CN1089373C - 晶粒取向电工钢片生产中控制抑制作用的方法 - Google Patents

晶粒取向电工钢片生产中控制抑制作用的方法 Download PDF

Info

Publication number
CN1089373C
CN1089373C CN97182038A CN97182038A CN1089373C CN 1089373 C CN1089373 C CN 1089373C CN 97182038 A CN97182038 A CN 97182038A CN 97182038 A CN97182038 A CN 97182038A CN 1089373 C CN1089373 C CN 1089373C
Authority
CN
China
Prior art keywords
steel
temperature
grain
heating temperature
steel billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97182038A
Other languages
English (en)
Other versions
CN1249007A (zh
Inventor
S·福图纳提
S·希卡尔
G·阿布鲁泽兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acciai Speciali Terni SpA
Original Assignee
Acciai Speciali Terni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acciai Speciali Terni SpA filed Critical Acciai Speciali Terni SpA
Publication of CN1249007A publication Critical patent/CN1249007A/zh
Application granted granted Critical
Publication of CN1089373C publication Critical patent/CN1089373C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Measuring Magnetic Variables (AREA)
  • Coating With Molten Metal (AREA)
  • Epoxy Compounds (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Metal Rolling (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

在晶粒取向电工钢片的生产过程中,通过调节锰和硫含量控制热轧钢带中的抑制作用,以使冷轧钢带能够连续高温渗氮。这样,有可能避免不可控制的晶粒生长,并析出包括氮化铝的氮化物,从而获得稳定高质量的钢带。

Description

晶粒取向电工钢片生产中控制抑制作用的方法
发明领域
本发明涉及晶粒取向电工钢片生产中控制抑制作用的方法;更准确地讲涉及这样一种方法,其中通过控制锰、硫、铝和碳含量,确定析出的第二相的类型和数量。从而热轧钢带在脱碳退火过程中获得优化的晶粒尺寸和一定程度的抑制作用,籍此可以实施随后的连续高温热处理,通过遍及钢带厚度的氮扩散,使铝以氮化物形式直接析出,以获得控制最终产品的晶粒取向所需第二相比例。
已有技术
用于磁性用途的晶粒取向硅钢通常分为两类,基本不同之处在于在800安培-匝/m的磁场作用下测量的磁感强度值,记为B800:传统的晶粒取向硅钢的B800小于1890mT,高导磁率晶粒取向硅钢的B800大于1900mT。根据由W/kg表示的所谓铁心损耗可再做进一步细分。
三十年代获得应用的传统晶粒取向硅钢和于六十年代后期得到工业应用的具有更高导磁率的晶粒超取向钢,主要用于生产电气变压器的铁心,超取向钢的优点在于其导磁率高(可使铁心尺寸减小),损耗低,节约能量。
钢片的导磁率取决于体心立方铁晶体(或晶粒)的取向:晶粒必须具有平行于轧制方向的一个棱。通过利用一定适当尺寸和分布的析出物(抑制剂,也称为“第二相”),降低了晶界的迁移性,在最终静态退火过程中仅具有期望取向的晶粒获得了选择性生长。所述析出物在钢中的溶解温度越高,在更高冷轧速率下对晶粒生长的抑制能力越强。晶粒的取向性就越高,最终产品的磁性能就越好。在晶粒取向钢中,抑制剂主要是锰的硫化物和/或硒化物,其工艺通常需要两步冷轧;而在晶粒超取向钢中,抑制剂主要是包括铝氮化合物(为简便起见称为“氮化铝”),其冷轧过程通常需要一个工序。
但是,当生产晶粒取向钢片或晶粒超取向电工钢片时,在钢的凝固以及所得固体的随后冷却过程中,具有上述改善作用的第二相以粗粒形式析出,无助于实现所期望的目的。因此,它们必须再溶解并且以适当形式再析出,并且保持所述形式到经一复杂和昂贵的转变过程后,获得具有所要求的尺寸和晶向的晶粒,在该转变过程包括一轧至所要求的最终厚度的冷轧工序,一个脱碳退火工序和一个最终退火处理工序。
很显然,基本上与难以获得良好的生产率和稳定的质量有关的生产问题,主要起因于必须采取措施以便在整个钢的转变工艺过程中按要求的形式和分布保持第二相(并且尤其是氮化铝)。
为了克服这些问题已经开发了新技术,其中,为了在脱碳退火过程中获得晶粒的自由生长,未使用任何硫化物作为抑制剂并提供具有高Mn/S比的合金,从而避免了在热轧钢带中析出物的细小析出。借助钢带的渗氮,最好是在冷轧之后,产生适合于控制晶粒生长的氮化铝,正如美国专利4225366和欧洲专利EP0339474所述的。
在后者专利中,在钢的慢速凝固过程中,以粗粒形式析出的氮化铝,通过在热轧之前对钢板坯的低温加热(亦即低于1280℃,最好低于1250℃)保持在这种状态。在脱碳退火之后引入氮,(主要在钢带的表面层)立即反应产生硅或锰/硅的氮化物,其具有相对低的固溶温度并且在最终的箱式退火中溶解。如此释放的氮扩散进入钢带并且与铝反应,以铝和硅的氮化物的混合形式在钢带的整个厚度再次细小均匀析出。这种工艺要求材料在700-800℃保温至少4小时。在上述专利中,说明了在缺少适当抑制剂的情形下,为了避免晶粒的异常生长,氮引入温度必须接近脱碳温度(约850℃),在任何情况一定不大于900℃。事实上,最佳渗氮温度应该在750℃左右,而850℃代表避免这种异常生长的上限。
表面上此工艺具有一定优点,例如在热轧、脱碳和渗氮之前的相对低的钢板坯加热温度;另一个优点是在箱式退火过程中须使钢带保持在700-850℃的温度至少4小时(目的在于获得控制晶粒生长所需的混合的铝和硅的氮化物),而生产成本没有增加,因为在任何情况下箱式退火炉中的加热均需类似的时间。
但是,在具有上述优点的同时,上述方法也存在某些缺点,其中:(i)由于组成的选择和钢板坯的加热温度低。所以钢带实际上不含有抑制晶粒生长的析出物;因此,所有钢带加热工序、特别是在脱碳和渗氮处理过程中的加热,必须在相对较低和严格控制的温度下进行,因为在上述条件下晶界是极易迁移的,这意味着存在晶粒异常生长的危险;(ii)引入的氮以氮化硅和氮化锰/氮化硅形式局限于钢带的近表面,它们必须溶解以使氮扩散入钢带的芯部,并反应生成所希望的氮化铝:从而在最终退火工序不可能实现任何可以加速加热时间的改进(例如通过用其它型式的连续炉替代箱式退火炉)。
本申请人认识到了上述困难,已经开发出一种新的改进的方法,相对于现有技术而言,该方法包括创新工序,并且在理论基础和方法特征上具有显著的特点。
本申请的方法已经在本申请人的意大利专利申请RM96A000600,RM96A000606,RM96A000903,RM96A000904,RM96A000905中进行了公开。
所述专利申请清楚地阐明,如果能在热轧工序后在某种程度上析出适于控制晶粒生长的抑制剂,则整个方法,尤其是对加热温度的控制就可以不那么关键,从而可使得在一次再结晶过程(脱碳退火过程)中实现最佳晶粒尺寸控制,然后对钢带进行深氮化,直接生成氮化铝。
发明概述
本发明的目的在于克服已知制造方法的缺点,并进一步改进上述意大利专利申请公开的方法,从而提出一种方法,其中在热轧工序后,通过形成并控制适于使大多数生产工序更为宽松(特别针对于对加热温度的精心控制)的各种抑制剂的体系,从而在一次再结晶过程中获得优化的晶粒尺寸,并获得钢带的深氮化,直接形成氮化铝。
本发明提供晶粒取向电工钢带生产过程中进行抑制剂控制的方法,其中,对硅钢进行连铸成坯、热轧该钢坯形成热轧钢带、冷轧该钢带,对所获得的冷轧钢带连续退火,以便进行初次再结晶,渗氮和退火以进行二次再结晶,其特征在于以协同关系组合以下工序:
(i)保持钢中锰含量在400-1500ppm范围内,锰含量与硫含量之比控制在2-30范围内,并且硫含量不超过300ppm;
(ii)控制钢坯的加热温度在1100-1300℃范围内;
(iii)控制热轧条件,初轧温度为1000℃-1150℃,终轧温度为900℃-1000℃,卷绕温度为550℃-720℃;
上述组合的目的在于在热轧钢带中获得细小的析出物,以赋予该钢带有效抑制剂(Iz)水平,其值由经验公式计算:
Iz=1.91Fv/r
其中Fv是有用的析出物的体积百分比,r是其平均半径。
根据本发明,通过锰和硫含量的适当组合,有可能使晶粒取向硅钢片和晶粒超取向硅钢片的生产更为容易(根据上述本申请人的意大利专利申请所公开的创新技术)。
尤其是,根据本发明,通过在已知的400-1500ppm范围内改变锰含量,并通过控制锰和硫的百分含量之比在2至30之间和使硫含量不高于300ppm,可以在热轧钢带中获得细小的析出物,尤其是包括铝氮化物和一种锰及其他无素如铜的氮化物的混合物,可对钢带产生适于控制晶粒生长速度的有效抑制作用(Iz),其值在约400cm-1和约1300cm-1间。
获得的抑制作用水平与所假定的方法参数一起,可在二次再结晶之前实现连续和有控制的晶粒生长。
优选地,锰含量控制在500-1000ppm。
此外,锰和硫的重量百分含量之比控制在2到10之间。
钢中还可以包括一些杂质,尤其是铬、镍和钼,它们总的重量百分比应优选低于0.35%。
根据本发明,连铸钢板坯在1100℃-1300℃、最好是1150℃-1250℃的温度进行加热;并在1000℃一1150℃的初轧温度,900℃-1000℃的终轧温度下进行热轧,并在550℃-720℃的温度卷绕。
随后,该钢带冷轧至所需的最终厚度,并在850℃-900℃进行一次再结晶退火和通常在900℃-1050℃进行的渗氮。
本发明组成的特征在于,降低了固溶态的游离锰含量,使得通过高温氮化加入的氮可以扩散进入钢带的芯部,与基体中的铝结合直接析出。此外,氮化工序以后进行的析出物分析表明,加入钢中的氮形成的氮化铝析出物形成于已经存在的均匀分布的细薄的硫化物上,其中该硫化物因而起添加的抑制作用的活化剂和调整剂的作用。
涂敷了MgO基退火隔离剂并卷绕的钢带,在氮-氢气氛中加热至高达1210℃并在氢气氛中该温度下保持至少10小时,进行装箱退火。
在以下实施例中将说明本发明。
实旋例1
连铸制造钢坯,该钢包含3.15wt%的Si,230ppm的C,650ppm的Mn,140ppm的S,320ppm的Al可溶,82ppm的N,1000ppm的Cu,530ppm的Sn,200ppm的Cr,100ppm的Mo,400ppm的Ni,20ppm的Ti,100ppm的P;将该钢坯加热到不超过1150℃,并在1055℃的初轧温度和915℃的终轧温度下进行热轧至2.2mm厚,以形成约700cm-1的有效抑制作用。然后将钢带冷轧至不超过0.22,0.26,0.29毫米的厚度。该冷轧钢带在露点68℃的氮/氢气氛中在880℃进行连续退火约120秒,恰好该钢带在露点10℃的氮/氢气氛中在960℃进行连续退火约15秒后,从炉入口添加氨,以使钢带中氮含量增加20-50ppm。
对涂敷了MgO基退火隔离剂并卷绕的退火钢带,进行根据以下周期的装箱退火:快速加热至700℃,在该温度下停留15小时,以40℃/小时加热至1200℃,在该温度下停留10小时,然后自由冷却。
所述钢带的磁性能为:
表1
    厚度(毫米)         B800(mT)           P17(W/kg)
    0.29                1935                0.94
    0.26                1930                0.92
    0.22                1940                0.85
实施例2
制造具有如下组成的铸件:铸件     Si      C      Mn      S      Cu      Al可溶        N         Ti
     %      ppm    ppm     ppm    ppm     ppm            ppm       ppmA        3.2     280    1700    200    1500    260            80        20B        3.2     200    1000    350    1500    290            70        10C        3.1     580    750     190    2300    310            80        10D        3.2     300    600     230    1000    300            90        10E        2.9     450    1000    100    2000    280            70        20F        3.0     320    1000    120    1200    190            90        20G        3.2     50     800     70     1000    300            80        20将钢坯加热至1150℃,初轧至40毫米厚,然后热轧至2.2-2.3毫米厚度。将热轧钢带冷轧至0.30毫米厚度,在870℃脱碳退火,然后在炉子入口添加8wt%的氨,在露点10℃的氮/氢气氛中在930℃渗氮30秒。对氮化钢带涂敷MgO基退火隔离剂并进行根据以下周期的装箱退火:快速加热至700℃,在该温度下停留10小时,以40℃/小时在氮/氢气氛中加热至不超过1210℃,于氢气氛中,在该温度下停留15小时,然后冷却。
表3示出了所述钢带的磁性能
表3铸件          A        B       C       D       E       F       GB800(mT)     1714      1637    1935    1930    1940    1841    1830P17(W/kg)    1.79      2.08    0.95    0.95    0.92    1.25    1.34P15(W/kg)    1.17      1.33    0.71    0.70    0.67    0.85    0.92
实施例3
制造铸钢坯,其包含铁和3.3wt%的Si,350ppm的C,290ppm的Al可溶,70ppm的N,650ppm的Mn,180ppm的S,1400ppm的Cu和少量杂质,对钢坯进行如下处理,在热轧至2.2毫米之前,一些钢坯在1320℃(RA)处理,其余的在1190℃(RB)处理。该钢带在900℃退火,然后从780℃用水和蒸汽冷却。通过对热轧退火钢带基体中抑制剂的平均含量进行分析,发现钢带RA的抑制剂水平为约1400cm-1,钢带RB的抑制剂水平为约800cm-1
该热轧钢带冷轧至0.27毫米的厚度,在850℃退火以进行初次再结晶,并在970℃进行渗氮。根据以下周期对经渗氮的冷轧钢带进行装箱退火,以进行二次再结晶:在氮/氢气氛中以40℃/小时从700℃加热至1200℃,在氢气氛中1200℃下停留20小时,然后冷却。
表4示出了所述钢带的磁性能
表4钢片         M800(平均)      P17(平均)1(RB)        1920            0.972(RB)        1930            0.953(RB)        1930            0.964(RA)        1820            1.345(RA)        1770            1.456(RA)        1790            1.38
此外,由低温退火钢坯获得的钢带的铁损是恒定的,而由高温退火钢坯获得的钢带的铁损是变化的,并在1.00-1.84W/kg之间周期振荡变化。

Claims (12)

1.晶粒取向电工钢带生产过程中进行抑制剂控制的方法,其中,对硅钢进行连铸成坯,热轧该钢坯形成热轧钢带,冷轧该钢带,对所获得的冷轧钢带连续退火,以便进行初次再结晶,渗氮并退火以进行二次再结晶,其特征在于以协同关系组合以下工序:
(i)保持钢中锰含量在400-1500ppm范围内,锰含量与硫含量之比控制在2-30范围内,并且硫含量不超过300ppm;
(ii)控制钢坯的加热温度在1100-1300℃范围内;
(iii)控制热轧条件,初轧温度为1000℃-1150℃,终轧温度为900℃-1000℃,卷绕温度为550℃-720℃;
上述组合的目的在于在热轧钢带中获得细小的析出物,以赋予该钢带有效抑制剂(Iz)水平,其值由经验公式计算:
Iz=1.91Fv/r
其中Fv是有用的析出物的体积百分比,r是其平均半径。
2.根据权利要求1的方法,其特征在于受控制的锰含量在500-1000ppm。
3.根据前述权利要求中任一项的方法,其特征在于,锰含量与硫含量之重量比为2-10。
4.根据前述权利要求1或2的方法,其特征在于,所述钢中还可以包括一些杂质,它们总的重量百分比低于0.35%。
5.根据权利要求3的方法,其特征在于,所述钢中还可以包括一些杂质,它们总的重量百分比低于0.35%。
6.根据权利要求4的方法,其特征在于所述杂质为铬、镍和钼。
7.根据权利要求5的方法,其特征在于所述杂质为铬、镍和钼。
8.根据前述权利要求1或2的方法,其特征在于,所述钢坯的加热温度为1150-1250℃。
9.根据权利要求3的方法,其特征在于,所述钢坯的加热温度为1150-1250℃。
10.根据权利要求4的方法,其特征在于,所述钢坯的加热温度为1150-1250℃。
11.根据权利要求5的方法,其特征在于,所述钢坯的加热温度为1150-1250℃。
12.根据权利要求6的方法,其特征在于,所述钢坯的加热温度为1150-1250℃。
CN97182038A 1997-03-14 1997-07-28 晶粒取向电工钢片生产中控制抑制作用的方法 Expired - Fee Related CN1089373C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITRM97A000147 1997-03-14
IT97RM000147A IT1290978B1 (it) 1997-03-14 1997-03-14 Procedimento per il controllo dell'inibizione nella produzione di lamierino magnetico a grano orientato

Publications (2)

Publication Number Publication Date
CN1249007A CN1249007A (zh) 2000-03-29
CN1089373C true CN1089373C (zh) 2002-08-21

Family

ID=11404861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97182038A Expired - Fee Related CN1089373C (zh) 1997-03-14 1997-07-28 晶粒取向电工钢片生产中控制抑制作用的方法

Country Status (16)

Country Link
US (1) US6361621B1 (zh)
EP (1) EP0966548B1 (zh)
JP (1) JP2001515541A (zh)
KR (1) KR100561144B1 (zh)
CN (1) CN1089373C (zh)
AT (1) ATE206474T1 (zh)
AU (1) AU3941397A (zh)
BR (1) BR9714629A (zh)
CZ (1) CZ295534B6 (zh)
DE (1) DE69707159T2 (zh)
ES (1) ES2165081T3 (zh)
IT (1) IT1290978B1 (zh)
PL (1) PL182837B1 (zh)
RU (1) RU2195506C2 (zh)
SK (1) SK284361B6 (zh)
WO (1) WO1998041660A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1299137B1 (it) 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
IT1317894B1 (it) * 2000-08-09 2003-07-15 Acciai Speciali Terni Spa Procedimento per la regolazione della distribuzione degli inibitorinella produzione di lamierini magnetici a grano orientato.
IT1316026B1 (it) 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Procedimento per la fabbricazione di lamierini a grano orientato.
US7011139B2 (en) * 2002-05-08 2006-03-14 Schoen Jerry W Method of continuous casting non-oriented electrical steel strip
US20050000596A1 (en) * 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
CN102127708A (zh) * 2011-01-16 2011-07-20 首钢总公司 一种低温板坯加热生产取向电工钢的方法
CN104894354B (zh) * 2015-06-09 2017-11-10 北京科技大学 一种低温热轧板制备薄规格高磁感取向硅钢的生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732413A1 (fr) * 1995-03-14 1996-09-18 USINOR SACILOR Société Anonyme Procédé de fabrication d'une tÔle d'acier électrique à grains orientés notamment pour transformateurs
EP1003947A1 (en) * 1997-08-12 2000-05-31 Zodiac Pool Care Europe, SA Bumper assemblies for swimming pool cleaners

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
US3671337A (en) * 1969-02-21 1972-06-20 Nippon Steel Corp Process for producing grain oriented electromagnetic steel sheets having excellent magnetic characteristics
JPS5032059B2 (zh) * 1971-12-24 1975-10-17
JPS5933170B2 (ja) 1978-10-02 1984-08-14 新日本製鐵株式会社 磁束密度の極めて高い、含Al一方向性珪素鋼板の製造法
JPS59208020A (ja) * 1983-05-12 1984-11-26 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JPH0717961B2 (ja) * 1988-04-25 1995-03-01 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
US5759293A (en) * 1989-01-07 1998-06-02 Nippon Steel Corporation Decarburization-annealed steel strip as an intermediate material for grain-oriented electrical steel strip
JPH0730397B2 (ja) * 1990-04-13 1995-04-05 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2519615B2 (ja) * 1991-09-26 1996-07-31 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
KR960010811B1 (ko) * 1992-04-16 1996-08-09 신니뽄세이데스 가부시끼가이샤 자성이 우수한 입자배향 전기 강 시트의 제조방법
US5507883A (en) * 1992-06-26 1996-04-16 Nippon Steel Corporation Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for production the same
DE4311151C1 (de) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
JP3240035B2 (ja) * 1994-07-22 2001-12-17 川崎製鉄株式会社 コイル全長にわたり磁気特性に優れた方向性けい素鋼板の製造方法
JP3598590B2 (ja) * 1994-12-05 2004-12-08 Jfeスチール株式会社 磁束密度が高くかつ鉄損の低い一方向性電磁鋼板
US5643370A (en) * 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
IT1284268B1 (it) 1996-08-30 1998-05-14 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da
IT1285153B1 (it) 1996-09-05 1998-06-03 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, a partire da bramma sottile.
US5885371A (en) * 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
IT1290173B1 (it) 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino di acciaio al silicio a grano orientato
IT1290171B1 (it) 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per il trattamento di acciaio al silicio, a grano orientato.
IT1290172B1 (it) 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732413A1 (fr) * 1995-03-14 1996-09-18 USINOR SACILOR Société Anonyme Procédé de fabrication d'une tÔle d'acier électrique à grains orientés notamment pour transformateurs
EP1003947A1 (en) * 1997-08-12 2000-05-31 Zodiac Pool Care Europe, SA Bumper assemblies for swimming pool cleaners

Also Published As

Publication number Publication date
ITRM970147A1 (it) 1998-09-14
CZ295534B6 (cs) 2005-08-17
CZ9903250A3 (cs) 2001-07-11
US6361621B1 (en) 2002-03-26
SK284361B6 (sk) 2005-02-04
EP0966548A1 (en) 1999-12-29
SK122499A3 (en) 2000-05-16
DE69707159D1 (de) 2001-11-08
ATE206474T1 (de) 2001-10-15
BR9714629A (pt) 2000-03-28
AU3941397A (en) 1998-10-12
IT1290978B1 (it) 1998-12-14
JP2001515541A (ja) 2001-09-18
DE69707159T2 (de) 2002-06-06
RU2195506C2 (ru) 2002-12-27
KR100561144B1 (ko) 2006-03-15
KR20000076234A (ko) 2000-12-26
ES2165081T3 (es) 2002-03-01
CN1249007A (zh) 2000-03-29
EP0966548B1 (en) 2001-10-04
PL335654A1 (en) 2000-05-08
PL182837B1 (pl) 2002-03-29
WO1998041660A1 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
CN1258608C (zh) 冷轧无取向电工钢的制造方法
CN1040998C (zh) 生产具有改进了的重磁化损失的晶粒取向磁钢板的方法
RU2193603C2 (ru) Способ получения листа из электротехнической стали с ориентированной зеренной структурой и высокими магнитными свойствами
EP0922119A1 (en) Process for the production of grain oriented electrical steel strip having high magnetic characteristics, starting from thin slabs
PL182835B1 (pl) Sposób wytwarzania z cienkich wlewków elektrotechnicznych, teksturowanych taśm stalowych
KR20100019450A (ko) 입자 방향성 자기 스트립의 제조 방법
CN1242077C (zh) 用于生产晶粒定向电工钢带的工艺
RU2288959C2 (ru) Способ производства полос электротехнической стали с ориентированными зернами
KR20140044892A (ko) 전기공학적 용도를 위한 방향성 전기 강 판상 제품을 제조하는 방법
CN1094982C (zh) 晶粒取向电工钢板生产中控制抑制作用的方法
RU2184787C2 (ru) Способ обработки кремнистой стали с ориентированной зеренной структурой
CN1089373C (zh) 晶粒取向电工钢片生产中控制抑制作用的方法
CN1242058A (zh) 晶粒取向硅钢片的制造工艺
JP4239458B2 (ja) 方向性電磁鋼板の製造方法
RU2279488C2 (ru) Способ регулирования распределения ингибиторов при производстве полосовой текстурованной электротехнической стали
CN1851023A (zh) 一种低碳高锰取向电工钢板及其制造方法
KR100359239B1 (ko) 자기특성과 경제성이 우수한 고자속 밀도 방향성 전기강판의 제조방법
KR100934089B1 (ko) 복합조직 열연강판 제조방법
KR100256336B1 (ko) 자기적특성이 우수한 방향성 규소강의 제조방법
KR100479995B1 (ko) 자속밀도가 우수한 방향성 전기강판의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020821

Termination date: 20160728

CF01 Termination of patent right due to non-payment of annual fee