培养基组分如下,均为质量百分比:
蛋白胨1%,酵母浸粉0.5%,氯化钠1%,山梨醇9%,甘露醇7%,pH=7.0~7.4。
10.如权利要求3所述的应用,其特征在于,步骤(4)中,所述筛选步骤如下:
将转化后的克劳氏芽孢杆菌感受态细胞涂布含氯霉素的LB平板,37℃培养12~24h,然后经菌落PCR进行转化子鉴定,筛选获得阳性重组菌;
其中,所述含氯霉素的LB平板为氯霉素浓度为25μmol/mL的LB固体培养基。
CN201810886539.XA 2018-08-06 2018-08-06 芽孢形成相关基因spo0A在产酶中的应用 Active CN108949785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810886539.XA CN108949785B (zh) 2018-08-06 2018-08-06 芽孢形成相关基因spo0A在产酶中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810886539.XA CN108949785B (zh) 2018-08-06 2018-08-06 芽孢形成相关基因spo0A在产酶中的应用

Publications (2)

Publication Number Publication Date
CN108949785A true CN108949785A (zh) 2018-12-07
CN108949785B CN108949785B (zh) 2020-03-06

Family

ID=64467583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810886539.XA Active CN108949785B (zh) 2018-08-06 2018-08-06 芽孢形成相关基因spo0A在产酶中的应用

Country Status (1)

Country Link
CN (1) CN108949785B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055204A (zh) * 2019-05-10 2019-07-26 齐鲁工业大学 一种敲除spoⅡQ和pcf基因提高地衣芽孢杆菌发酵产酶的方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295830A (ja) * 2004-04-07 2005-10-27 Kao Corp 宿主微生物
CN1809631A (zh) * 2003-06-18 2006-07-26 帝斯曼知识产权资产管理有限公司 用不能形成芽孢的微生物来生产泛酸盐/酯的方法
JP2006345860A (ja) * 2005-05-20 2006-12-28 Shinshu Univ 組換えバチルス属細菌
JP2009055859A (ja) * 2007-08-31 2009-03-19 Kao Corp タンパク質生産方法
CN102203237A (zh) * 2008-11-05 2011-09-28 Tmo可再生能源有限公司 用于乙醇生产的孢子形成缺陷嗜热微生物
JP5512177B2 (ja) * 2009-07-06 2014-06-04 旭松食品株式会社 胞子形成能低下納豆菌株および該株を用いて製造した胞子数の少ない納豆
WO2016069432A1 (en) * 2014-10-30 2016-05-06 Merck Sharp & Dohme Corp. Bacillus megaterium recombinant protein expression system
CN105802985A (zh) * 2016-04-18 2016-07-27 齐鲁工业大学 一种快速实现地衣芽孢杆菌基因敲除的方法
CN107278230A (zh) * 2014-12-19 2017-10-20 丹尼斯科美国公司 增强的蛋白质表达

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1809631A (zh) * 2003-06-18 2006-07-26 帝斯曼知识产权资产管理有限公司 用不能形成芽孢的微生物来生产泛酸盐/酯的方法
JP2005295830A (ja) * 2004-04-07 2005-10-27 Kao Corp 宿主微生物
JP2006345860A (ja) * 2005-05-20 2006-12-28 Shinshu Univ 組換えバチルス属細菌
JP2009055859A (ja) * 2007-08-31 2009-03-19 Kao Corp タンパク質生産方法
CN102203237A (zh) * 2008-11-05 2011-09-28 Tmo可再生能源有限公司 用于乙醇生产的孢子形成缺陷嗜热微生物
JP5512177B2 (ja) * 2009-07-06 2014-06-04 旭松食品株式会社 胞子形成能低下納豆菌株および該株を用いて製造した胞子数の少ない納豆
WO2016069432A1 (en) * 2014-10-30 2016-05-06 Merck Sharp & Dohme Corp. Bacillus megaterium recombinant protein expression system
CN107278230A (zh) * 2014-12-19 2017-10-20 丹尼斯科美国公司 增强的蛋白质表达
CN105802985A (zh) * 2016-04-18 2016-07-27 齐鲁工业大学 一种快速实现地衣芽孢杆菌基因敲除的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE,Y.-J.等: "Bacillus clausii strain DSM 8716 chromosome, complete genome", 《GENBANK: CP019985.1》 *
徐世荣等: "细菌芽孢形成机制在微生态制剂生产中的应用", 《食品与生物技术学报》 *
韩海红等: "一种基于单交换原理的地衣芽孢杆菌基因敲除方法及应用", 《中国生物工程杂志》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055204A (zh) * 2019-05-10 2019-07-26 齐鲁工业大学 一种敲除spoⅡQ和pcf基因提高地衣芽孢杆菌发酵产酶的方法及应用
CN110055204B (zh) * 2019-05-10 2020-04-10 齐鲁工业大学 一种敲除spoⅡQ和pcf基因提高地衣芽孢杆菌发酵产酶的方法及应用

Also Published As

Publication number Publication date
CN108949785B (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
US3806416A (en) Creatine amidohydrolase and process for its preparation
JP5895004B2 (ja) 組み換え大腸菌及び5−アミノレブリン酸の生産におけるその応用
CN103497911B (zh) 一株金黄杆菌及其羰基还原酶用于阿瑞匹坦手性中间体生产
CN103952318B (zh) 高产柠檬酸黑曲霉菌fy2013及其应用
CN109609474A (zh) 一种氨基酸脱氢酶突变体及其在合成l-草铵膦中的应用
CN109055327A (zh) 醛酮还原酶突变体及其应用
CN102191291B (zh) 一种利用基因工程菌生产l-鸟氨酸盐酸盐的方法
US20240011001A1 (en) Gdsl lipase, genetically-engineered bacteria and application thereof
CN107815458A (zh) 一种表达人源乙醛脱氢酶基因的基因工程菌及其应用
CN107142253A (zh) 一种高催化效率且耐高温木聚糖酶突变体及其制备方法和应用
CN107574173A (zh) 一种重组质粒及其用于构建红曲色素高产菌株的方法
CN110373370A (zh) 一种耦合atp再生系统的催化体系及其在生产谷胱甘肽过程中的应用
CN110387379A (zh) 一种用于生产谷胱甘肽的重组大肠杆菌的混合培养工艺及其应用
CN109706107B (zh) 一种高效发酵生产甾药前体的方法
CN108034667A (zh) 一种红色红曲霉α-淀粉酶基因、其制备方法及应用
CN113430181B (zh) 一种来源亚洲象肠道宏基因组的细菌漆酶及其基因
CN106754776A (zh) 一种催化木糖的比酶活提高的葡萄糖脱氢酶突变体
CN104845926B (zh) 一种有利于重组蛋白胞外分泌的基因敲除大肠杆菌及其应用
CN105255934A (zh) 一种高效联产α-氨基丁酸及葡萄糖酸的策略
CN108949785A (zh) 芽孢形成相关基因spo0A在产酶中的应用
Phaff Industrial microorganisms
CN102234624B (zh) 一种表达产生枯草芽孢杆菌精氨酸酶的基因工程菌及构建方法
CN108929883A (zh) 芽孢形成相关基因spo ⅡE在影响菌株生长及产酶中的应用
CN107674839B (zh) 一种腐皮镰刀菌及其发酵生产右旋糖酐酶的方法
CN114908070A (zh) 一种磷脂酶及其制备甘油磷脂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant