KR20000076234A - 방향성 전기강판 생산 시의 억제제어 공정 - Google Patents

방향성 전기강판 생산 시의 억제제어 공정 Download PDF

Info

Publication number
KR20000076234A
KR20000076234A KR1019997008329A KR19997008329A KR20000076234A KR 20000076234 A KR20000076234 A KR 20000076234A KR 1019997008329 A KR1019997008329 A KR 1019997008329A KR 19997008329 A KR19997008329 A KR 19997008329A KR 20000076234 A KR20000076234 A KR 20000076234A
Authority
KR
South Korea
Prior art keywords
ppm
content
steel
temperature
inhibitor process
Prior art date
Application number
KR1019997008329A
Other languages
English (en)
Other versions
KR100561144B1 (ko
Inventor
포추나티스테파노
시케일스테파노
아브루제시기우세페
Original Assignee
지오바니 베스파시아니, 비토 니콜라 파스칼리
악키아이 스페시알리 테르니 에스. 피. 에이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지오바니 베스파시아니, 비토 니콜라 파스칼리, 악키아이 스페시알리 테르니 에스. 피. 에이. filed Critical 지오바니 베스파시아니, 비토 니콜라 파스칼리
Publication of KR20000076234A publication Critical patent/KR20000076234A/ko
Application granted granted Critical
Publication of KR100561144B1 publication Critical patent/KR100561144B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Soft Magnetic Materials (AREA)
  • Measuring Magnetic Variables (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Epoxy Compounds (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

방향성 전기강판의 생산 시, 망간 및 황 함유량을 조절함으로써 열간압연 스트립의 억제가 제어되어 냉간압연 스트립이 연속적으로 고온 질화될 수 있다. 이와 같이 하여, 결정립의 제어되지 않은 성장을 방지할 수 있고 알루미늄을 포함하는 질화물로서 알루미늄을 석출시킬 수 있어서, 우수하고 균일한 품질의 스트립을 얻을 수 있다.

Description

방향성 전기강판 생산 시의 억제제어 공정 {PROCESS FOR THE INHIBITION CONTROL IN THE PRODUCTION OF GRAIN-ORIENTED ELECTRICAL SHEETS}
자기 용도(magnetic uses)의 방향성 규소강은 800 As/m의 자계로 유도되며 "B800"으로 알려진 유도값(induction value)에 의하여 본질적으로 구별되는 두 개의 그룹, 즉 B800이 1890mT 이하인 종래의 방향성 그룹 및 B800이 1900mT 이상인 고투자율(high-permeability) 방향성 그룹으로 분류되는 것이 일반적이다. W/kg로 나타내는 이른 바 "철심손(core-losses)"에 따라 더 세분된다.
1930년대 이후 사용되는 종래의 방향성 강, 및 고투자율을 가지며 1960년대 후반 이후 산업용으로 사용되는 초방향성 강(grain super-oriented steel)은 전기 변압기용의 철심을 실현시키는데 필연적으로 사용되며, 초방향성 강이 투자율은 높고(철심의 크기를 감소시킬 수 있음) 손실이 적어서 에너지가 절약되기 때문에 그 사용이 증가하고 있다.
강판의 투자율은 체심입방격자 철 결정(body-centred cubic-lattice iron crystals)(또는 결정립)의 배향에 좌우되며, 결정립 에지 중 하나는 압연방향과 반드시 평행이어야 한다. 결정립 경계의 이동도(mobility)를 감소시키는 적합한 크기로 분포된 약간의 석출물("제2 상"이라고도 불리는 억제제)을 사용함으로써, 원하는 배향을 가진 결정립만을 선택적으로 성장시킬 수 있고; 상기 석출물이 강 내에 용해되는 온도가 높을수록, 결정립 성장을 제한하여 냉간압연율을 보다 상승시킬 수 있는 능력이 높아지고, 결정립 배향이 높아지며 최종 제품의 자기 특징이 보다 양호하게 된다. 망간 황화물(Manganese sulphide) 및/또는 셀렌화물(selenide)이 방향성 강에 널리 사용되는 억제제이며 냉간압연 공정은 일반적으로 두 단계인 한편, 알루미늄에 결합된 질소를 포함하는 석출물(간단하게 "알루미늄 질화물"이라고 함)은 초방향성 강에 널리 사용되는 억제제이며 냉간압연 공정은 일반적으로 한 단계 공정이다.
그러나, 방향성 강판 또는 초방향성 강판의 생산 시에, 강을 응고시키고 이 응고체를 냉각시키는 도중에, 상기 강의 효과를 개선시킬 수 있는 제2 상이 원하는 목적에 상관없이 거친 형태(coarse form)로 석출되고; 따라서 상기 제2 상이 반드시 용해, 적절한 형태로 재석출 및 상기 형태로 유지된 후, 바람직한 최종 두께를 얻기 위한 냉각압연, 탈탄 어닐링 및 최종 어닐링을 포함하는 복잡하고 비용이 많이 드는 변환공정의 마지막에 원하는 크기 및 배향을 가진 결정립을 얻는다.
높은 수율 및 일정한 품질을 얻는데 있어서 근본적으로 곤란한 생산의 문제는, 주로 강의 전체 변환공정 도중에 제2 상(특히, 알루미늄 질화물)을 원하는 형태 및 분포로 유지시키기 위하여 주의를 기울여야 한다는 것이 분명하다.
상기 문제를 해소하기 위하여, 탈탄 단계 도중에 결정립이 자유롭게 성장할 수 있도록 황화물을 억제제로서 사용하지 않고 Mn/S 비율이 높은 합금을 제공함으로써 열간압연 스트립에 얇게 석출되는 것을 방지하는 기술이 개발되었다. 미합중국특허 제4,225,366호 및 유럽특허 제0,339,474호에 개시된 바와 같이, 결정립 성장을 제어하는데 적합한 알루미늄 질화물은 스트립의 질화에 의하여, 바람직하게는 냉간압연 후에 얻는다.
상기 특허에 따르면, 강이 서서히 응고되는 도중에 거친 형태로 석출된 알루미늄 질화물을 낮은 슬래브-가열온도(1280℃ 이하, 바람직하게는 1250℃ 이하)를 사용하여 상기 상태로 유지시킨 다음 열간압연한다. 탈탄 어닐링 후에 질소를 공급하여 즉시 반응시켜 비교적 낮은 용해온도를 가지는 실리콘 및 망간/실리콘 질화물을(스트립 표면에 바로 근접하여) 생성하여 이것을 상자-어닐링로(box-annealing furnace)에서의 최종 어닐링 도중에 용해시키고; 이렇게 릴리스된 질소를 강판 내에 확산, 알루미늄과 반응 및 전체 스트립 두께 상에 혼합 알루미늄 및 실리콘 질화물로서 얇은 균질 형태로 재석출시키고; 상기 공정은 소재를 700-800℃로 적어도 4시간 동안 유지시키는 것을 포함한다. 상기 특허에서 질소는 탈탄온도(약 850℃)에 근접한 온도, 어떠한 경우에도 900℃보다는 높지 않은 온도로 공급되어야 적합한 억제제의 결여로 인해 결정립의 제어되지 않은 성장이 방지된다고 개시되어 있다. 실제로, 최적의 질화온도는 약 750℃인 반면, 850℃가 상기 제어되지 않은 성장을 방지하기 위한 상한(上限)이다.
언뜻 보기에 상기 공정은 몇 가지 장점: 열간압연, 탈탄 및 질화 전의 슬래브-가열온도가 비교적 낮고, 상자-어닐링로의 가열은 어떤 경우에도 유사한 시간을 필요로 하기 때문에, 스트립을 700-850℃로 적어도 4시간 동안 상자-어닐링로에 유지(결정립 성장을 제어하는데 필요한 알루미늄과 실리콘 질화물의 혼합물을 얻기 위함)시켜야할 필요는 있지만 생산비는 증가되지 않는다는 것을 포함한다.
그러나, 전술한 장점과 함께 상기 공정은 몇 가지 단점: (i) 선택된 조성 및 낮은 슬래브-가열온도로 인하여 강판은 결정립 성장을 억제하는 석출물을 실질적으로 포함하지 않고: 스트립의 가열 단계 모두, 특히 탈탄 및 질화에 속하는 단계가비교적 낮고 임계적으로 제어된 온도를 이용해야 하고, 상기 조건에서는 결정립 경계가 이동성이 매우 높아서 결정립의 제어되지 않은 성장 위험이 포함됨; (ii) 공급된 질소는 실리콘 및 망간/실리콘 질화물로서 스트립의 표면에 근접하여 정지되고, 이것은 반드시 용해되어야 질소가 강판의 철심을 향하여 확산되고 반응을 일으켜 원하는 알루미늄 질화물이 생성될 수 있고: 따라서 가열시간(예를 들면, 상자-어닐링로 대신에 다른 유형의 연속로를 사용함으로써)의 가속이 최종 어닐링 중에는 개선될 수 없다는 것을 포함한다.
상기 단점을 알고 있는 출원인은 이론적 근거 및 공정 특징 양자 모두에 대하여 구별되는, 신규이며 종래 기술에 비하여 상당히 진보된 단계를 포함하는 개선된 공정을 개발하였다.
이러한 공정은 동일 출원인의 이탈리아 특허출원 제RM96A000600호, RM96A000606호, RM96A000903호, RM96A000904호, RM96A000905호에 개시되어 있다.
상기 특허출원에는 전체 공정, 특히 결정립 성장의 제어에 적합한 약간의 억제제를 열간압연 단계 이후 석출시킬 수 있는 경우 가열온도를 덜 임계적으로 제어할 수 있고, 따라서 1차 재결정화 도중(탈탄 어닐링 중)에 결정립 크기를 최상으로 제어한 다음 강판을 심층 질화(deep nitriding)시켜 알루미늄 질화물을 직접 생성할 수 있는 것으로 분명하게 개시되어 있다.
본 발명은 방향성 전기강판 생산 시의 억제제어 공정, 보다 구체적으로는 망간, 황, 알루미늄 및 탄소 함유량의 제어를 통하여, 석출된 제2 상의 유형 및 양이 열간압연 스트립 이후 결정되고, 탈탄 어닐링 중에 최적의 결정립 크기 및 어느 정도의 억제를 얻고, 따라서 질소를 스트립의 두께를 따라 확산시킴으로써 알루미늄이 질화물로서 직접 석출되는 후속의 연속 고온 열처리가 실행될 수 있어서 최종 제품의 결정립 배향을 제어하는데 필요한 제2 상비(phase ratio)를 얻는 공정에 관한 것이다.
본 발명의 목적은 공지된 생산공정의 단점을 극복하고, 전술한 이탈리아 특허출원에 개시된 기술을 열간압연 단계 이후 대부분의 생산 단계를 덜 임계적으로 제어하는데 적합한 각종의 억제제 시스템을 생성 및 제어하여 (특히 가열온도를 신중히 제어하여) 1차 재결정화 도중에 최적의 결정립 크기를 얻고 질소를 스트립에 급속하게 침투시켜 알루미늄 질화물을 직접 형성하는 공정을 개시함으로써 보다 개선시키는 것이다.
본 발명에 있어서, 망간 및 황 함유량의 적절한 결합을 통하여 (전술한 동일 출원인의 이탈리아 특허출원에 개시된 신기술에 따라) 방향성 유형 및 초방향성 유형 양자 모두의 규소강판을 보다 용이하게 생산할 수 있다.
특히, 본 발명에 있어서, 망간의 함유량을 범위가 400-1500ppm 이내로 공지되어 있지만 변경시키고 망간 및 황의 중량% 함유량 간의 비율을 황 함유량이 300ppm보다 높지 않도록 2∼30 사이로 제어함으로써, 열간압연 스트립 이후 얇은 석출물, 특히 알루미늄에 결합된 질소를 포함하는 석출물 및 결정립 성장속도를 제어하는데 적합한 약 400-1300cm-1사이의 유효 억제(Iz)를 강판에 제공하기 쉬운, 망간 질화물과 구리와 같은 다른 요소와의 혼합물을 얻을 수 있다.
유효 억제는 실험식:
Iz = 1.91 Fv/r
을 통하여 계산되며, 여기서 Fv는 유용한 석출물의 체적율이고 r은 상기 석출물의 평균 반경이다.
이와 같이 발생된 억제 레벨로, 가정의 프로세스 매개변수와 함께, 2차 재결정화 전의 결정립 성장이 연속적으로 제어될 수 있다.
망간 함유량은 500-1000ppm 범위로 제어되는 것이 바람직하다.
또한, 망간 및 황의 중량% 함유량간의 비율은 2-10 사이로 유지되는 것이 바람직하다. 강은 일부 불순물, 특히 크롬, 니켈 및 몰리브덴을 포함할 수 있으나 이들의 총 중량% 함유량은 0.35% 이하가 바람직하다.
본 발명에 있어서, 연속주조 슬래브를 1100℃-1300℃, 바람직하게는 1150℃-1250℃로 가열하고, 초기 압연온도 1000℃-1150℃ 사이, 최종 압연온도 900℃-1000℃ 사이 및 코일링온도 550℃-720℃ 사이로 하여 열간압연시켰다.
다음에, 스트립을 원하는 최종 두께로 냉간압연하고 850-900℃로 1차 재결정화 어닐링 및 일반적으로 900-1050℃로 질화를 거친다.
본 발명의 조성을 특징으로 하는 고용체(solid solution) 내의 유리된 망간함유량을 감소시킴으로써, 고온 질화에 의하여 스트립에 가해진 질소가 스트립 코어를 향하여 확산되며 매트릭스 내에 포함된 알루미늄에 직접 석출될 수 있다. 또한, 질화 단계 후에 행한 석출물 분석에서는 스트립에 가해진 질소가 실재하는 균질로 분포된 얇은 황화물 상에 알루미늄 질화물로서 석출되고, 따라서 이것이 가해진 억제의 활성제 및 조절제로서 작용한다는 것을 알았다.
MgO-기 어닐링 분리기로 코팅하여 감긴 스트립을 질소/수소 분위기하에서 1210℃까지 가열하고 이것을 수소 분위기하에서 상기 온도로 적어도 10시간 동안 유지시켜 상자-어닐링한다.
다음에, 본 발명을 몇 가지 실시예를 들어 설명한다.
예 1
Si 3.15 중량%, C 230ppm, Mn 650ppm, S 140ppm, Als320ppm, N 82ppm, Cu 1000ppm, Sn 530ppm, Cr 200ppm, Mo 100ppm, Ni 400ppm, Ti 20ppm, P 100ppm을 포함하는 강을 연속주조하고, 슬래브를 1150℃까지 가열 및 유효 억제 약 700cm-1을 갖도록 초기 압연온도 1055℃ 및 최종 압연온도 915℃로 하여 두께 2.2mm로 열간압연하였다. 다음에, 스트립을 두께 0.22, 0.26 및 0.29mm까지로 냉간압연하였다. 냉간압연 스트립을 이슬점 68℃를 가진 질소/수소 분위기하에서 약 120초 동안 880℃로 연속 어닐링한 후, 즉시 스트립의 질소 함유량이 20-50ppm으로 증가되도록 암모니아를 노에 공급하여 가하면서 이슬점 10℃를 가진 질소/수소 분위기하에서 약 15초 동안 960℃로 연속 어닐링하였다.
MgO-기 어닐링 분리기로 코팅하여 감긴 어닐링된 스트립을 다음 사이클: 700℃까지 급속 가열, 상기 온도로 15시간 동안 유지, 시간당 40℃씩 1200℃까지 가열, 상기 온도로 10시간 동안 유지, 자유 냉각에 따라 상자-어닐링하였다.
상기 스트립의 자기 특징을 표 1에 나타낸다.
표 1
두께 (mm) B800 (mT) P17 (W/kg)
0.29 1935 0.94
0.26 1930 0.92
0.22 1940 0.85
예 2
다음 조성을 가진 주물을 제조하였다:
표 2
주물 Si C Mn S Cu AlsN Ti
중량% ppm ppm ppm ppm ppm ppm ppm
A 3.2 280 1700 200 1500 260 80 20
B 3.2 200 1000 350 1500 290 70 10
C 3.1 580 750 190 2300 310 80 10
D 3.2 300 600 230 1000 300 90 10
E 2.9 450 1000 100 2000 280 70 20
F 3.0 320 1000 120 1200 190 90 20
G 3.2 50 800 70 1000 300 80 20
슬래브를 1150℃까지 가열하고, 두께 40mm로 괴철화(bloomed down)한 다음 두께 2.2-2.3mm로 열간압연하였다. 열간압연된 스트립을 두께 0.30mm로 냉간압연하고, 870℃로 탈탄한 다음 8 중량%의 암모니아를 노 입력에 가하면서 이슬점 10℃를 가진 질소/수소 분위기하에서 30초 동안 930℃로 질화시켰다. 질화된 스트립을 MgO-기 어닐링 분리기로 코팅하고 다음 사이클: 700℃까지 급속 가열, 상기 온도로 10시간 동안 유지, 질소/수소 분위기하에서 시간당 40℃씩 1210℃까지 가열, 수소 분위기하에서 상기 온도로 15시간 동안 유지 및 냉각에 따라 상자-어닐링하였다.
상기 스트립의 자기 특징을 표 3에 나타낸다.
표 3
주물 A B C D E F G
B800 (mT) 1714 1637 1935 1930 1940 1841 1830
P17 (W/kg) 1.79 2.08 0.95 0.95 0.92 1.25 1.34
P15 (W/kg) 1.17 1.33 0.71 0.70 0.67 0.85 0.92
예 3
철, Si 3.3 중량%, C 350ppm, Als290ppm, N 70ppm, Mn 650ppm, S 180ppm, Cu 1400ppm 및 소량의 불순물을 포함하는 주물로 슬래브를 제조하였다: 일부 슬래브를 1320℃ (RA)로 처리하고 나머지는 1190℃ (RB)로 처리한 다음 두께 2.2mm로 열간압연하였다. 스트립을 900℃로 어닐링하고 물 및 수증기로 780℃에서부터 냉각시켰다. 열간압연 어닐링된 스트립의 매트릭스 내의 억제 평균 함유량의 분석에 의하여, 스트립 RA에 대하여는 약 1400cm-1의 값을 얻은 반면, 스트립 RB에 대하여는 약 800cm-1의 값을 얻었다.
다음에, 열간압연된 스트립을 두께 0.27mm로 냉간압연하고, 850℃로 1차 재결정화를 위하여 어닐링한 다음 970℃로 질화시켰다. 질화된 냉간압연 스트립을 다음 사이클: 질소/수소 분위기하에서 시간당 40℃씩 700℃로부터 1200℃로 가열, 수소 분위기하에서 1200℃로 20시간 동안 유지 및 냉각에 따라 2차 재결정화를 위하여 상자-어닐링하였다.
상기 스트립의 자기 특징을 표 4에 나타낸다.
표 4
강판 M800 (평균) P17 (평균)
1 (RB) 1920 0.97
2 (RB) 1930 0.95
3 (RB) 1930 0.96
4 (RA) 1820 1.34
5 (RA) 1770 1.45
6 (RA) 1790 1.38
또한, 저온으로 어닐링된 슬래브로부터 달성된 스트립 손실은 매우 일정한 반면, 고온으로 어닐링된 슬래브로부터 달성된 스트립 손실은 매우 불안하며 1.00-1.84 W/kg 사이를 주기적으로 변동한다.

Claims (5)

  1. 규소강을 슬래브로 주조하고 열간압연시켜 열간압연 스트립을 제조한 다음 상기 열간압연 스트립을 냉각압연, 1차 재결정화와 질화를 위한 연속 어닐링 및 2차 재결정화를 위한 어닐링을 거치는 방향성 전기강판 생산 시의 억제제어 공정에 있어서,
    (i) 강 내의 망간 함유량을 400-1500ppm 범위로 유지하고, 망간 함유량과 황 함유량 간의 비율을 황 함유량이 300ppm보다 높지 않도록 2-30 범위로 제어하는 단계;
    (ii) 상기 슬래브 가열온도를 1100-1300℃ 범위로 제어하는 단계;
    (iii) 열간압연 조건, 즉 초기 압연온도를 1000℃-1150℃ 사이, 최종 압연온도를 900℃-1000℃ 사이 및 코일링온도를 550℃-720℃ 사이로 제어하는 단계
    가 협동관계로 결합되고,
    상기 결합의 목적은 다음 실험식 Iz = 1.91 Fv/r―여기서, Fv는 유용한 석출물의 체적율이고 r은 상기 석출물의 평균 반경임―을 통하여 계산된 유효 억제(Iz)를 강판에 제공하기 쉬운 얇은 석출물이 상기 열간압연 스트립 내에 달성되는
    억제제어 공정.
  2. 제1항에 있어서, 상기 제어된 망간 함유량이 500-1000ppm 사이인 억제제어 공정.
  3. 제1항 또는 제2항에 있어서, 망간 함유량과 황 함유량 간의 중량 비율이 2-10 사이인 억제제어 공정.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 강이 총 중량% 함유량이 0.35% 미만인 약간의 불순물(특히 크롬, 니켈 및 몰리브덴)을 포함하는 억제제어 공정.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 슬래브 가열온도가 1150℃-1250℃ 사이인 억제제어 공정.
KR1019997008329A 1997-03-14 1997-07-28 방향성 전기강판 생산 시의 억제제어 방법 KR100561144B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT97RM000147A IT1290978B1 (it) 1997-03-14 1997-03-14 Procedimento per il controllo dell'inibizione nella produzione di lamierino magnetico a grano orientato
ITRM97A000147 1997-03-14
PCT/EP1997/004089 WO1998041660A1 (en) 1997-03-14 1997-07-28 Process for the inhibition control in the production of grain-oriented electrical sheets

Publications (2)

Publication Number Publication Date
KR20000076234A true KR20000076234A (ko) 2000-12-26
KR100561144B1 KR100561144B1 (ko) 2006-03-15

Family

ID=11404861

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019997008329A KR100561144B1 (ko) 1997-03-14 1997-07-28 방향성 전기강판 생산 시의 억제제어 방법

Country Status (16)

Country Link
US (1) US6361621B1 (ko)
EP (1) EP0966548B1 (ko)
JP (1) JP2001515541A (ko)
KR (1) KR100561144B1 (ko)
CN (1) CN1089373C (ko)
AT (1) ATE206474T1 (ko)
AU (1) AU3941397A (ko)
BR (1) BR9714629A (ko)
CZ (1) CZ295534B6 (ko)
DE (1) DE69707159T2 (ko)
ES (1) ES2165081T3 (ko)
IT (1) IT1290978B1 (ko)
PL (1) PL182837B1 (ko)
RU (1) RU2195506C2 (ko)
SK (1) SK284361B6 (ko)
WO (1) WO1998041660A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1299137B1 (it) 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
IT1317894B1 (it) 2000-08-09 2003-07-15 Acciai Speciali Terni Spa Procedimento per la regolazione della distribuzione degli inibitorinella produzione di lamierini magnetici a grano orientato.
IT1316026B1 (it) 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Procedimento per la fabbricazione di lamierini a grano orientato.
JP2006501361A (ja) * 2002-05-08 2006-01-12 エイケイ・プロパティーズ・インコーポレイテッド 無方向性電磁鋼ストリップの連続鋳造方法
US20050000596A1 (en) * 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
CN102127708A (zh) * 2011-01-16 2011-07-20 首钢总公司 一种低温板坯加热生产取向电工钢的方法
CN104894354B (zh) * 2015-06-09 2017-11-10 北京科技大学 一种低温热轧板制备薄规格高磁感取向硅钢的生产方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
US3671337A (en) * 1969-02-21 1972-06-20 Nippon Steel Corp Process for producing grain oriented electromagnetic steel sheets having excellent magnetic characteristics
JPS5032059B2 (ko) * 1971-12-24 1975-10-17
JPS5933170B2 (ja) 1978-10-02 1984-08-14 新日本製鐵株式会社 磁束密度の極めて高い、含Al一方向性珪素鋼板の製造法
JPS59208020A (ja) * 1983-05-12 1984-11-26 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JPH0717961B2 (ja) * 1988-04-25 1995-03-01 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
US5759293A (en) * 1989-01-07 1998-06-02 Nippon Steel Corporation Decarburization-annealed steel strip as an intermediate material for grain-oriented electrical steel strip
JPH0730397B2 (ja) * 1990-04-13 1995-04-05 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2519615B2 (ja) * 1991-09-26 1996-07-31 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
KR960010811B1 (ko) * 1992-04-16 1996-08-09 신니뽄세이데스 가부시끼가이샤 자성이 우수한 입자배향 전기 강 시트의 제조방법
US5507883A (en) * 1992-06-26 1996-04-16 Nippon Steel Corporation Grain oriented electrical steel sheet having high magnetic flux density and ultra low iron loss and process for production the same
DE4311151C1 (de) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
JP3240035B2 (ja) * 1994-07-22 2001-12-17 川崎製鉄株式会社 コイル全長にわたり磁気特性に優れた方向性けい素鋼板の製造方法
JP3598590B2 (ja) * 1994-12-05 2004-12-08 Jfeスチール株式会社 磁束密度が高くかつ鉄損の低い一方向性電磁鋼板
FR2731713B1 (fr) * 1995-03-14 1997-04-11 Ugine Sa Procede de fabrication d'une tole d'acier electrique a grains orientes pour la realisation notamment de circuits magnetiques de transformateurs
US5643370A (en) * 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
IT1284268B1 (it) 1996-08-30 1998-05-14 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da
IT1285153B1 (it) 1996-09-05 1998-06-03 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, a partire da bramma sottile.
US5885371A (en) * 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
IT1290171B1 (it) 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per il trattamento di acciaio al silicio, a grano orientato.
IT1290173B1 (it) 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino di acciaio al silicio a grano orientato
IT1290172B1 (it) 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche.
US6049933A (en) * 1997-08-12 2000-04-18 Zodiac Pool Care, Inc. Bumper assemblies for swimming pool cleaners

Also Published As

Publication number Publication date
DE69707159T2 (de) 2002-06-06
EP0966548B1 (en) 2001-10-04
PL182837B1 (pl) 2002-03-29
AU3941397A (en) 1998-10-12
CN1089373C (zh) 2002-08-21
US6361621B1 (en) 2002-03-26
ATE206474T1 (de) 2001-10-15
BR9714629A (pt) 2000-03-28
JP2001515541A (ja) 2001-09-18
SK122499A3 (en) 2000-05-16
IT1290978B1 (it) 1998-12-14
KR100561144B1 (ko) 2006-03-15
PL335654A1 (en) 2000-05-08
ES2165081T3 (es) 2002-03-01
CN1249007A (zh) 2000-03-29
SK284361B6 (sk) 2005-02-04
CZ9903250A3 (cs) 2001-07-11
DE69707159D1 (de) 2001-11-08
EP0966548A1 (en) 1999-12-29
ITRM970147A1 (it) 1998-09-14
RU2195506C2 (ru) 2002-12-27
CZ295534B6 (cs) 2005-08-17
WO1998041660A1 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
KR100441234B1 (ko) 높은체적저항률을갖는결정립방향성전기강및그제조방법
KR930001330B1 (ko) 자속밀도가 높은 일방향성 전자강판의 제조방법
KR930001331B1 (ko) 자속밀도가 높은 일방향성 전자강판의 제조방법
KR20110036390A (ko) 저철손 고자속밀도 방향성 전기강판 및 그 제조방법
KR100561143B1 (ko) 방향성 전기강판 생산 시의 억제 제어 방법
KR950005793B1 (ko) 자속밀도가 높은 일방향성 전기 강스트립의 제조방법
KR100561141B1 (ko) 방향성 규소강판 생산 방법
KR100561144B1 (ko) 방향성 전기강판 생산 시의 억제제어 방법
KR100288351B1 (ko) 한단계의 냉간압연공정을 사용하는 표준 결정립 방향성 전기강 제조 방법
KR100359239B1 (ko) 자기특성과 경제성이 우수한 고자속 밀도 방향성 전기강판의 제조방법
KR101263795B1 (ko) 저철손 고자속밀도 방향성 전기강판과 그 제조방법 및 여기에 사용되는 방향성 전기강판 슬라브
KR100479996B1 (ko) 철손이 낮은 고자속밀도 방향성 전기강판 및 그 제조방법
KR100256336B1 (ko) 자기적특성이 우수한 방향성 규소강의 제조방법
KR100340550B1 (ko) 피막특성이우수한고자속밀도방향성전기강판의제조방법
KR100479995B1 (ko) 자속밀도가 우수한 방향성 전기강판의 제조방법
KR20020044244A (ko) 방향성 전기강판의 제조방법
KR101263851B1 (ko) 저철손 고자속밀도 방향성 전기강판의 제조방법
JPH10102150A (ja) 一方向性けい素鋼板の製造方法
KR100270394B1 (ko) 방향성 전기강판의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130225

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 12

EXPY Expiration of term