CN108930026A - 氮化硅膜的成膜方法、成膜装置以及存储介质 - Google Patents

氮化硅膜的成膜方法、成膜装置以及存储介质 Download PDF

Info

Publication number
CN108930026A
CN108930026A CN201810507177.9A CN201810507177A CN108930026A CN 108930026 A CN108930026 A CN 108930026A CN 201810507177 A CN201810507177 A CN 201810507177A CN 108930026 A CN108930026 A CN 108930026A
Authority
CN
China
Prior art keywords
film
silicon nitride
gas
nitride film
process container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810507177.9A
Other languages
English (en)
Other versions
CN108930026B (zh
Inventor
户根川大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN108930026A publication Critical patent/CN108930026A/zh
Application granted granted Critical
Publication of CN108930026B publication Critical patent/CN108930026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3211Nitridation of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明涉及氮化硅膜的成膜方法、成膜装置以及存储介质。提供一种能够在通过ALD法针对多个被处理基板形成氮化硅膜时降低所形成的氮化硅膜的应力的技术。在通过ALD法针对多个被处理体统一形成氮化硅膜时,在各循环中,在使成膜原料吸附的步骤与氮化的步骤之间实施在处理容器内生成氢自由基来进行氢自由基吹扫的步骤,来促进在所形成的氮化硅膜的Si‑N键合,从而降低所形成的氮化硅膜的拉伸应力。

Description

氮化硅膜的成膜方法、成膜装置以及存储介质
技术领域
本发明涉及氮化硅膜的成膜方法、成膜装置以及存储介质。
背景技术
在半导体器件的制造制程中存在以下一种成膜处理:针对以硅晶圆为代表的半导体晶圆(基板)形成氮化硅膜(SiN膜)等氮化膜来作为绝缘膜。
作为SiN膜的成膜方法,以往大多利用等离子体CVD。另一方面,能够低温且均匀地在良好的覆盖范围内进行成膜,还正在利用一种电特性也良好的通过原子层沉积法(Atomic Layer Deposition;ALD法)形成的SiN膜。作为通过ALD法形成的SiN膜的成膜方法,在专利文献1中记载了如下一种方法:在针对多个半导体晶圆统一进行处理的批量式的立式成膜装置中,通过使供给作为Si原料气体的二氯硅烷(DCS)气体与供给作为氮化气体的NH3气体以隔着吹扫的方式交替重复来形成SiN膜。
在利用批量式的立式成膜装置并通过ALD法形成SiN膜的情况下,在规定的成膜条件下,例如利用作为原料气体的二氯硅烷(DCS;SiH2Cl2)气体和作为氮化气体的NH3气体来开始对作为基板的半导体晶圆供给DCS气体,通过使单原子层的Si进行化学吸附的工序、利用非活性气体吹扫DCS气体的工序、供给NH3气体的等离子体来将所吸附的Si氮化的工序以及利用非活性气体吹扫NH3气体的工序,来形成1分子层厚的SiN单位膜,能够通过使这些工序重复进行规定次数来获得规定的膜厚的SiN膜。
另外,作为SiN膜的用途,能够列举一种能够获得光刻技术的分辨极限以下的细微图案的双重图案化技术中的侧壁(间隔物)(例如,专利文献2)。在专利文献2中,在非晶硅图案上形成SiN膜,之后对SiN膜进行蚀刻使得仅在非晶硅图案的侧壁部残留SiN膜的间隔物(SiN间隔物),之后去除非晶硅图案来形成SiN膜的图案。
在这种双重图案化中,随着图案的进一步细微化,对SiN间隔物要求非常严格的均匀性,另外,还要求低温成膜、高覆盖范围性能等,因此正研究一种如专利文献1中记载那样的通过ALD形成的SiN膜。
专利文献1:日本特开2004-281853号公报
专利文献2:日本特开2014-11357号公报
发明内容
发明要解决的问题
另外,SiN膜一般是具有高拉伸应力的膜,由器件的细微化导致的SiN间隔物的薄膜化正在加剧,由此因间隔物之间靠近所引起的弯曲正成为问题。
关于通过等离子体CVD法形成的SiN膜,通过利用气体比、压力等调整膜中氢浓度、组成,能够调整膜中的应力。
然而,通过ALD法形成的SiN膜非常致密,并且与通过等离子体CVD法形成的SiN膜相比杂质少,在所要求的低温成膜中难以控制膜中的应力。这种膜中的应力的问题并不限于双重图案化的间隔物,在通过ALD法形成的SiN膜中也产生这种膜中的应力的问题。
因而,本发明的课题在于提供一种能够在通过ALD法针对多个被处理基板形成氮化硅膜时降低所形成的氮化硅膜的应力的技术。
用于解决问题的方案
为了解决上述问题,本发明的第一观点提供一种氮化硅膜的成膜方法,在处理容器内配置多个被处理基板,针对这些多个被处理基板重复进行多次如下循环来针对多个被处理基板统一形成规定膜厚的氮化硅膜,所述循环包括:第一吹扫步骤,将所述处理容器内加热至规定温度并且将所述处理容器内设为规定的减压状态,利用非活性气体对所述处理容器内进行吹扫;成膜原料气体吸附步骤,使包括含氯的硅化合物的成膜原料气体供给到所述处理容器内并吸附于被处理基板;第二吹扫步骤,利用非活性气体对处理容器内进行吹扫;以及氮化步骤,向所述处理容器内供给氮化气体来使构成所述氮化硅膜的元素氮化,该氮化硅膜的成膜方法的特征在于,在各循环中,在所述成膜原料气体吸附步骤与所述氮化步骤之间实施在所述处理容器内生成氢自由基来进行氢自由基吹扫的氢自由基吹扫步骤,来促进所形成的氮化硅膜的Si-N键合,从而降低所形成的氮化硅膜的拉伸应力。
在上述第一观点中,邻接的被处理基板之间的间距优选为16mm以上,更优选为32mm。
在所述氮化步骤中,能够利用等离子体生成所述氮化气体的活性种,能够利用该活性种进行氮化。
能够在所述成膜原料气体吸附步骤与所述第二吹扫步骤之间实施所述氢自由基吹扫步骤。优选将所供给的气体中的H2气体的比率设为50%以上来进行所述氢自由基吹扫步骤。另外,能够通过将氢气进行等离子体化来生成所述氢自由基。在所述氢自由基吹扫步骤中,将所述氢气进行等离子体化时的高频功率优选为100W以上。所述氢自由基吹扫步骤的时间优选为10sec~60sec。
所述含氯的硅化合物可以是从包括二氯硅烷、单氯硅烷、三氯硅烷、四氯化硅以及六氯乙硅烷的群中选择出的至少一种硅化合物,所述氮化气体可以是从包括NH3气体和N2气体的群中选择出的至少一种气体。
本发明的第二观点提供一种氮化硅膜的成膜装置,该成膜装置针对多个被处理基板统一形成规定的膜厚的氮化硅膜,其特征在于,具有:处理容器,其收容要被形成所述氮化硅膜的多个被处理基板;气体供给机构,其向所述处理容器内供给非活性气体、硅成膜原料气体、氮化气体以及氢气;加热装置,其对所述处理容器内收容的多个被处理基板进行加热;氢自由基生成机构,其生成氢自由基;排气装置,其对所述处理容器内进行排气;以及控制部,其进行控制,以重复进行多次如下循环来针对多个被处理基板统一形成规定膜厚的氮化硅膜,所述循环包括:第一吹扫步骤,将所述处理容器内加热至规定温度并且将所述处理容器内设为规定的减压状态,利用非活性气体对所述处理容器内进行吹扫;成膜原料气体吸附步骤,使包括含氯的硅化合物的成膜原料气体供给到所述处理容器内并吸附于被处理基板;第二吹扫步骤,利用非活性气体对处理容器内进行吹扫;氮化步骤,向所述处理容器内供给氮化气体来使构成所述氮化硅膜的元素氮化,其中,在各循环中,在所述成膜原料气体吸附步骤与所述氮化步骤之间实施利用所述氢自由基生成机构在所述处理容器内生成氢自由基来进行氢自由基吹扫的氢自由基吹扫步骤,由此促进所形成的氮化硅膜的Si-N键合,从而降低所形成的氮化硅膜的拉伸应力。
本发明的第三观点是提供一种存储介质,该存储介质存储有用于在计算机上运行来控制氮化硅膜的成膜装置的程序,其特征在于,在所述程序被执行时,使计算机控制所述氮化硅膜的成膜装置,以进行上述第一观点的氮化硅膜的成膜方法。
发明的效果
根据本发明,在通过ALD法针对多个被处理体统一进行形成氮化硅膜的成膜处理时,在各循环中,通过在成膜原料吸附步骤与氮化步骤之间实施在处理容器内生成氢自由基来进行氢自由基吹扫的氢自由基吹扫步骤,来促进正在形成的氮化硅膜的Si-N键合,降低所形成的氮化硅膜的拉伸应力,因此能够通过ALD法获得降低了应力的氮化硅膜。
附图说明
图1是表示能够用于实施本发明的一个实施方式所涉及的氮化膜的成膜方法的成膜装置的一例的纵截面图。
图2是图1所示的成膜装置的水平截面图。
图3是表示本发明的一个实施方式所涉及的氮化膜的成膜方法的制程的图。
图4是表示以往的氮化膜的成膜方法的制程的图。
图5是用于说明将氮化硅膜用作间隔物的双重图案化的图。
图6是表示在图5的双重图案化中因氮化硅膜的应力发生了弯曲的状态的图。
图7是表示以往的与ALD-SiN膜以及应力有关的见解的图。
图8是用于说明通过氢自由基吹扫降低膜中的应力的原理的图。
图9是表示由晶圆间的间距产生的氢自由基的状态的图。
图10是表示实验例的结果的图。
附图标记说明
1:处理容器;5:晶舟;14:含Cl的Si化合物气体供给机构;15:氮化气体供给机构;16:H2气体供给机构;30:等离子体生成机构;33:等离子体电极;35:高频电源;41:排气装置;42:加热机构;100:成膜装置;W:半导体晶圆(被处理基板)。
具体实施方式
以下,参照所附附图对本发明的实施方式进行说明。
在本实施方式中,以形成氮化硅膜(SiN膜)作为氮化膜的情况为例来进行说明。
<成膜装置的一例>
图1是表示能够用于实施本发明的一个实施方式所涉及的氮化膜的成膜方法的成膜装置的一例的纵截面图,图2是图1所示的成膜装置的水平截面图。
本例的成膜装置100具有下端开口的有顶的圆筒体状的处理容器1。该处理容器1的整体例如由石英形成,在该处理容器1内的上端部附近设置有石英制的顶板2来封闭其下侧的区域。另外,形成为圆筒体状的金属制的歧管3经由O环等密封构件4连结于该处理容器1的下端开口部。
歧管3对处理容器1的下端进行支承,石英制的晶舟5从该歧管3的下方插入处理容器1内,该晶舟5以多层的方式载置有多片例如50片~100片半导体晶圆(硅晶圆)W来作为被处理基板。该晶舟5具有三根杆6(参照图2),利用形成于杆6的槽(未图示)来支承多片晶圆W。
该晶舟5隔着石英制的保温筒7被载置于台8上,该台8被支承在旋转轴10上,该旋转轴10贯通用于将歧管3的下端开口部打开和关闭的金属(不锈钢)制的盖部9。
而且,在该旋转轴10的贯通部设置有磁性流体密封件11,一边气密地对旋转轴10进行密封一边以使旋转轴10可旋转的方式对旋转轴10进行支承。另外,在盖部9的周边部与歧管3的下端部之间插入设置有用于保持处理容器1内的密封性的密封构件12。
旋转轴10例如被安装在臂13的前端,该臂3被升降机等升降机构(未图示)支承,从而使晶舟5和盖部9等一体地升降来相对于处理容器1内进行插入和脱离。此外,也可以将台8固定地设置于盖部9侧,以不使晶舟5旋转的方式进行晶圆W的处理。
另外,成膜装置100具有:含Cl的Si化合物气体供给机构14,其向处理容器1内供给含Cl的Si化合物气体、例如DCS气体;氮化气体供给机构15,其向处理容器1内供给氮化气体、例如NH3气体;H2气体供给机构16,其向处理容器1内供给氢气(H2气体);以及非活性气体供给机构17,其向处理容器1内供给非活性气体例如N2气体、Ar气体来作为吹扫气体等。
含Cl的Si化合物气体供给机构14具有:含Cl的Si化合物气体供给源18;气体配管19,其用于从含Cl的Si化合物气体供给源18引导含Cl的Si化合物气体;以及气体分散喷嘴20,其与该气体配管19连接,并用于向处理容器1内引导含Cl的Si化合物气体。作为含Cl的Si化合物气体,除了能够列举DCS气体以外,还能够列举单氯硅烷(MCS;SiH3Cl)、三氯硅烷(TCS;SiHCl3),四氯化硅(STC;SiCl4)、六氯乙硅烷(HCD;Si2Cl6)等。
氮化气体供给机构15具有氮化气体供给源21、用于从氮化气体供给源121引导氮化气体的气体配管22以及用于向处理容器1内引导氮化气体的气体分散喷嘴23。作为氮化气体,除了能够列举NH3气体以外,还能够列举N2气体等。
H2气体供给机构16具有H2气体供给源24、用于从H2气体供给源24引导H2气体的气体配管25以及用于向处理容器1内引导H2气体的气体分散喷嘴26。
气体分散喷嘴20、23以及26由石英构成,在歧管3的侧壁向内侧贯通并朝向上方弯曲后垂直地延伸。在这些气体分散喷嘴20、23以及26的垂直部分,遍及与晶舟5的晶圆支承范围对应的上下方向的长度,与各晶圆W对应地以规定的间隔分别形成有多个气体吐出孔20a、23a以及26a(26a仅在图2中图示)。能够从各气体吐出孔20a、23a以及26a沿水平方向朝向处理容器1大致均匀地喷出气体。气体分散喷嘴20设置两个,气体分散喷嘴23和26分别设置一个。
非活性气体供给机构17具有:非活性气体供给源27;气体配管28,其用于从非活性气体供给源27引导非活性气体;以及气体喷嘴29,其与该气体配管28连接,并由贯通歧管3的侧壁而设置的短石英管构成。
在气体配管19、22、25、28中分别设置有开闭阀19a、22a、25a、28a以及流量控制器19b、22b、25b、28b。
在处理容器1的侧壁的一部分形成有等离子体生成机构30。等离子体生成机构30用于将NH3气体等氮化气体进行等离子体化来生成用于氮化的活性种,并进一步将H2气体也进行等离子体化来生成氢自由基。
等离子体生成机构30具备与处理容器1的外壁以气密方式焊接的等离子体划分壁32。等离子体划分壁32例如由石英形成。等离子体划分壁32呈截面凹状,来覆盖形成于处理容器1的侧壁的开口31。开口31沿上下方向细长地形成,使得能够沿上下方向覆盖被支承于晶舟5的所有半导体晶圆W。在由等离子体划分壁32限定的内侧空间、即等离子体生成空间的内部配置有上述的用于喷出NH3气体等氮化气体的分散喷嘴23和用于喷出H2气体的分散喷嘴26。此外,用于喷出DCS气体等含Cl的Si化合物气体的两个气体分散喷嘴20设置在夹着处理容器1的内侧壁的开口31的位置。
另外,等离子体生成机构30还具有:细长的一对等离子体电极33,该一对等离子体电极33以沿上下方向彼此相向的方式配置在等离子体划分壁32的两侧壁的外表面;以及高频电源35,其经由供电线34与一对等离子体电极33分别连接,来向一对等离子体电极33供给高频电力。高频电源35对一对等离子体电极33施加例如13.56MHz的高频电压。由此,对由等离子体划分壁32限定的等离子体生成空间内施加高频电场。从分散喷嘴23喷出的氮化气体和从分散喷嘴26喷出的H2气体在被施加了高频电场的等离子体生成空间内被进行等离子体化,由此生成的用于氮化的活性种和氢自由基经由开口31被供给到处理容器1的内部。
在等离子体划分壁32的外侧以覆盖该等离子体划分壁32的方式安装有绝缘保护盖36。在绝缘保护盖36的内侧部分设置有制冷剂通路(未图示),通过在该制冷剂通路中流通被冷却的氮气等制冷剂来将等离子体电极33冷却。
在与开口31相向的处理容器1的侧壁部分设置有用于对处理容器1内进行真空排气的排气口37。该排气口37与晶舟5对应地沿上下方向细长地形成。在处理容器1的与排气口37对应的部分安装有排气口盖构件38,该排气口盖构件38以覆盖排气口37的方式形成为截面U字形。该排气口盖构件38沿处理容器1的侧壁向上方延伸。在排气口盖构件38的下部连接有用于经由排气口37对处理容器1进行排气的排气管39。排气管39上连接有排气装置41,该排气装置41包括用于控制处理容器1内的压力的压力控制阀40和真空泵等,由排气装置41经由排气管39对处理容器1内进行排气。
另外,以包围处理容器1的外周的方式设置有对处理容器1及其内部的晶圆W进行加热的筒体状的加热机构42。
成膜装置100具有控制部50。控制部50进行成膜装置100的各构成部的控制、例如通过阀19a、22a、25a、28a的开闭来控制各气体的供给和停止、利用流量控制器19b、22b、25b、28b进行气体流量的控制、利用排气装置41进行排气控制以及利用高频电源35进行高频电力的导通和截止控制以及利用加热机构42进行晶圆W的温度的控制等。控制部50具有主控制部、输入装置、输出装置、显示装置以及存储装置,其中,该主控制部具有CPU(计算机)来进行上述控制。在存储装置中设置有存储介质,该存储介质保存有用于控制由成膜装置100执行的处理的程序、即处理制程,主控制部调用存储介质中存储的规定的处理制程,基于该处理制程进行控制以使得利用成膜装置100进行规定的处理。
<成膜方法>
接着,对由这种成膜装置100实施的本发明的一个实施方式的成膜方法进行说明。
在此,示出以下例子:将DCS气体用作含Cl的Si化合物气体,将NH3气体用作氮化气体,将N2气体用作吹扫气体,并通过ALD法形成SiN膜(ALD-SiN膜)。
首先,将处理容器1内的温度设为400℃~600℃,向处理容器1内搬入搭载有50片~150片晶圆W的晶舟5,利用排气装置41对处理容器1内进行排气,并且将处理容器1内调压至13Pa~665Pa。
在该状态下,如图3的制程图所示,使利用N2气体的吹扫工序(步骤S1)、DCS气体供给(Si吸附)工序(步骤S2)、氢自由基吹扫工序(步骤S3)、利用N2气体的吹扫工序(步骤S4)以及NH3气体供给(氮化)工序(步骤S5)重复进行规定次数,来形成规定膜厚的ALD-SiN膜。
一边利用排气装置41对处理容器1内进行排气,一边从非活性气体供给源27向处理容器1内供给N2气体来作为非活性气体,由此进行步骤S1和步骤S4的吹扫工序。由此,将处理容器1内的气氛置换为N2气体。此时的条件优选为,N2气体流量:500sccm~5000sccm,时间:3sec~10sec。
在步骤S2的DCS气体供给工序中,从含Cl的Si化合物气体供给源18向处理容器1内供给DCS气体来作为含Cl的Si化合物气体,并使Si吸附于晶圆W的表面。此时的条件优选为,DCS气体流量:500sccm~3000sccm,时间:1sec~10sec。
在步骤S3的氢自由基吹扫工序中,一边对处理容器1内进行排气,一边从H2气体供给源24向处理容器1内供给H2气体,利用等离子体生成机构30对H2气体进行等离子体化来生成氢自由基,使氢自由基作用于步骤S2之后的晶圆W。氢自由基吹扫工序的详细内容后文叙述。
在步骤S5的NH3气体供给工序中,从氮化气体供给源21向处理容器1内供给NH3气体来作为氮化气体,并且利用等离子体生成机构30对NH3气体进行等离子体化来生成用于氮化的活性种,并对通过步骤S2吸附的Si进行氮化。此时的条件优选为,NH3气体流量:500sccm~5000sccm,时间:5sec~120sec。
此外,步骤S3的氢自由基吹扫工序和步骤4的吹扫工序的顺序也可以调换。
接着,详细地说明步骤S3的氢自由基吹扫工序。
在以往的ALD-SiN膜的成膜中,如图4那样不进行氢自由基处理(步骤S3),仅重复进行N2气体的吹扫工序(步骤S1)、DCS气体供给工序(步骤S2)、N2气体的吹扫工序(步骤S4)、NH3气体供给(氮化)工序(步骤S5)。
为了能够低温且均匀地在良好的覆盖范围内形成ALD-SiN膜,使用因图案的细微化而要求非常严格的均匀性等的在双重图案化中使用的SiN间隔物。但是,SiN膜一般是具有高拉伸应力的膜,当因器件的细微化进一步导致SiN间隔物的薄膜化时,发生因间隔物之间靠近所导致的弯曲。
即,在通过双重图案化形成图案的情况下,如图5所示那样准备以下构造:在硅基板101上形成被蚀刻膜102,在该被蚀刻膜102上具有硬掩膜层103和形成为规定的图案的非晶硅膜105(图5的(a));在非晶硅膜105上形成SiN膜106(图5的(b));通过SiN膜106的蚀刻以及非晶硅膜105的去除来设为残留SiN间隔物107的状态(图5的(c))。在该状态下,当如图5的(d)所示那样将SiN间隔物107设为掩膜来进行蚀刻时,成为由被蚀刻膜102、硬掩膜层103以及SiN间隔物107构成的薄图案残留的状态,因SiN间隔物107的拉伸应力,间隔物之间靠近,如图6所示那样发生弯曲。
以往,如图7所示,在ALD-SiN膜中,由于成膜温度变高,这种膜中的应力降低,但已知在400℃~500℃这个期望的低温成膜中应力高。如图7所示,通过等离子体CVD法形成的SiN膜(PECVD-SiN膜)也示出高应力,但能够通过调整气体比、压力来降低应力。但是,ALD-SiN膜非常地致密,与PECVD-SiN膜相比杂质少,因此在期望的低温成膜中难以降低膜中的应力。
因此,在本实施方式中,通过步骤S3的氢自由基吹扫工序来使ALD-SiN膜的膜中的应力降低。
参照图8来说明此时的原理。
在以往的ALD-SiN膜的成膜中,如图8的(a)所示,在供给了DCS气体时,DCS中含有的Cl、H等杂质、过量的Si簇状地物理吸附在进行了化学吸附的Si上,在该状态下供给NH3气体。因此,所形成的SiN含有Cl、H等杂质、过量的Si等,还包含气孔,无法充分地形成Si-N键合。而且,明确了这种情况是膜的拉伸应力变大的原因。
因此,在本实施方式中,如图8的(b)所示,通过进行氢自由基吹扫来将作为杂质的Cl、H以及过量的Si作为HCl、SiH4等去除。由此,成为大致吸附了单原子层Si的状态,通过在该状态下供给NH3气体,杂质、气孔变少,成为充分形成有Si-N键合的状态,能够减小膜的拉伸应力。
根据通过氢自由基吹扫来充分发挥应力降低效果的观点,优选为使晶舟5上搭载的晶圆与晶圆之间的间距拓宽。如图9的(a)所示,当晶圆间的间距狭窄时,氢自由基容易失活,有可能无法到达晶圆W中心。另一方面,如图9的(b)所示,在晶圆间的间距宽的情况下,氢自由基不会失活而容易到达晶圆W的中心,氢自由基充分地作用于晶圆W。
根据这一点,优选为晶圆间的间距比以往的8mm间距宽,更优选为16mm间距以上。过分拓宽间距则一次的处理片数也降低,效果也饱和,因此作为4倍间距的32mm间距最理想。
优选为氢自由基吹扫工序时的H2气体的比率高,优选为50%以上。H2气体也可以是100%。与H2气体一起使用的气体优选是非活性气体。另外,高频功率优选为50W~300W,更优选为100W以上,更优选为200W。并且,优选的是,H2气体流量:500sccm~2000sccm,时间:10sec~60sec。
如上所述,能够根据晶圆W的间距和氢自由基吹扫工序的条件来控制ALD-SiN膜的应力,能够通过适当地设定这些条件来获得期望的低应力的ALD-SiN膜。
<实验例>
接着,对本发明的实验例进行说明。
在此,利用图1所示的装置将DCS气体用作含Cl的Si化合物气体,将NH3气体用作氮化气体,设为温度:550℃、压力:400Pa,改变晶圆的间距和氢自由基吹扫条件,通过重复进行上述步骤S1~S5来进行SiN膜的成膜,对得到的SiN膜的应力进行了测定。
晶圆间的间距设为标准的8mm的2倍间距即16mm,标准的8mm的4倍间距即32mm,将氢自由基吹扫的基本条件设为H2气体比率:50%(H2气体:1000sccm、N2气体:1000sccm)、高频功率:100W,使氢自由基吹扫的时间变化。
在图10中表示其结果。如图10所示,在晶圆间的间距为8mm和16mm时不进行氢自由基吹扫的情况下,SiN膜的拉伸应力为1200MPa以上。
在8mm间距的情况下,即使进行20sec氢自由基吹扫,拉伸应力也几乎不会降低1000MPa以上。在16mm间距的情况下,氢自由基吹扫20sec后拉伸应力降低至800MPa左右,在氢自由基吹扫60sec后拉伸应力降低至600MPa。在32mm间距的情况下,在氢自由基吹扫20sec后拉伸应力为700MPa以下,在氢自由基吹扫30sec后拉伸应力为600MPa,在氢自由基吹扫60sec后拉伸应力为500MPa,获得了某种程度的应力的降低效果。
在此,为了进一步获得应力降低效果,在32mm间距时,将氢自由基吹扫条件变为以下条件:H2气体比率:80%(H2气体:1000sccm、N2气体:25011sccm),高频功率:200W,并进行了60sec的氢自由基吹扫。其结果也一并记载于图10,但确认了通过像这样使H2气体比率和高频功率增加会变为200MPa以下的低拉伸应力。
<其它应用>
以上,对本发明的实施方式进行了说明,但本发明并不限定于上述实施方式,能够在不脱离其宗旨的范围内进行各种变形。
例如,在上述实施方式中,示出了利用立式的批量式装置实施了本发明的成膜方法的例子,但并不限于此,也能够利用卧式的批量式装置来实施本发明的成膜方法。
另外,在上述实施方式中示出了以下例子:通过对一对等离子体电极施加高频电力来生成等离子体,利用该等离子体生成氢自由基,但生成氢自由基的方法并不限于此,也可以利用其它导联键合等离子体、微波等离子体等其它等离子体,另外,也能够利用使氢气接触加热灯丝的处理等方法。

Claims (13)

1.一种氮化硅膜的成膜方法,在处理容器内配置多个被处理基板,针对这些多个被处理基板重复进行多次如下循环来针对多个被处理基板统一形成规定膜厚的氮化硅膜,所述循环包括:第一吹扫步骤,将所述处理容器内加热至规定温度并且将所述处理容器内设为规定的减压状态,利用非活性气体对所述处理容器内进行吹扫;成膜原料气体吸附步骤,使包括含氯的硅化合物的成膜原料气体供给到所述处理容器内并吸附于被处理基板;第二吹扫步骤,利用非活性气体对处理容器内进行吹扫;以及氮化步骤,向所述处理容器内供给氮化气体来使构成所述氮化硅膜的元素氮化,该氮化硅膜的成膜方法的特征在于,
在各循环中,在所述成膜原料气体吸附步骤与所述氮化步骤之间实施在所述处理容器内生成氢自由基来进行氢自由基吹扫的氢自由基吹扫步骤,来促进所形成的氮化硅膜的Si-N键合,从而降低所形成的氮化硅膜的拉伸应力。
2.根据权利要求1所述的氮化硅膜的成膜方法,其特征在于,
邻接的被处理基板之间的间距为16mm以上。
3.根据权利要求2所述的氮化硅膜的成膜方法,其特征在于,
邻接的被处理基板之间的间距为32mm。
4.根据权利要求1至3中的任一项所述的氮化硅膜的成膜方法,其特征在于,
在所述氮化步骤中,利用等离子体生成所述氮化气体的活性种,利用该活性种进行氮化。
5.根据权利要求1至4中的任一项所述的氮化硅膜的成膜方法,其特征在于,
在所述成膜原料气体吸附步骤与所述第二吹扫步骤之间实施所述氢自由基吹扫步骤。
6.根据权利要求1至5中的任一项所述的氮化硅膜的成膜方法,其特征在于,
将所供给的气体中的H2气体的比率设为50%以上来进行所述氢自由基吹扫步骤。
7.根据权利要求1至6中的任一项所述的氮化硅膜的成膜方法,其特征在于,
在所述氢自由基吹扫步骤中,通过对氢气进行等离子体化来生成所述氢自由基。
8.根据权利要求7所述的氮化硅膜的成膜方法,其特征在于,
在所述氢自由基吹扫步骤中,对所述氢气进行等离子体化时的高频功率为100W以上。
9.根据权利要求1至8中的任一项所述的氮化硅膜的成膜方法,其特征在于,
所述氢自由基吹扫步骤的时间为10sec~60sec。
10.根据权利要求1至9中的任一项所述的氮化硅膜的成膜方法,其特征在于,
所述含氯的硅化合物是从包括二氯硅烷、单氯硅烷、三氯硅烷、四氯化硅以及六氯乙硅烷的群中选择出的至少一种化合物。
11.根据权利要求1至10中的任一项所述的氮化硅膜的成膜方法,其特征在于,
所述氮化气体是从包括NH3气体和N2气体的群中选择出的至少一种气体。
12.一种氮化硅膜的成膜装置,针对多个被处理基板统一形成规定的膜厚的氮化硅膜,其特征在于,具有:
处理容器,其收容要被形成所述氮化硅膜的多个被处理基板;
气体供给机构,其向所述处理容器内供给非活性气体、硅成膜原料气体、氮化气体以及氢气;
加热装置,其对所述处理容器内收容的多个被处理基板进行加热;
氢自由基生成机构,其生成氢自由基;
排气装置,其对所述处理容器内进行排气;以及
控制部,其进行控制,以重复进行多次如下循环来针对多个被处理基板统一形成规定膜厚的氮化硅膜,所述循环包括:第一吹扫步骤,将所述处理容器内加热至规定温度并且将所述处理容器内设为规定的减压状态,利用非活性气体对所述处理容器内进行吹扫;成膜原料气体吸附步骤,使包括含氯的硅化合物的成膜原料气体供给到所述处理容器内并吸附于被处理基板;第二吹扫步骤,利用非活性气体对处理容器内进行吹扫;氮化步骤,向所述处理容器内供给氮化气体来使构成所述氮化硅膜的元素氮化,其中,在各循环中,在所述成膜原料气体吸附步骤与所述氮化步骤之间实施利用所述氢自由基生成机构在所述处理容器内生成氢自由基来进行氢自由基吹扫的氢自由基吹扫步骤,由此促进所形成的氮化硅膜的Si-N键合,从而降低所形成的氮化硅膜的拉伸应力。
13.一种存储介质,存储有用于在计算机上运行来控制氮化硅膜的成膜装置的程序,该存储介质的特征在于,
在所述程序被执行时,使计算机控制所述氮化硅膜的成膜装置,以进行根据权利要求1至11中的任一项所述的氮化硅膜的成膜方法。
CN201810507177.9A 2017-05-24 2018-05-24 氮化硅膜的成膜方法、成膜装置以及存储介质 Active CN108930026B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-103006 2017-05-24
JP2017103006A JP6807278B2 (ja) 2017-05-24 2017-05-24 シリコン窒化膜の成膜方法および成膜装置

Publications (2)

Publication Number Publication Date
CN108930026A true CN108930026A (zh) 2018-12-04
CN108930026B CN108930026B (zh) 2021-07-09

Family

ID=64401471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810507177.9A Active CN108930026B (zh) 2017-05-24 2018-05-24 氮化硅膜的成膜方法、成膜装置以及存储介质

Country Status (5)

Country Link
US (1) US10388511B2 (zh)
JP (1) JP6807278B2 (zh)
KR (1) KR20180128835A (zh)
CN (1) CN108930026B (zh)
TW (1) TWI721271B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424258A (zh) * 2019-01-09 2020-07-17 东京毅力科创株式会社 氮化膜的成膜方法及氮化膜的成膜装置
CN111725050A (zh) * 2019-03-22 2020-09-29 东京毅力科创株式会社 处理装置和处理方法
CN114072540A (zh) * 2019-09-20 2022-02-18 株式会社国际电气 半导体器件的制造方法、衬底处理装置及程序

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6653308B2 (ja) 2017-11-15 2020-02-26 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7126468B2 (ja) 2019-03-20 2022-08-26 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7209568B2 (ja) 2019-03-27 2023-01-20 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP2021150382A (ja) * 2020-03-17 2021-09-27 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP7455013B2 (ja) 2020-07-10 2024-03-25 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US11646195B2 (en) * 2020-10-22 2023-05-09 Nanya Technology Corporation Method for fabricating semiconductor device having etch resistive nitride layer
TWI806261B (zh) * 2020-12-24 2023-06-21 日商國際電氣股份有限公司 基板處理方法、半導體裝置之製造方法、基板處理裝置及程式

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732288A (zh) * 2002-12-20 2006-02-08 应用材料有限公司 形成高质量的低温氮化硅层的方法和设备
CN1841676A (zh) * 2005-03-28 2006-10-04 东京毅力科创株式会社 使用原子层沉积法的氮化硅膜的形成方法
CN1881543A (zh) * 2005-06-14 2006-12-20 东京毅力科创株式会社 硅氧化膜的形成方法、硅氧化膜的形成装置和程序
CN101165205A (zh) * 2006-10-18 2008-04-23 甘国工 在晶体硅太阳能电池片上镀抗反射钝化膜的方法及设备
CN104046955A (zh) * 2013-03-14 2014-09-17 Asmip控股有限公司 用于在低温下沉积SiN的Si前体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281853A (ja) 2003-03-18 2004-10-07 Hitachi Kokusai Electric Inc 基板処理装置
JP5054890B2 (ja) * 2004-12-15 2012-10-24 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6022166B2 (ja) * 2011-02-28 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP5792550B2 (ja) * 2011-08-02 2015-10-14 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP5842750B2 (ja) 2012-06-29 2016-01-13 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP2014082322A (ja) * 2012-10-16 2014-05-08 Tokyo Electron Ltd シリコン窒化物膜の成膜方法および成膜装置
US20140273530A1 (en) * 2013-03-15 2014-09-18 Victor Nguyen Post-Deposition Treatment Methods For Silicon Nitride
JP2015185837A (ja) * 2014-03-26 2015-10-22 東京エレクトロン株式会社 成膜装置
KR102146542B1 (ko) * 2015-09-30 2020-08-20 주식회사 원익아이피에스 질화막의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732288A (zh) * 2002-12-20 2006-02-08 应用材料有限公司 形成高质量的低温氮化硅层的方法和设备
CN1841676A (zh) * 2005-03-28 2006-10-04 东京毅力科创株式会社 使用原子层沉积法的氮化硅膜的形成方法
CN1881543A (zh) * 2005-06-14 2006-12-20 东京毅力科创株式会社 硅氧化膜的形成方法、硅氧化膜的形成装置和程序
CN101165205A (zh) * 2006-10-18 2008-04-23 甘国工 在晶体硅太阳能电池片上镀抗反射钝化膜的方法及设备
CN104046955A (zh) * 2013-03-14 2014-09-17 Asmip控股有限公司 用于在低温下沉积SiN的Si前体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111424258A (zh) * 2019-01-09 2020-07-17 东京毅力科创株式会社 氮化膜的成膜方法及氮化膜的成膜装置
CN111424258B (zh) * 2019-01-09 2024-01-23 东京毅力科创株式会社 氮化膜的成膜方法及氮化膜的成膜装置
CN111725050A (zh) * 2019-03-22 2020-09-29 东京毅力科创株式会社 处理装置和处理方法
CN111725050B (zh) * 2019-03-22 2024-05-07 东京毅力科创株式会社 处理装置和处理方法
CN114072540A (zh) * 2019-09-20 2022-02-18 株式会社国际电气 半导体器件的制造方法、衬底处理装置及程序

Also Published As

Publication number Publication date
KR20180128835A (ko) 2018-12-04
TWI721271B (zh) 2021-03-11
TW201900919A (zh) 2019-01-01
US10388511B2 (en) 2019-08-20
US20180342385A1 (en) 2018-11-29
JP2018198288A (ja) 2018-12-13
CN108930026B (zh) 2021-07-09
JP6807278B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
CN108930026A (zh) 氮化硅膜的成膜方法、成膜装置以及存储介质
CN101962756B (zh) 半导体处理用的成批化学气相沉积方法及装置
CN1891859B (zh) 氮氧化硅膜的形成方法
US7507676B2 (en) Film formation method and apparatus for semiconductor process
US8563096B2 (en) Vertical film formation apparatus and method for using same
US20090233454A1 (en) Film formation apparatus for semiconductor process and method for using same
CN110890265B (zh) 基板处理装置、基板处理装置的电极以及半导体装置的制造方法
JP2011014872A (ja) アモルファスカーボン膜の形成方法および形成装置
CN101192534A (zh) 半导体处理用的成膜装置及其使用方法
KR101858345B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP6656103B2 (ja) 窒化膜の成膜方法および成膜装置
JP2012193445A (ja) 窒化チタン膜の形成方法、窒化チタン膜の形成装置及びプログラム
US20210198787A1 (en) Film forming method and system
JPWO2018055700A1 (ja) 基板処理装置、半導体装置の製造方法および電極固定ユニット
JP5247781B2 (ja) シリコン窒化膜の形成方法、シリコン窒化膜の形成装置及びプログラム
JP6987021B2 (ja) プラズマ処理装置及びプラズマ処理方法
WO2021044504A1 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法およびプログラム
JP2019102670A (ja) シリコン窒化膜の成膜方法及び成膜装置
JP7085929B2 (ja) 成膜方法
CN111837223A (zh) 基板处理装置、半导体装置的制造方法和程序
WO2013105389A1 (ja) TiSiN膜の成膜方法および記憶媒体
JP5571225B2 (ja) アモルファスカーボン膜の形成方法および形成装置
JP7431210B2 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法、プラズマ生成方法及びプログラム
WO2021181450A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
CN115956284A (zh) 基板处理装置、半导体装置的制造方法以及程序

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant