CN105741996B - 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法 - Google Patents

一种基于低温等离子体的超顺磁性纳米颗粒的制备方法 Download PDF

Info

Publication number
CN105741996B
CN105741996B CN201610045129.3A CN201610045129A CN105741996B CN 105741996 B CN105741996 B CN 105741996B CN 201610045129 A CN201610045129 A CN 201610045129A CN 105741996 B CN105741996 B CN 105741996B
Authority
CN
China
Prior art keywords
polymer
low temperature
temperature plasma
particle
magnetic nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610045129.3A
Other languages
English (en)
Other versions
CN105741996A (zh
Inventor
王瑞雪
左莎莎
张珏
方竞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201610045129.3A priority Critical patent/CN105741996B/zh
Publication of CN105741996A publication Critical patent/CN105741996A/zh
Application granted granted Critical
Publication of CN105741996B publication Critical patent/CN105741996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dermatology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公布了一种基于低温等离子体的超顺磁性纳米颗粒的制备方法,首先将三价铁盐溶液与二价亚铁盐溶液混合,加碱溶液调节pH至5‑6;然后加入多聚物并溶解;使用低温等离子体处理该溶液,制得磁性纳米颗粒。本发明制备的纳米颗粒是在四氧化三铁纳米粒子核心表面包被多聚物分子,粒径均匀且分散性良好,具有超顺磁性,可用于核磁共振成像、细胞标记、蛋白分离及肿瘤热疗等方面,且此技术制备方法简单,合成速度快,成本低廉。

Description

一种基于低温等离子体的超顺磁性纳米颗粒的制备方法
技术领域
本发明属于纳米材料领域,涉及一种超顺磁性四氧化三铁纳米颗粒的制备方法。
背景技术
近年来,磁性纳米材料因具有良好的磁学性能以及生物安全性而受到广泛重视。在生物医学领域,粒径在20nm以下的磁纳米颗粒具有超顺磁性,在细胞标记、肿瘤热疗、核酸提取、核磁共振成像等领域具有明显的优势。
磁性纳米颗粒的合成方法主要有两种:物理方法和化学方法。物理方法包括真空冷凝法、物理粉碎法、机械球磨法等;化学方法主要有:共沉淀法、热解法、微乳液法和水热合成法等。相比于物理方法,化学方法在纳米颗粒的粒度分布、化学组成、制作工艺以及成本控制方面都有一定的优越性,因此被广泛的应用于工业生产和试验中。
各种化学方法在磁性纳米颗粒的合成方面各有千秋,但也有一定的局限性。共沉淀法是最简单也是最常用的一种制备磁性纳米颗粒的方法,即将一定量的高聚物、铁盐和亚铁盐溶于水,搅拌下滴加一定量的氨水,在一定的温度下反应一段时间,可获得一定粒径的超顺磁性氧化铁纳米颗粒,但这种方法制备的磁性纳米颗粒粒径较大,结晶度低,饱和磁化强度小,因此在核磁共振成像中成像效果差。通过高温热分解合成超顺磁性纳米颗粒,可以得到粒径均一的磁性纳米颗粒,但是这种方法需要在高温下进行,反应过程非常的繁琐,而且制备的磁性纳米颗粒水溶性和生理稳定性差,严重阻碍了该磁性纳米颗粒的应用。
发明内容
本发明的目的是针对现有技术的不足,提出一种磁性纳米颗粒的制备方法,其工艺简单,成本低廉,制备的磁性纳米颗粒粒径均匀、磁学性能好,且产品性能稳定。
为实现上述目的,本发明提出如下技术方案:
一种使用低温等离子体快速合成稳定性和磁学性能良好的磁性纳米颗粒的方法,包括以下步骤:
(1)将三价铁盐溶液与二价亚铁盐溶液混合,加碱溶液调节pH至5-6;
(2)向步骤(1)所得溶液中加入多聚物并溶解;
(3)使用低温等离子体处理步骤(2)所得溶液,制得磁性纳米颗粒。
较佳的,步骤(1)中所述碱溶液为氢氧化钠和/或氨水。
较佳的,步骤(1)所得溶液的总铁离子浓度为0.5~1.5mol/L,进一步优选1~1.1mol/L。所述二价亚铁盐优选为氯化亚铁和/或硫酸亚铁;所述三价铁盐优选为氯化铁、硫酸铁、硝酸铁中的任意一种或多种。二价亚铁盐和三价铁盐溶液按铁元素摩尔比为1:1~1:10任意比例混合配制混合铁盐溶液。
较佳的,所述步骤(2)中的多聚物为含亲水性功能基团的多聚物分子,可选PEG(聚乙二醇)、PVA(聚乙烯醇)等,多聚物终浓度为1%~10%(g/mL,质量体积比)。
较佳的,所述步骤(3)中低温等离子体由具有空心电极介质阻挡结构的等离子体发生装置(参见申请号为201510313424.8的中国专利申请)产生,该装置工作电压为600~1200V,工作电流为10~20mA,工作气体为氩气或氦气,流量为100~500sccm,能够产生高达1015/cm3数量级的超高电子密度的等离子体射流,其处理混合铁盐溶液的时间为15~30分钟。
本发明方法制备的超顺磁性纳米颗粒包括四氧化三铁纳米粒子核心,以及包被在纳米粒子核心表面的多聚物分子,其中所述四氧化三铁纳米粒子核心的粒径为17-20nm,所述多聚物分子优选为含有亲水性功能基团的分子。本发明制备的纳米颗粒粒径均匀且分散性良好,具有超顺磁性,可用于核磁共振成像、细胞标记、蛋白分离及肿瘤热疗等方面,且此技术制备方法简单,合成速度快,成本低廉。
附图说明
图1为实施例1合成的超顺磁性四氧化三铁纳米颗粒的XRD图;
图2为实施例1合成的超顺磁性四氧化三铁纳米颗粒的TEM图;
图3为实施例1合成的超顺磁性四氧化三铁纳米颗粒的磁滞回线;
图4为实施例1合成的超顺磁性四氧化三铁纳米颗粒的FTIR图。
具体实施方式
以下通过具体实施例对本发明做进一步说明,以便更好地理解本发明,但本发明并不局限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1:四氧化三铁磁性纳米颗粒的制备
(1)配制浓度为0.1mol/L的氯化铁溶液,0.1mol/L的氯化亚铁溶液,按体积1:2混合,得到100mL溶液,滴加氨水溶液使pH达到5;
(2)向步骤(1)得到的溶液加入5g PEG(MW2000),搅拌使其完全溶解;
(3)低温等离子体发生装置通入气流量为200sccm的氩气气源,由电驱动,电压为1000V,电流为15mA,激发产生低温等离子体;
(4)低温等离子体处理步骤(2)得到的混合溶液20min,即可制备出超顺磁性四氧化三铁纳米颗粒溶液;
(5)用磁铁收集磁性纳米颗粒,去离子水清洗,真空烘干即可长期保存。
实施例2:四氧化三铁磁性纳米颗粒的性质检测
1)利用X射线衍射分析(XRD),衍射仪配备Cu Ka(k=0.15406nm),在20-90°内扫描,电压设定在40kV。由图1可以得出,X射线衍射角分别为2θ=18.299°,30.100°,35.454°,43.088°,53.455°,56.983°,62.574°,74.026°,89.685°,分别和电子衍射峰[111],[220],[311],[400],[422],[511],[440],[533],[731]位置相对应,可确定所制备的纳米颗粒粉末为磁铁矿结构的四氧化三铁。
2)利用Tecnai T20透射电镜(TEM)进行观察,将稀释好的磁颗粒溶液滴在铜载网上,室温下烘干后,样品直接用于透射电镜观察,加速电压为200kV。具体TEM图参见图2,由图2中可知,所制备的四氧化三铁颗粒为球形,圆整度高,其粒径范围为:17~20nm,平均粒径为19.1nm。
3)利用磁强振动仪(VSM,LDJ9400,LDJ Electronics,US)测量产物的磁学性能,应用的最大磁场为10,000Oe,测量过程在室温下进行。图3磁滞回线中得到合成的纳米粒子磁饱和强度为60.1emu/g。结果表明,低温等离子体方式合成的Fe3O4粒子在低磁强下表现出良好的超顺磁性。
4)利用傅立叶红外转换光谱(FTIR,FTS-65A/896,Bio-Rad)测量包被的磁颗粒的表面基团,测量过程在室温下进行。从图4可以看到,纯Fe3O4光谱在590cm-1和3400cm-1出现峰值,分别为Fe-O键和Fe3O4表面的OH振动峰。加入PEG后,生成的产物表现出明显的PEG特征峰。1106cm-1和1342cm-1处为C-O-C拉伸振动,2890cm-1和964cm-1处的峰分别为-CH拉伸振动和-CH平面外弯曲振动。这些特征峰的出现表明PEG有效地包被在了Fe3O4磁颗粒上。

Claims (9)

1.一种制备磁性纳米颗粒的方法,包括以下步骤:
1)将三价铁盐溶液与二价亚铁盐溶液混合,加碱溶液调节pH至5-6;
2)向步骤1)所得溶液中加入多聚物并溶解;
3)使用通过空心电极介质阻挡结构的等离子体发生装置产生的低温等离子体处理步骤2)所得溶液,制得磁性纳米颗粒。
2.如权利要求1所述的方法,其特征在于,步骤1)中所述碱溶液为氢氧化钠和/或氨水。
3.如权利要求1所述的方法,其特征在于,步骤1)中所述二价亚铁盐和三价铁盐溶液按铁元素摩尔比为1:1~1:10的比例混合,所得溶液的总铁离子浓度为0.5~1.5mol/L。
4.如权利要求1所述的方法,其特征在于,所述三价铁盐为氯化铁、硫酸铁、硝酸铁中的任意一种或多种;所述二价亚铁盐为氯化亚铁和/或硫酸亚铁。
5.如权利要求1所述的方法,其特征在于,步骤2)中所述多聚物为含亲水性功能基团的多聚物。
6.如权利要求5所述的方法,其特征在于,步骤2)中所述多聚物为聚乙二醇和/或聚乙烯醇。
7.如权利要求1所述的方法,其特征在于,步骤2)所加多聚物的终浓度为1%~10%。
8.如权利要求1所述的方法,其特征在于,步骤3)以电子密度在1015/cm3数量级的低温等离子体射流处理步骤2)所得溶液15~30分钟。
9.权利要求1~8任一所述方法制备的磁性纳米颗粒,包括四氧化三铁纳米粒子核心,以及包被在纳米粒子核心表面的多聚物分子,其中所述四氧化三铁纳米粒子核心的粒径为17~20nm。
CN201610045129.3A 2016-01-22 2016-01-22 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法 Active CN105741996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610045129.3A CN105741996B (zh) 2016-01-22 2016-01-22 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610045129.3A CN105741996B (zh) 2016-01-22 2016-01-22 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN105741996A CN105741996A (zh) 2016-07-06
CN105741996B true CN105741996B (zh) 2018-02-13

Family

ID=56247615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610045129.3A Active CN105741996B (zh) 2016-01-22 2016-01-22 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN105741996B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875686B2 (ja) * 2016-07-19 2021-05-26 国立研究開発法人農業・食品産業技術総合研究機構 プラズマを用いて植物細胞内に物質を導入する方法
CN106830096B (zh) * 2017-02-28 2018-04-24 东南大学 一种磁性纳米氧化铁的制备方法
CN107226487A (zh) * 2017-06-19 2017-10-03 吉林大学 基于中空磁性微米球的宽频带吸波材料及制备方法
CN107511132B (zh) * 2017-08-02 2020-10-16 中国科学院合肥物质科学研究院 一种磁性四氧化三铁纳米粒子及其等离子体改性方法和应用
CN111155137B (zh) * 2020-01-17 2022-02-01 西北师范大学 液体阴极辉光放电等离子体制备纳米四氧化三铁的方法
CN112978803A (zh) * 2021-02-23 2021-06-18 四川大学 一种表面带正电的水溶性超顺磁性四氧化三铁微球的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307192A (zh) * 2008-07-02 2008-11-19 北京航空航天大学 一种具有良好水分散性的四氧化三铁纳米粒子及其制备方法
CN103008684A (zh) * 2013-01-21 2013-04-03 北京大学 大气压冷等离子体方式制备金属纳米颗粒的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070071977A1 (en) * 2004-09-20 2007-03-29 Mikhail Vladimirovich Kutushov Magnetically operated absorbent and method for the production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307192A (zh) * 2008-07-02 2008-11-19 北京航空航天大学 一种具有良好水分散性的四氧化三铁纳米粒子及其制备方法
CN103008684A (zh) * 2013-01-21 2013-04-03 北京大学 大气压冷等离子体方式制备金属纳米颗粒的方法

Also Published As

Publication number Publication date
CN105741996A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105741996B (zh) 一种基于低温等离子体的超顺磁性纳米颗粒的制备方法
Kefeni et al. Ferrite nanoparticles: synthesis, characterisation and applications in electronic device
Kumar et al. Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation
Abbas et al. Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique
CN107949266B (zh) 一种三维多孔花状结构钴/碳纳米复合电磁波吸收材料及其制备方法
Lin et al. Formation mechanism and magnetic properties of hollow Fe 3 O 4 nanospheres synthesized without any surfactant
Tong et al. Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe 3 O 4 nanomaterials
Sinkó et al. Liquid-phase syntheses of cobalt ferrite nanoparticles
Li et al. Hollow CoFe2O4–Co3Fe7 microspheres applied in electromagnetic absorption
Zhang et al. Synthesis and characterization of Fe 3 O 4@ SiO 2 magnetic composite nanoparticles by a one-pot process
Mosivand et al. The effect of organics on the structure and magnetization of electro-synthesised magnetite nanoparticles
Mosivand et al. Synthesis of electrocrystallized cobalt ferrite nanopowders by tuning the cobalt salt concentration
Gotić et al. Factors that may influence the micro-emulsion synthesis of nanosize magnetite particles
Zhang et al. Single-crystalline Fe3O4 nanosheets: Facile sonochemical synthesis, evaluation and magnetic properties
CN104368825B (zh) 一种形状可控铁钴合金磁性纳米粒子的制备方法
Zhao et al. Enhancement of electric conductivity by incorporation of Ag into core/shell structure of Fe3O4/Ag/PPy NPs
CN108455682B (zh) 一种水性Fe3O4纳米粉体的制备方法
Lin et al. Synthesis and characterization of iron nanowires
CN104384525B (zh) 一种镍或镍铁金属纳米线的分散与组装方法
CN106365205B (zh) 一种锰锌铁氧体纳米粉体的制备方法
Goncalves et al. Crystal morphology control of synthetic giniite by alkaline cations and pH variations
Ghazanfari et al. Influence of MWCNTs on the formation, structure and magnetic properties of magnetite
CN102134103A (zh) 一种制备羟基铁氧化物纳米线的方法
Dong et al. Effect of a static magnetic field on the preparation of MnOOH and Mn 3 O 4 by a hydrothermal process
CN107541185A (zh) 锌掺杂铁氧体/碳纳米管吸波材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant