WO2021196430A1 - 锂离子电池负极材料及其制备方法 - Google Patents

锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
WO2021196430A1
WO2021196430A1 PCT/CN2020/098714 CN2020098714W WO2021196430A1 WO 2021196430 A1 WO2021196430 A1 WO 2021196430A1 CN 2020098714 W CN2020098714 W CN 2020098714W WO 2021196430 A1 WO2021196430 A1 WO 2021196430A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
ion battery
feooh
acid
Prior art date
Application number
PCT/CN2020/098714
Other languages
English (en)
French (fr)
Inventor
林红
赵卫民
任海
刘永
孙建勇
程云
Original Assignee
山东海容电源材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海容电源材料股份有限公司 filed Critical 山东海容电源材料股份有限公司
Publication of WO2021196430A1 publication Critical patent/WO2021196430A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion battery materials, in particular to a lithium ion battery negative electrode material and a preparation method thereof.
  • Lithium-ion batteries have the advantages of high energy density and high working voltage, and have been widely used in portable electronic devices and electric vehicles. Therefore, the development of pollution-free, high specific capacity and long cycle life batteries is the main task of researchers.
  • Commercial graphite, a traditional negative electrode material has a lower theoretical specific capacity of 372mAh/g, which cannot meet the development needs of a new generation of lithium-ion batteries.
  • the solid electrolyte interface membrane (SEI) formed on the negative electrode material can effectively prevent the organic solvent in the electrolyte from decomposing and form Li + channels during charge and discharge cycles.
  • the negative electrode material will expand and contract repeatedly during the charging and discharging process, which may cause the SEI film to crack or gradually dissolve, and accompanied by a large number of by-products, increase the internal pressure of the lithium-ion battery and reduce the cycle performance of the lithium-ion battery.
  • micro-nano materials In order to improve the electrochemical performance of electrode materials, we can try to improve the design of micro-nano materials with special structures with different dimensions.
  • This kind of micro-nano material has a variety of unique structures, which can promote the rapid diffusion of lithium ions, buffer the volume changes in the process of lithium ion insertion, thereby improve the cycle stability of the material, and solve the problem of low specific capacity.
  • micro-nano anode material with high specific capacity and good cycle stability, which can form a stable SEI film on the surface of the anode active material, which is conducive to the progress of electrochemical reactions.
  • the present invention provides a lithium ion battery negative electrode material with high specific capacity and good cycle stability and a preparation method thereof.
  • a negative electrode material for lithium ion batteries which is characterized in that: ⁇ -FeOOH porous nanotubes and frame material carbon black are dispersed in N-methylpyrrolidone, dried and rolled with polyvinylidene fluoride as a binder; wherein, ⁇ -FeOOH porous nanotubes are formed by respectively etching phosphotungstic acid and phosphomolybdic acid.
  • the surface of the ⁇ -FeOOH porous nanotube is hollow, and the length of the ⁇ -FeOOH porous nanotube is 200-400 nm and the width is 30-50 nm.
  • the present invention also provides a method for preparing a negative electrode material for a lithium ion battery, which includes the following steps:
  • step (1) the reaction temperature is 80°C, the reaction time is 1 h, and the heating rate is 2°C/min.
  • the preparation process of phosphotungstic acid is to dissolve 100g of sodium tungstate dihydrate and 16g of disodium hydrogen phosphate in 150mL of boiling water and stir, add 80mL of concentrated hydrochloric acid dropwise to the boiling solution, and cool the solution after addition.
  • the phosphotungstic acid with impurities is obtained by filtration, and purified by adding water and ether. After shaking, the mixture is divided into three liquid layers.
  • the bottom layer of phosphotungstic acid ether complex is separated and washed three times repeatedly to obtain the phosphotungstic acid ether complex Heating in the air, knowing that the pungent odor is no longer volatilized, and white solid phosphotungstic acid is obtained; among them, the boiling water temperature is 110-120°C, and the dropwise addition of concentrated sulfuric acid during the reaction is to prevent the reaction process from being too violent and generating by-products. Much blue.
  • the preparation process of phosphomolybdic acid is to dissolve 20g molybdenum trioxide in 200g water and stir evenly, add 1.25mL orthophosphoric acid with a mass concentration of 85%, keep the reaction liquid boiling steadily during the reaction, and vacuum filter to remove impurities after the reaction. % Hydrogen peroxide was added to the filtrate, and then concentrated by evaporation. Finally, the solution was slowly cooled to crystallize and centrifuged to obtain yellow solid phosphomolybdic acid; wherein the reaction temperature was 110-120°C, the reaction time was 3h, and the pH was controlled to be 1.0.
  • step (2) ⁇ -FeOOH porous nanotubes and carbon black were mixed as dry powder at 20rad/min for 60min, then N-methylpyrrolidone and polyvinylidene fluoride were added, stirred at 20rad/min, and then at 2000rad/min. Disperse and mix for 60 min at min; then stir at 40 rad/min, and then disperse and mix at 4500 rad/min for 3 h.
  • the negative electrode material of the lithium ion battery of the present invention has a very high lithium storage capacity, and the porosity can provide a reserved space for volume expansion in the physical and chemical process.
  • the preparation method of the negative electrode material can be used as a reference for the preparation of other nano negative electrode materials.
  • Figure 1 is the infrared spectrum of phosphotungstic acid and phosphomolybdic acid of the present invention
  • FIG. 2 is a transmission electron microscope image of ⁇ -FeOOH porous nanotubes induced by phosphotungstic acid (a) and phosphomolybdic acid (b) according to the present invention
  • Figure 3 is an X-ray powder diffraction pattern of ⁇ -FeOOH porous nanotubes induced by phosphotungstic acid and phosphomolybdic acid of the present invention
  • Fig. 4 is a graph showing the rate performance of the ⁇ -FeOOH porous nanotube negative electrode material induced by phosphotungstic acid and phosphomolybdic acid of the present invention.
  • the inventors are using the acidity of different types of polyacid phosphotungstic acid and phosphomolybdic acid to adjust the pore size and surface area of the iron-based nanotubes. These pores can provide a reserved space for volume expansion during the lithiation process. Adding carbon black to the porous electrode as a structural support can further maintain the stability of the electrode.
  • the negative electrode material of the lithium ion battery of the present invention has a very high lithium storage capacity because in the process of discharging lithiation, the iron element is first reduced to two valence, and then the average valence state may be close to one valence, and finally completely converted into metallic iron. In addition, under low voltage, the electrolyte decomposes on the surface of the material to form a stable thin film, which is also one of the reasons for its high lithium storage capacity.
  • the present invention provides a ⁇ -FeOOH porous nanotube iron-based lithium-ion battery negative electrode material. Based on the structure of the lithium-ion battery negative electrode material, further research is made to obtain the preparation method of the lithium-ion battery negative electrode material of the present invention. Hereinafter, it will be described in further detail through examples.
  • the preparation method of the negative electrode material of the lithium ion battery of the present invention is as follows:
  • Figure 1 is the infrared characterization of the polyacid phosphotungstic acid and phosphomolybdic acid prepared by the present invention.
  • the composition of functional groups and chemical bonds is determined by measuring the absorption peak of the sample.
  • WO d -W stretching vibration peak of the standard sample of phosphotungstic acid, WO c -W stretching vibration peak, WO d stretching vibration and PO a stretching vibration peak corresponding to the obtained samples were 798cm -1, 890cm -1, 984cm -1 and 1080cm The absorption peak at -1.
  • the Mo-O c -Mo stretching vibration peak, Mo-O b -Mo stretching vibration peak, Mo-O d stretching vibration peak and P-Mo stretching vibration peak of the phosphomolybdic acid standard sample correspond to the obtained samples 781 cm -1 and 871 cm -respectively. 1.
  • the absorption peaks of the two samples correspond to the characteristic peaks of the standard sample respectively, indicating that the obtained sample has no other impurities.
  • Figure 2 is a TEM image of ⁇ -FeOOH porous nanotubes induced by phosphotungstic acid (a) and phosphomolybdic acid (b) prepared by the present invention.
  • the morphology of the sample is observed through the TEM image, and the reaction is further studied. mechanism. From Figure a, it can be clearly shown that the length of the ⁇ -FeOOH nanotubes induced by phosphotungstic acid is about 200-400nm and the width is about 30-50nm.
  • the surface of the nanotubes is etched by phosphotungstic acid to form abundant nano-holes. This provides reserved space for volume expansion during the lithiation process.
  • Figure 3 is the XRD pattern of ⁇ -FeOOH porous nanotubes induced by phosphotungstic acid and phosphomolybdic acid prepared in the present invention.
  • FIG 3 is the XRD pattern of ⁇ -FeOOH porous nanotubes induced by phosphotungstic acid and phosphomolybdic acid prepared in the present invention.
  • FIG. 4 is a graph showing the rate performance of the ⁇ -FeOOH porous nanotube negative electrode material induced by phosphotungstic acid and phosphomolybdic acid prepared in the present invention. Electrochemical test results show that compared with traditional anode materials, the rate performance of ⁇ -FeOOH porous nanotube anode materials is significantly improved.
  • the first discharge specific capacity of the ⁇ -FeOOH porous nanotube anode material induced by phosphotungstic acid at a rate of 1C/10C is about 1368Ah/g, and the specific capacity of the material is still maintained at about 860Ah/g after 10 cycles; 1C/10C
  • the first discharge specific capacity of the phosphomolybdic acid-induced ⁇ -FeOOH porous nanotube anode material is about 1347Ah/g, and the specific capacity of the material is still maintained at about 840Ah/g after 10 cycles.
  • the microscopic porous structure of the phosphotungstic acid-induced porous nanotubes is better than that of the phosphomolybdic acid-induced nanotubes, this provides more reserved space for volume expansion during the lithiation process, which is beneficial to the improvement of electrochemical performance.
  • the present invention uses the acidity of different types of polyacids to controllably adjust the pore size of the nanotubes, and the formed nanomaterials are porous and hollow, which provides a reserved space for volume expansion during the lithiation process.
  • ⁇ -FeOOH material as a negative electrode material can greatly increase the lithium storage capacity and form a stable SEI film, which is beneficial to the improvement of chemical reaction performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂离子电池材料技术领域,特别公开了一种锂离子电池负极材料及其制备方法。该锂离子电池负极材料,其特征在于:由β-FeOOH多孔纳米管和框架材料炭黑分散在N-甲基吡咯烷酮中,以聚偏氟乙烯为粘结剂干燥辊压而成;其中,β-FeOOH多孔纳米管由磷钨酸和磷钼酸分别刻蚀形成。本发明锂离子电池负极材料具有非常高的储锂容量,多孔可以为理化过程中体积膨胀提供预留的空间,该负极材料的制备方法对其他纳米负极材料的制备具有借鉴作用。

Description

锂离子电池负极材料及其制备方法 (一)技术领域
本发明涉及锂离子电池材料技术领域,特别涉及一种锂离子电池负极材料及其制备方法。
(二)背景技术
锂离子电池具有能量密度大、工作电压高等优点,在便携式电子设备和电动汽车中己经得到广泛应用。因此,开发无污染、高比容量和长循环寿命的电池是研究人员的主要任务。传统负极材料商业石墨具有较低的理论比容量372mAh/g,这无法满足新一代锂离子电池的发展需求。
此外,负极材料上形成的固体电解质界面膜(SEI)能够有效阻止电解液中的有机溶剂分解,并且在充放电循环中形成Li +通道。负极材料在充放电的过程中会发生反复的膨胀和收缩,导致SEI膜可能发生破裂或逐渐溶解,并伴随大量副产物生成,增加锂离子电池的内压,降低锂离子电池的循环性能。
为提高电极材料的电化学性能,可以尝试从设计具有不同维度的特殊结构的微纳化材料方面去改善。这种微纳化材料具有各种独特的结构,能够促使锂离子快速扩散、缓冲锂离子嵌入过程中的体积变化,进而提高材料的循环稳定性,解决比容量低的问题。
有鉴于此,确有必要提供一种高比容量、循环稳定性好的微纳化负极材料,该负极活性材料表面能够形成稳定的SEI膜,有利于电化学反应的进行。
(三)发明内容
本发明为了弥补现有技术的不足,提供了一种高比容量、循环稳定性好的锂离子电池负极材料及其制备方法。
本发明是通过如下技术方案实现的:
一种锂离子电池负极材料,其特征在于:由β-FeOOH多孔纳米管和框架材料炭黑分散在N-甲基吡咯烷酮中,以聚偏氟乙烯为粘结剂干燥辊压而成;其中,β-FeOOH多孔纳米管由磷钨酸和磷钼酸分别刻蚀形成。
进一步地,β-FeOOH多孔纳米管表面呈中空管状,β-FeOOH多孔纳米管的长度为200-400nm,宽度为30-50nm。
基于上述发明构思,本发明还提供了锂离子电池负极材料的制备方法,包括如下步骤:
(1)将磷钨酸和磷钼酸分别加入氯化铁水溶液中,通过水热法离心得到固体β-FeOOH多孔纳米管;
(2)将β-FeOOH多孔纳米管与炭黑混合,然后加入分散介质N-甲基吡咯烷酮和聚偏氟乙烯,搅拌混合均匀后涂布在铜箔两侧,干燥、辊压,得到产品。
本发明的更优技术方案为:
步骤(1)中,反应温度为80℃,反应时间为1h,升温速率为2℃/min。
将0.811g氯化铁溶解在12.5mL水中,并加入50μL盐酸,再加入21.5mg磷钨酸或14mg磷钼酸搅拌均匀,置于反应釜中加热,冷 却离心后,用超纯水和乙醇清洗干燥得到固体。
另外,磷钨酸的制备过程为,将100g二水合钨酸钠与16g磷酸氢二钠溶解在150mL沸水中搅拌,将80mL浓盐酸逐滴加入煮沸的溶液中,加完后对溶液进行冷却,过滤得到带有杂质的磷钨酸,加入水和乙醚提纯,经摇荡后混合物分成三个液层,分离最底层的磷钨酸乙醚复合物,反复洗涤三次,将得到的磷钨酸乙醚复合物在空气中加热,知道不在挥发刺鼻气味,得到白色固体磷钨酸;其中,沸水温度为110-120℃,反应过程中浓硫酸的逐滴加入是为了防止反应过程过于剧烈,生成副产物杂多蓝。
磷钼酸的制备过程为,将20g三氧化钼溶入200g水中搅拌均匀,加入1.25mL质量浓度85%的正磷酸,反应中保持反应液平稳沸腾,反应结束后真空抽滤除去杂质,将30%双氧水加入到滤液中,然后蒸发浓缩,最后将溶液缓慢冷却结晶,离心分离得到黄色固体磷钼酸;其中,反应温度为110-120℃,反应时间为3h,控制pH值为1.0。
步骤(2)中,β-FeOOH多孔纳米管与炭黑以干粉形式在20rad/min下混合60min,然后加入N-甲基吡咯烷酮和聚偏氟乙烯,在20rad/min下搅拌,后在2000rad/min下分散混合60min;再在40rad/min下搅拌,后在4500rad/min下分散混合3h。
本发明锂离子电池负极材料具有非常高的储锂容量,多孔可以为理化过程中体积膨胀提供预留的空间,该负极材料的制备方法对其他纳米负极材料的制备具有借鉴作用。
(四)附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明磷钨酸和磷钼酸的红外图谱;
图2为本发明磷钨酸(a)和磷钼酸(b)诱导的β-FeOOH多孔纳米管的透射电子显微镜图像;
图3为本发明磷钨酸和磷钼酸诱导的β-FeOOH多孔纳米管的X射线粉末衍射图谱;
图4为本发明磷钨酸和磷钼酸诱导的β-FeOOH多孔纳米管负极材料的倍率性能图。
(五)具体实施方式
为了更好地理解和实施,下面结合附图详细说明本发明。
本发明在研究锂离子负极材料时发现石墨类负极作为主要的负极材料,其应用已经非常广泛,但是容量已做到360mAh/g,这非常接近372mAh/g的理论克容量,难以提升其空间。因此,本发明人通过对β-FeOOH的研究发现其具有非常高的理论储锂容量905mAh g -1,由于铁基材料具有高导电性,使得该类负极材料具有优异的电子导电性,从而导致了锂离子的扩散加速。
进一步,本发明人在利用不同种类多酸磷钨酸和磷钼酸的酸性来调节铁基纳米管的孔径和表面积,这些多孔可以为锂化过程中体积膨胀提供预留的空间。在多孔的电极中加入碳黑做为结构支撑,可以进一步维护电极的稳定性。本发明锂离子电池负极材料具有非常高的储锂容量是因为在放电锂化的过程中,铁元素先还原到二价,再到平均价态可能接近于一价,最后完全转化成金属铁。此外,在低电压下, 电解液在材料表面分解形成稳定的薄膜也是其具有高储锂容量的原因之一。
本发明提供一种β-FeOOH多孔纳米管的铁基锂离子电池负极材料,基于该锂离子电池负极材料的结构,进一步研究得到本发明的锂离子电池负极材料的制备方法。以下,通过实施例进一步的详细说明。本发明锂离子电池负极材料的制备方法如下:
(1)制备磷钨酸:把100g二水合钨酸钠与16g磷酸氢二钠溶解在150mL沸水中进行搅拌,将80mL浓盐酸逐滴地加入煮沸的溶液中;加完以后对溶液进行冷却,过滤得到带有杂质的磷钨酸,加入水和足够的乙醚进行提纯,经摇荡后混合物分成三个液层,分离最底层的磷钨酸乙醚复合物,反复洗涤三次,把得到的磷钨酸乙醚复合物在空气中加热,直到它们不再挥发刺鼻气味,产物是白色固体;
(2)制备磷钼酸:将20g三氧化钼溶入200g水中进行搅拌均匀,加入1.25mL 85%正磷酸,反应中应保持反应液平稳沸腾,真空抽滤除去杂质,将30%双氧水加入到滤液中,然后蒸发浓缩,最后将溶液缓慢冷却结晶,离心分离制得黄色固体;
(3)制备磷钨酸诱导的β-FeOOH多孔纳米管:将0.811g FeCl 3溶解在12.5mL水中,并且加入50μL的HCl。加入21.5mg的磷钨酸搅拌均匀,放入反应釜中加热,冷却离心后,进一步用超纯水和乙醇清洗干燥得到得到固体;
(4)制备磷钼酸诱导的β-FeOOH多孔纳米管:将0.811g FeCl 3溶解在12.5mL水中,并且加入50μL的HCl。加入14mg的磷钼酸搅 拌均匀,放入反应釜中加热,冷却离心后,进一步用超纯水和乙醇清洗干燥得到得到固体;
(5)制备锂离子负极材料:将步骤(3)和(4)制备的样品分别与碳黑以一定的比例干粉形式混合,然后加入适量的分散介质N-甲基吡咯烷酮和PVDF,搅拌混合均匀后涂布在铜箔两侧干燥、辊压。
实施例1:
请参阅附图1,其是本发明制备的多酸磷钨酸与磷钼酸的红外表征,通过测定样品的吸收峰进而判断官能团和化学键的组成。磷钨酸标准样品的W-O d-W伸缩振动峰、W-O c-W伸缩振动峰、W-O d伸缩振动峰和P-O a伸缩振动峰分别对应所得样品798cm -1、890cm -1、984cm -1和1080cm -1处的吸收峰。磷钼酸标准样品的Mo-O c-Mo伸缩振动峰、Mo-O b-Mo伸缩振动峰、Mo-O d伸缩振动峰和P-Mo伸缩振动峰分别对应所得样品781cm -1、871cm -1、962cm -1和1065cm -1处的吸收峰,两种样品的吸收峰都与标准样品特征峰分别对应,表明所得样品并无其他杂质。
实施例2:
请参阅附图2,其是本发明制备的磷钨酸(a)和磷钼酸(b)诱导的β-FeOOH多孔纳米管的TEM图像,通过TEM图像来观察样品的形貌,进一步研究反应机理。从图a中可以清晰的显示出磷钨酸诱导的β-FeOOH纳米管的长度为200-400nm左右,宽度为30-50nm左右,纳米管表面被磷钨酸刻蚀形成较丰富的纳米孔洞,这为锂化过程中体积膨胀提供预留的空间。从图b中可以清晰的看出磷钼酸诱导的 β-FeOOH多孔纳米管形貌同样呈纳米管状且表面有丰富的孔状结构。但是其多孔结构不如磷钨酸诱导的β-FeOOH多孔纳米管明显,这是因为磷钼酸的酸性比磷钨酸低,导致纳米棒被诱导为多孔纳米管的效果也差。
实施例3:
请参阅附图3,其是本发明制备的磷钨酸和磷钼酸诱导的β-FeOOH多孔纳米管的XRD图谱,我们对两种多酸诱导形成的多孔纳米管与其它对照样品进行比较,来进行相应的物相分析。从图中可以看出所有样品的衍射峰的位置和强度都与标准样品一致,可以认为制得的磷钨酸和磷钼酸诱导的β-FeOOH多孔纳米管都是较纯的β-FeOOH。
实施例4:
请参阅附图4,其是本发明制备的磷钨酸和磷钼酸诱导的β-FeOOH多孔纳米管负极材料的倍率性能图。电化学测试结果显示,与传统的负极材料相比,β-FeOOH多孔纳米管负极材料的倍率性能有显著的提高。1C/10C的倍率下磷钨酸诱导的β-FeOOH多孔纳米管负极材料的首次放电比容量为1368Ah/g左右,循环10次后该材料的比容量仍然维持在860Ah/g左右;1C/10C的倍率下磷钼酸诱导的β-FeOOH多孔纳米管负极材料的首次放电比容量为1347Ah/g左右,循环10次后该材料的比容量仍然维持在840Ah/g左右。由于磷钨酸诱导的多孔纳米管的微观多孔结构优于磷钼酸诱导的纳米管,这为锂化过程中体积膨胀提供更多预留的空间,有利于电化学性能的提高。
相对于现有技术,本发明通过用不同种类多酸的酸性来可控调节纳米管的孔径,形成的纳米材料具有多孔与中空特点,这为锂化过程中体积膨胀提供预留的空间。同时,β-FeOOH材料作为负极材料,可以极大的提高储锂容量,形成稳定的SEI膜,有利于化学反应性能的提高。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种锂离子电池负极材料,其特征在于:由β-FeOOH多孔纳米管和框架材料炭黑分散在N-甲基吡咯烷酮中,以聚偏氟乙烯为粘结剂干燥辊压而成;其中,β-FeOOH多孔纳米管由磷钨酸和磷钼酸分别刻蚀形成。
  2. 根据权利要求1所述的锂离子电池负极材料,其特征在于:所述β-FeOOH多孔纳米管表面呈中空管状,β-FeOOH多孔纳米管的长度为200-400nm,宽度为30-50nm。
  3. 根据权利要求1所述的锂离子电池负极材料的制备方法,其特征为,包括如下步骤:(1)将磷钨酸和磷钼酸分别加入氯化铁水溶液中,通过水热法离心得到固体β-FeOOH多孔纳米管;(2)将β-FeOOH多孔纳米管与炭黑混合,然后加入分散介质N-甲基吡咯烷酮和聚偏氟乙烯,搅拌混合均匀后涂布在铜箔两侧,干燥、辊压,得到产品。
  4. 根据权利要求3所述的锂离子电池负极材料的制备方法,其特征在于:步骤(1)中,反应温度为80℃,反应时间为1h,升温速率为2℃/min。
  5. 根据权利要求3所述的锂离子电池负极材料的制备方法,其特征在于:步骤(1)中,将0.811g氯化铁溶解在12.5mL水中,并加入50μL盐酸,再加入21.5mg磷钨酸或14mg磷钼酸搅拌均匀,置于反应釜中加热,冷却离心后,用超纯水和乙醇清洗干燥得到固体。
  6. 根据权利要求3所述的锂离子电池负极材料的制备方法,其特征 在于:步骤(2)中,β-FeOOH多孔纳米管与炭黑以干粉形式在20rad/min下混合60min,然后加入N-甲基吡咯烷酮和聚偏氟乙烯,在20rad/min下搅拌,后在2000rad/min下分散混合60min;再在40rad/min下搅拌,后在4500rad/min下分散混合3h。
  7. 根据权利要求3或5所述的锂离子电池负极材料的制备方法,其特征在于:所述磷钨酸的制备过程为,将100g二水合钨酸钠与16g磷酸氢二钠溶解在150mL沸水中搅拌,将80mL浓盐酸逐滴加入煮沸的溶液中,加完后对溶液进行冷却,过滤得到带有杂质的磷钨酸,加入水和乙醚提纯,分离最底层的磷钨酸乙醚复合物,反复洗涤,将得到的磷钨酸乙醚复合物加热,得到白色固体磷钨酸。
  8. 根据权利要求3或5所述的锂离子电池负极材料的制备方法,其特征在于:所述磷钼酸的制备过程为,将20g三氧化钼溶入200g水中搅拌均匀,加入1.25mL质量浓度85%的正磷酸,反应结束后真空抽滤除去杂质,将30%双氧水加入到滤液中,然后蒸发浓缩,最后将溶液缓慢冷却结晶,离心分离得到黄色固体磷钼酸。
  9. 根据权利要求7所述的锂离子电池负极材料的制备方法,其特征在于:所述沸水温度为110-120℃。
  10. 根据权利要求8所述的锂离子电池负极材料的制备方法,其特征在于:所述反应温度为110-120℃,反应时间为3h,控制pH值为1.0。
PCT/CN2020/098714 2020-03-31 2020-06-29 锂离子电池负极材料及其制备方法 WO2021196430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010242939.4A CN111370688A (zh) 2020-03-31 2020-03-31 锂离子电池负极材料及其制备方法
CN202010242939.4 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021196430A1 true WO2021196430A1 (zh) 2021-10-07

Family

ID=71212658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098714 WO2021196430A1 (zh) 2020-03-31 2020-06-29 锂离子电池负极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111370688A (zh)
WO (1) WO2021196430A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538500A (zh) * 2022-03-09 2022-05-27 郑州轻工业大学 一种棒状结构Zn2GeO4材料及其制备方法和应用
CN114804211A (zh) * 2022-05-20 2022-07-29 洛阳师范学院 一种锂离子电池用高首效铁酸锂负极材料及其制备方法
CN115367801A (zh) * 2022-07-07 2022-11-22 河南科技大学 一种锂离子电池负极用近球形二硫化钼-碳复合材料及其制备方法
CN115449810A (zh) * 2022-08-12 2022-12-09 北京科技大学 一种由FeOOH鳞片组成的中空管催化剂材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124064A (ja) * 2001-10-10 2003-04-25 Hitachi Maxell Ltd 電気化学素子
CN101310857A (zh) * 2007-05-24 2008-11-26 中国石油化工股份有限公司 一种制备高纯度Keggin结构杂多酸的方法
CN106025263A (zh) * 2016-05-17 2016-10-12 安徽师范大学 一种三氧化二铁纳米材料及其制备方法、锂离子电池负极及锂离子电池
JP2017174649A (ja) * 2016-03-24 2017-09-28 戸田工業株式会社 リチウムイオン二次電池負極用酸化鉄粉体、その製造方法およびリチウムイオン二次電池
CN107732168A (zh) * 2017-09-15 2018-02-23 陕西科技大学 一种蛛网状石墨烯包裹β‑FeOOH纳米棒聚集体锂离子电池负极材料的制备方法
CN108910960A (zh) * 2018-08-24 2018-11-30 合肥学院 一种β-FeOOH纳米胶囊的制备方法
CN109411747A (zh) * 2018-10-18 2019-03-01 陕西科技大学 一种尿素作用下超细β-FeOOH纳米棒自组装镂空微球的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1209834C (zh) * 2000-04-19 2005-07-06 日本电池株式会社 二次电池用的正极活性材料、其制备方法以及含有该材料的非水电解质二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124064A (ja) * 2001-10-10 2003-04-25 Hitachi Maxell Ltd 電気化学素子
CN101310857A (zh) * 2007-05-24 2008-11-26 中国石油化工股份有限公司 一种制备高纯度Keggin结构杂多酸的方法
JP2017174649A (ja) * 2016-03-24 2017-09-28 戸田工業株式会社 リチウムイオン二次電池負極用酸化鉄粉体、その製造方法およびリチウムイオン二次電池
CN106025263A (zh) * 2016-05-17 2016-10-12 安徽师范大学 一种三氧化二铁纳米材料及其制备方法、锂离子电池负极及锂离子电池
CN107732168A (zh) * 2017-09-15 2018-02-23 陕西科技大学 一种蛛网状石墨烯包裹β‑FeOOH纳米棒聚集体锂离子电池负极材料的制备方法
CN108910960A (zh) * 2018-08-24 2018-11-30 合肥学院 一种β-FeOOH纳米胶囊的制备方法
CN109411747A (zh) * 2018-10-18 2019-03-01 陕西科技大学 一种尿素作用下超细β-FeOOH纳米棒自组装镂空微球的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIN HONG, WANG JIA-WEI, GUO XIANG-WEI, YAO SHUANG, LIU MENG, ZHANG ZHI-MING, LU TONG-BU: "Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution", JOURNAL OF MATERIALS CHEMISTRY A, vol. 6, no. 47, 4 December 2018 (2018-12-04), GB, pages 24479 - 24485, XP055854809, ISSN: 2050-7488, DOI: 10.1039/C8TA09240K *
LINGHUI YU , CHAO WEI , QINGYU YAN , ZHICHUAN J.XU: "Controlled synthesis of high-performance β-FeOOH anodes for lithium-ion batteries and their size effects", NANO ENERGY, vol. 13, 1 April 2015 (2015-04-01), NL, pages 397 - 404, XP055854807, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2015.03.003 *
YU LINGHUI ET AL.: "Superior Lithium Storage Properties of β -FeOOH", ADVANCED ENERGY MATERIALS, vol. 5, no. 6, 1 March 2015 (2015-03-01), pages 1 - 8, XP055854812, ISSN: 1614-6840, DOI: 10.1002/aenm.201401517 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538500A (zh) * 2022-03-09 2022-05-27 郑州轻工业大学 一种棒状结构Zn2GeO4材料及其制备方法和应用
CN114538500B (zh) * 2022-03-09 2023-11-03 郑州轻工业大学 一种棒状结构Zn2GeO4材料及其制备方法和应用
CN114804211A (zh) * 2022-05-20 2022-07-29 洛阳师范学院 一种锂离子电池用高首效铁酸锂负极材料及其制备方法
CN114804211B (zh) * 2022-05-20 2024-02-23 洛阳师范学院 一种锂离子电池用高首效铁酸锂负极材料及其制备方法
CN115367801A (zh) * 2022-07-07 2022-11-22 河南科技大学 一种锂离子电池负极用近球形二硫化钼-碳复合材料及其制备方法
CN115367801B (zh) * 2022-07-07 2023-11-21 河南科技大学 一种锂离子电池负极用近球形二硫化钼-碳复合材料及其制备方法
CN115449810A (zh) * 2022-08-12 2022-12-09 北京科技大学 一种由FeOOH鳞片组成的中空管催化剂材料及其制备方法

Also Published As

Publication number Publication date
CN111370688A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021196430A1 (zh) 锂离子电池负极材料及其制备方法
Sun et al. High rate lithium-ion batteries from hybrid hollow spheres with a few-layered MoS 2-entrapped carbon sheath synthesized by a space-confined reaction
Chu et al. NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes
Yao et al. Yolk–shell NiS x@ C nanosheets as K-ion battery anodes with high rate capability and ultralong cycle life
CN107565115B (zh) 硅碳负极材料的制备方法、硅碳负极材料以及锂离子电池
CN109473650B (zh) 一种MoO2/rGO复合材料及其制备方法和应用
Tang et al. High-performance LiMn2O4 with enwrapped segmented carbon nanotubes as cathode material for energy storage
WO2022032744A1 (zh) 一种NbS2/MXene复合材料及其制备方法
Wang et al. Structural and electrochemical characteristics of hierarchical Li4Ti5O12 as high-rate anode material for lithium-ion batteries
CN110600713A (zh) 一种掺杂多孔碳负极材料、其制备方法及碱金属离子电池
Xi et al. Ultralong cycling stability of cotton fabric/LiFePO4 composites as electrode materials for lithium-ion batteries
CN111564618B (zh) 一种可工业化生产的高容量锂离子电池负极材料
CN111243871B (zh) 新型NiSe2包覆介孔空心碳球复合材料及其制备方法和在超级电容器中的应用
CN113540428A (zh) 一种3DOM类石墨烯碳担载的单分散NiO纳米晶材料、制备及应用
CN113571681B (zh) 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用
CN111564610A (zh) 一种碳纳米管修饰的碳包覆磷化亚铜-铜复合颗粒及其制备方法和应用
CN114975928A (zh) 一种氧化亚硅介孔原位生长碳纳米管复合材料及其制备方法和在锂离子电池中的应用
CN114560502B (zh) 一种三维纳米钼基锂离子电池负极材料及其制备方法
CN114314673A (zh) 一种片状FeOCl纳米材料的制备方法
Tong et al. 3D graphene and its nanocomposites: from synthesis to multifunctional applications
CN111564609A (zh) 一种复合纳米材料的电化学储锂电极及其制备方法
CN110600710A (zh) 硫化铁-碳复合材料及其制备方法、锂离子电池负极材料、锂离子电池负极片和锂离子电池
WO2023045336A1 (zh) 一种中空纳米硒化物及其制备方法和应用
CN114824202B (zh) 一种多核壳结构的FeS2@C纳米胶囊材料的制法及应用
CN108475768A (zh) 作为锂离子电池阳极材料的V2O5-C-SnO2杂化纳米带及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929523

Country of ref document: EP

Kind code of ref document: A1