CN108910960A - 一种β-FeOOH纳米胶囊的制备方法 - Google Patents
一种β-FeOOH纳米胶囊的制备方法 Download PDFInfo
- Publication number
- CN108910960A CN108910960A CN201810974410.4A CN201810974410A CN108910960A CN 108910960 A CN108910960 A CN 108910960A CN 201810974410 A CN201810974410 A CN 201810974410A CN 108910960 A CN108910960 A CN 108910960A
- Authority
- CN
- China
- Prior art keywords
- feooh
- preparation
- nanometer rods
- capsule
- nano capsule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002088 nanocapsule Substances 0.000 title claims abstract description 27
- 229910002588 FeOOH Inorganic materials 0.000 title claims abstract description 9
- 238000002360 preparation method Methods 0.000 title claims description 19
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 229910003153 β-FeOOH Inorganic materials 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 17
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 7
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000002775 capsule Substances 0.000 claims description 5
- 230000007062 hydrolysis Effects 0.000 claims description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims description 5
- 235000007164 Oryza sativa Nutrition 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 235000009566 rice Nutrition 0.000 claims description 3
- 238000010792 warming Methods 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 2
- 230000035800 maturation Effects 0.000 claims description 2
- 241000209094 Oryza Species 0.000 claims 2
- 239000002073 nanorod Substances 0.000 abstract description 4
- 239000012429 reaction media Substances 0.000 abstract description 2
- 235000011187 glycerol Nutrition 0.000 abstract 2
- 230000032683 aging Effects 0.000 abstract 1
- 230000003301 hydrolyzing effect Effects 0.000 abstract 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 abstract 1
- 239000002243 precursor Substances 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910003145 α-Fe2O3 Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Cosmetics (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
- Compounds Of Iron (AREA)
Abstract
一种β‑FeOOH纳米胶囊的制备方法,涉及纳米胶囊制备技术领域。首先利用氯化铁水溶液水解生成β‑FeOOH纳米棒,接着利用β‑FeOOH纳米棒、甘油和水升温醇热熟化制备β‑FeOOH纳米胶囊。本发明以绿色、环保的甘油为反应介质,以β‑FeOOH纳米棒为前驱体,采用醇热熟化处理技术成功得到了β‑FeOOH纳米胶囊。此方法具有操作简单、成本低廉、获得产物可见光吸收性能优异等特点,为制备胶囊型纳米颗粒提供了一种简易和环保的方法。
Description
技术领域
本发明涉及纳米胶囊制备技术领域,具体是涉及一种β-FeOOH纳米胶囊的制备方法。
背景技术
羟基氧化铁是(FeOOH)通常存在于河床和矿山等地方,是自然界中一种重要的多层状结构化合物,可用作催化剂、颜料、吸附剂和磁性材料等。FeOOH常见有α-,β-,γ-和δ-FeOOH四种同素异构体。研究表明,当条件符合时,这几种羟基氧化铁彼此之间可以发生相互转变。当前,有关这四种类型的各种形态的FeOOH纳米材料的制备及其应用研究很多。但未见有关FeOOH纳米胶囊的制备和应用报告。
胶囊一般是指具有空腔结构的单元体。纳米颗粒若具有空腔结构,也可称谓纳米胶囊。例如,以β-FeOOH纳米棒为模板,逐次采用包硅、加热、还原和去除模板等工序后,便可以获得α-Fe2O3和Fe3O4纳米胶囊。但是,这类制备氧化铁纳米胶囊的工艺比较复杂,制备成本高。
发明内容
针对现有技术中所存在的不足之处,本发明提供了一种β-FeOOH纳米胶囊的制备方法。
为了实现上述目的,本发明所采用的技术方案为:一种β-FeOOH纳米胶囊的制备方法,首先利用氯化铁水溶液水解生成β-FeOOH纳米棒,接着利用β-FeOOH纳米棒、甘油和水升温醇热熟化制备β-FeOOH纳米胶囊。
作为本发明制备方法的优选技术方案,利用氯化铁水溶液水解生成β-FeOOH纳米棒的方法为:称取0.27~5.4g的FeCl3.6H2O溶于100mL的去离子水中配成氯化铁水溶液,缓慢加热到90~95℃,通过水解反应48~144h后得到β-FeOOH纳米棒。
作为本发明制备方法的进一步优选技术方案,利用β-FeOOH纳米棒制备β-FeOOH纳米胶囊的方法为:将0.5~1.5g的β-FeOOH纳米棒转入反应釜中,加入20mL的甘油和1~5mL的水,升温至180℃反应6~48h即可获得β-FeOOH纳米胶囊。
本发明以绿色、环保的甘油为反应介质,以β-FeOOH纳米棒为前驱体,采用醇热熟化处理技术成功得到了β-FeOOH纳米胶囊。此方法具有操作简单、成本低廉、获得产物可见光吸收性能优异等特点,为制备胶囊型纳米颗粒提供了一种简易和环保的方法。
和现有技术相比,本发明还具有以下优点:
1)、实现了β-FeOOH内部结构调控转变,为多孔结构的纳米材料的制备提供了一种新的方法。
2)、本发明方法具有实验操作简单、成本低廉,获得的产物量大的特点。
附图说明
图1为实施例1制备产物的形态和结构;
图2为实施例2制备产物的形态和结构;
图3为实施例1和2制备产物的可见-紫外吸收曲线。
具体实施方式
以下结合实施例和附图对本发明的β-FeOOH纳米胶囊的制备方法作出进一步的详述。本发明方法所得沉淀物的结构、形态性能分别采用X射线粉末衍射(XRD,D3500)和场发射扫描电子显微镜(FEI,Sirion 200)来表征和分析。
实施例1:纺锤形β-FeOOH纳米棒的制备及表征
称取0.5g的FeCl3.6H2O溶于100mL的去离子水中配成氯化铁水溶液,缓慢加热到95℃,通过水解反应72h后得到β-FeOOH纳米棒。
利用SEM和TEM分别对产物的形态和结构进行研究可知,获得的产物形貌为纺锤形(见图1a和图1c),结合产物XRD分析可知(见图1b),产物为β-FeOOH(XRD标准谱图:PDF#34-1266),产物的可见-紫外吸收最大波长约为362nm(见图3虚线)。
β-FeOOH的形成可以看成经过以下两个过程:首先,Fe3+发生水解反应生成了亚稳态Fe(OH)3胶体;接着,Fe(OH)3失水形成了β-FeOOH,上述两过程可以用式子(1)和(2)分别表示:
通常,纺锤形β-FeOOH纳米棒的形成是在酸性且含有氯离子的环境中进行的。
实施例2:β-FeOOH纳米胶囊的制备及表征
将1g的β-FeOOH纳米棒转入反应釜中,加入20mL的甘油和2mL的水,升温至180℃反应12h即可获得β-FeOOH纳米胶囊。
首先,利用SEM和TEM分别对获得产物的形态和结构进行分析,可以看出,β-FeOOH纳米棒经过醇热处理后,其外形基本保持不变,仍然是纺锤形状(见图2a),而TEM观察则表明,实心的β-FeOOH纳米棒已转变成为空心的纳米胶囊(见图2c)。XRD分析结果进一步证实(见图2b),β-FeOOH纳米棒向β-FeOOH纳米胶囊转变时,发生了同素异构转变现象。对比图1d和图2c可知,β-FeOOH纳米棒(10.53×10.53×3.03)在转变为β-FeOOH纳米胶囊(10.48×10.48×3.023)后,其晶胞尺寸将有所变小,这说明了纳米棒转变为纳米胶囊后,纳米棒体内发生了收缩效应,即宽松的层状β-FeOOH纳米棒在甘油中可能发生了断层、层重组与合并等导致空化的行为,从而形成了胶囊结构。
据文献报道,纺锤形β-FeOOH纳米棒表面包覆一层SiO2后,通过加热处理(~600℃)后,也将从体内发生空化效应,从而形成了α-Fe2O3纳米胶囊。而本发明发现β-FeOOH纳米棒在180℃的甘油中发生空化效应为首次发现。形成的β-FeOOH纳米胶囊的可见-紫外最大吸收波长约为375nm(见图3,实线),和β-FeOOH纳米棒的可见-紫外最大吸收波长362nm相比,向长波方向移动了约10nm左右,即发生了蓝移现象。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
Claims (3)
1.一种β-FeOOH纳米胶囊的制备方法,其特征在于,首先利用氯化铁水溶液水解生成β-FeOOH纳米棒,接着利用β-FeOOH纳米棒、甘油和水升温醇热熟化制备β-FeOOH纳米胶囊。
2.如权利要求1所述的制备方法,其特征在于,利用氯化铁水溶液水解生成β-FeOOH纳米棒的方法为:称取0.27~5.4g的FeCl3.6H2O溶于100mL的去离子水中配成氯化铁水溶液,缓慢加热到90~95℃,通过水解反应48~144h后得到β-FeOOH纳米棒。
3.如权利要求1或2所述的制备方法,其特征在于,利用β-FeOOH纳米棒制备β-FeOOH纳米胶囊的方法为:将0.5~1.5g的β-FeOOH纳米棒转入反应釜中,加入20mL的甘油和1~5mL的水,升温至180℃反应6~48h即可获得β-FeOOH纳米胶囊。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810974410.4A CN108910960B (zh) | 2018-08-24 | 2018-08-24 | 一种β-FeOOH纳米胶囊的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810974410.4A CN108910960B (zh) | 2018-08-24 | 2018-08-24 | 一种β-FeOOH纳米胶囊的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108910960A true CN108910960A (zh) | 2018-11-30 |
CN108910960B CN108910960B (zh) | 2020-11-13 |
Family
ID=64405759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810974410.4A Active CN108910960B (zh) | 2018-08-24 | 2018-08-24 | 一种β-FeOOH纳米胶囊的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108910960B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109665564A (zh) * | 2019-01-22 | 2019-04-23 | 丹阳市人民医院 | 一种β-FeOOH微米/亚微米球的制备方法 |
CN110451576A (zh) * | 2019-07-31 | 2019-11-15 | 北京航天国环技术有限公司 | 一种废盐酸处理方法及系统 |
CN111939911A (zh) * | 2020-09-17 | 2020-11-17 | 中国石油大学(华东) | β-FeOOH/SiO2复合催化剂的制备方法及应用 |
CN112320852A (zh) * | 2020-11-23 | 2021-02-05 | 湖北大学 | 一种纺锤形纳米羟基氧化铁的制备方法 |
WO2021196430A1 (zh) * | 2020-03-31 | 2021-10-07 | 山东海容电源材料股份有限公司 | 锂离子电池负极材料及其制备方法 |
CN114436339A (zh) * | 2020-11-03 | 2022-05-06 | 中国科学院大连化学物理研究所 | 单分散FeOOH胶体颗粒及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423256A (zh) * | 2008-11-04 | 2009-05-06 | 扬州大学 | 一种β-FeOOH纳米颗粒悬浮液的制备方法 |
CN104495946A (zh) * | 2014-12-11 | 2015-04-08 | 上海烟草集团有限责任公司 | 一种控制不同晶相FeOOH纳米材料的制备及应用 |
CN107057121A (zh) * | 2016-12-23 | 2017-08-18 | 厦门克立橡塑有限公司 | 一种含磷氮聚合物包覆β‑FeOOH纳米粒子及其制备方法和应用 |
CN107268022A (zh) * | 2017-06-12 | 2017-10-20 | 太原理工大学 | α‑Fe2O3多孔纳米棒阵列光阳极材料的制备方法及应用 |
-
2018
- 2018-08-24 CN CN201810974410.4A patent/CN108910960B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423256A (zh) * | 2008-11-04 | 2009-05-06 | 扬州大学 | 一种β-FeOOH纳米颗粒悬浮液的制备方法 |
CN104495946A (zh) * | 2014-12-11 | 2015-04-08 | 上海烟草集团有限责任公司 | 一种控制不同晶相FeOOH纳米材料的制备及应用 |
CN107057121A (zh) * | 2016-12-23 | 2017-08-18 | 厦门克立橡塑有限公司 | 一种含磷氮聚合物包覆β‑FeOOH纳米粒子及其制备方法和应用 |
CN107268022A (zh) * | 2017-06-12 | 2017-10-20 | 太原理工大学 | α‑Fe2O3多孔纳米棒阵列光阳极材料的制备方法及应用 |
Non-Patent Citations (1)
Title |
---|
FENFEN XU等: "A chemical composition evolution for the shape-controlled synthesis and energy storage applicability of Fe3O4–C nanostructures", 《CRYSTENGCOMM》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109665564A (zh) * | 2019-01-22 | 2019-04-23 | 丹阳市人民医院 | 一种β-FeOOH微米/亚微米球的制备方法 |
CN110451576A (zh) * | 2019-07-31 | 2019-11-15 | 北京航天国环技术有限公司 | 一种废盐酸处理方法及系统 |
WO2021196430A1 (zh) * | 2020-03-31 | 2021-10-07 | 山东海容电源材料股份有限公司 | 锂离子电池负极材料及其制备方法 |
CN111939911A (zh) * | 2020-09-17 | 2020-11-17 | 中国石油大学(华东) | β-FeOOH/SiO2复合催化剂的制备方法及应用 |
CN114436339A (zh) * | 2020-11-03 | 2022-05-06 | 中国科学院大连化学物理研究所 | 单分散FeOOH胶体颗粒及其制备方法 |
CN112320852A (zh) * | 2020-11-23 | 2021-02-05 | 湖北大学 | 一种纺锤形纳米羟基氧化铁的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108910960B (zh) | 2020-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108910960A (zh) | 一种β-FeOOH纳米胶囊的制备方法 | |
Zhang et al. | A facile self-template strategy for synthesizing 1D porous Ni@ C nanorods towards efficient microwave absorption | |
Ma et al. | Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@ C microspheres | |
Lv et al. | Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures | |
Zhou et al. | Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber | |
Shaheen et al. | Organic template-assisted green synthesis of CoMoO 4 nanomaterials for the investigation of energy storage properties | |
CN109762519B (zh) | 高熵合金/氧化物复合纳米吸波材料的制备方法 | |
CN101717122B (zh) | 一种微波法制备四氧化三铁纳米片的方法 | |
Lu et al. | Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption | |
Zhang et al. | Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption | |
Wang et al. | Synthesis and growth mechanism of 3D α-MnO 2 clusters and their application in polymer composites with enhanced microwave absorption properties | |
Tong et al. | Generalized green synthesis and formation mechanism of sponge-like ferrite micro-polyhedra with tunable structure and composition | |
CN104479626B (zh) | 一种石墨化多壁碳纳米管/纳米粒子复合吸波剂及其制备方法 | |
CN103172124B (zh) | 一种固相化学反应制备氧化铁三维纳米结构的方法 | |
CN103341633A (zh) | 一种导电油墨纳米铜的制备方法 | |
CN105741996B (zh) | 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法 | |
CN107827164A (zh) | 一种磁场下高产热效率的四氧化三铁纳米颗粒的制备方法 | |
Kadkhodayan et al. | Enhanced microwave absorption property of MnFe9n+ 3O15n+ 4 (0≤ n≤ 1)(M= Ba, Sr)/CaCu3Ti4O12/phosphorus-doped g-C3N4 nanocomposite: preparation and optimization | |
Zhu et al. | MOF-derived multicore-shell Fe3O4@ Fe@ C composite: an ultrastrong electromagnetic wave absorber | |
Li et al. | Effect of conductive PANI vs. insulative PS shell coated Ni nanochains on electromagnetic wave absorption | |
CN113597247B (zh) | 一种磁性金属纳米颗粒修饰的碳空心球吸波材料及其制备方法 | |
Dong et al. | Electromagnetic attenuation distribution in a three-dimensional amorphous carbon matrix with highly dispersed Fe/Fe3C@ graphite-C nanoparticles | |
Li et al. | Heterogeneous interface engineering of bionic corn-structured ternary nanocomposites for excellent low-frequency microwave absorption | |
Wang et al. | Hollow Fe3O4/Fe@ C nanocubes for broadband microwave absorption spanning low-and high-frequency bands | |
CN105252017B (zh) | 一种二维片状组成单元自组装成三维树枝状磁性金属钴纳米材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |