CN108866472A - 一种金属材料表面处理方法 - Google Patents
一种金属材料表面处理方法 Download PDFInfo
- Publication number
- CN108866472A CN108866472A CN201810717759.XA CN201810717759A CN108866472A CN 108866472 A CN108866472 A CN 108866472A CN 201810717759 A CN201810717759 A CN 201810717759A CN 108866472 A CN108866472 A CN 108866472A
- Authority
- CN
- China
- Prior art keywords
- metal material
- processed
- material surface
- temperature
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
- C22C27/025—Alloys based on vanadium, niobium, or tantalum alloys based on vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
- C23C8/14—Oxidising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
本发明公开了一种金属材料表面处理方法,包括以下步骤:1)清洗待处理金属材料表面,再进行烘干;2)将待处理金属材料放置于加热炉中,并在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至预设值,再进行加热及保温,并随炉冷却至室温,完成对待处理金属材料的表面处理,其中,加热温度高于待处理金属材料表面氧化层致密结构的破坏温度,该方法能够实现对金属材料表面的强化,同时具有处理成本低、效率高、可控性好、操作方便及对工件表面污染小的特点。
Description
技术领域
本发明属于金属材料处理领域,涉及一种金属材料表面处理方法。
背景技术
在日常生产生活中,金属结构件往往需要在比较复杂的应力状态下工作,比如弯曲、扭转、摩擦磨损等,这就要求其表面具有较高的硬度、耐磨性能和耐疲劳性能,而芯部具有足够的塑韧性。因此,诸多金属材料表面处理方法应运而生。
目前,在实际工业生产中,渗碳和渗氮作为最成熟、最常用的钢铁表面处理工艺,广泛地应用于摩擦片、活塞、齿轮等零件中。所谓渗碳/渗氮,就是通过增加工件表层含碳量/含氮量来形成碳化物/氮化物强化金属表面的一种化学热处理工艺。但是在长期的工业实践中,这两种典型的工艺方法不可避免的出现了许多问题。作为工业应用最广泛的气体渗碳,内氧化和表面脱碳是不可避免的两个问题。由于常用的渗碳气氛中含有二氧化碳和水蒸气,因此会不可避免地会有氧被工件所吸收,造成工件内氧化,严重时在表面晶界形成氧化物。后续的加热淬火抛丸容易在表面形成麻坑,造成工件报废。同时,渗碳气氛中的氧化性气氛如氧、水蒸气和二氧化碳会与钢中的碳元素发生反应,造成钢表面的脱碳现象。表面脱碳现象会造成表面的硬度下降,产生有害的表面残余拉应力,造成表面疲劳强度下降。同时渗碳工艺中所用到的渗碳介质容易在高温条件下发生裂解,对加热炉造成严重污染,因此需要对加热炉进行定期清理。对于渗氮工艺而言,由于氮在钢中的固溶度有限,扩散速度缓慢,时间长而渗氮层薄,因此成本较高,且不能受太大的接触应力。
近年来,金属材料表面纳米化的发展为金属材料表面强化引入了大量的先进表面强化技术,如表面机械喷完,机械研磨,激光冲击强化等。金属材料表面纳米化即通过对金属表面进行剧烈塑性变形,将表面晶粒尺寸细化至纳米量级,实现晶粒尺寸从表面向基体内部呈现梯度分布的的目标。这种梯度结构最表层纳米晶具有高强度高硬度,同时芯部保持着很好的塑韧性,因此具有很好的耐磨性和抗疲劳性能。然而,该技术作为一种基于剧烈塑性变形所开发的技术手段,梯度结构的可控性差,表面强化层深度有限,因此不能承受太大的接触应力且对初始表面粗糙度和光洁度具有很高的要求。同时,该技术还存在加工过程中温升剧烈,冷却介质对加工表面污染等问题,极大地影响了工件的表面处理效果。
上述方法虽然能够实现表面强化的效果,然而其自身均存在一定的问题,不能够达到工业生产所要求低成本,高效率,可控性好,操作方便,工件表面污染小等要求。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种金属材料表面处理方法,该方法能够实现对金属材料表面的强化,同时具有处理成本低、效率高、可控性好、操作方便及对工件表面污染小的特点。
为达到上述目的,本发明所述的金属材料表面处理方法包括以下步骤:
1)清洗待处理金属材料表面,再进行烘干;
2)将待处理金属材料放置于加热炉中,并在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至预设值,再进行加热及保温,并随炉冷却至室温,完成对待处理金属材料的表面处理,其中,加热温度高于待处理金属材料表面氧化层致密结构的破坏温度。
将待处理金属材料放置于加热炉中,并在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至预设值,再进行加热及保温,并随炉冷却至室温,然后去除待处理金属材料表面的氧化物层,并清洗待处理金属材料表面,完成对待处理金属材料的表面处理,其中,加热温度高于待处理金属材料表面氧化层致密结构的破坏温度。
待处理金属材料为钒、铌、钽、铬、钼、镁、钛、锆、铁、钒合金、铌合金、钽合金、铬合金、钼合金、镁合金、钛合金、锆合金、钢或钒、铌、钽、铬、钼、镁、钛、锆元素含量超过5at.%的合金材料。
氧气占氧气与惰性气体形成的混合气体的体积比为0.01%-100%。
在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至10-3Pa-105Pa。
保温时间大于1min。
采用机械磨抛、车削、酸洗及电解抛光中一种工艺或几种工艺组合去除待处理金属材料表面的氧化物层。
本发明具有以下有益效果:
本发明所述的金属材料表面处理方法在具体操作时,将待处理金属材料放置于加热炉中,在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至预设值,再进行加热及保温,从而使得氧气被金属材料表面催化形成氧离子或者氧原子,并快速由金属表面向内部扩散,由氧元素由金属材料表面向金属材料内部扩散,从而使得金属材料中氧元素的含量由外向内逐渐递减,并形成梯度分布,由于氧元素对金属材料中的位错运动具有强烈的阻碍作用,从而产生显著的强化效果,其中,含量越高,则强化效果越明显,以实现对金属材料表面的强化,操作简单、方便。在实际操作时,通过调整混合气体中氧气的含量,实现对氧元素梯度分布的定量调控,另外,本发明在实际操作时,只需通入混合气体,然后进行加热即可,操作方便,成本低,并且处理的效率较高,适合大批量生产,并且对金属材料表面无污染。
进一步,通过去除待处理金属材料表面的氧化物层,以消除金属材料表面的脆性氧化物层,使得工件表面质量更好,且不易产生裂纹。
附图说明
图1本发明的流程图;
图2为实施例一中金属材料的透射电镜明场像图;
图3为实施例一中金属材料截面的硬度测试结果图;
图4为实施例二中金属材料截面的硬度测试结果图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
如图1所示,本发明所述的金属材料表面处理方法包括以下步骤:
1)清洗待处理金属材料表面,再进行烘干;
2)将待处理金属材料放置于加热炉中,并在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至10-3Pa-105Pa,再进行加热及保温,其中,保温时间大于1min,并随炉冷却至室温,然后去除待处理金属材料表面的氧化物层,并清洗待处理金属材料表面,完成对待处理金属材料的表面处理,其中,加热温度高于待处理金属材料表面氧化层致密结构的破坏温度。
待处理金属材料为钒、铌、钽、铬、钼、镁、钛、锆、铁、钒合金、铌合金、钽合金、铬合金、钼合金、镁合金、钛合金、锆合金、钢或钒、铌、钽、铬、钼、镁、钛、锆元素含量超过5at.%的合金材料。
氧气占氧气与惰性气体形成的混合气体的体积比为0.01%-100%。
采用机械磨抛、车削、酸洗及电解抛光中一种工艺或几种工艺组合去除待处理金属材料表面的氧化物层。
实施例一
取直径为4mm、长8mm的金属纯铌棒材,使用磨床对其表面进行切削,并置于丙酮中清洗干净,随后,将铌棒放置于管式炉中,以流速为1000sccm通入氧气/氩气的混合气,其中,氧气体积占比为0.2%,控制机械泵抽速以保持炉内的真空度为250Pa,以10℃/min的升温速率加热至1000℃并保温1小时,再随炉冷却,最后,对获得的样品用砂纸进行磨抛,以去除表面氧化层,得处理后的样品。
参考图2,金属铌经上述工艺处理后,对距离其表面20μm的位置进行透射电镜表征,仅能够观察到由透射样品制备引入的或材料自身所存在的位错环等晶体缺陷,显然,不论是在晶界还是在晶粒内部均不存在任何氧化物结构。
参考图3,对经上述工艺处理后的金属铌棒材从中间切开,沿着径向从表面至芯部测量其硬度分布,并与初始样品进行比较。从图3中不难看出,经上述处理后的金属铌棒在距离表面1.3mm范围内硬度有了显著的提升,并且从表面向芯部逐渐递减,呈梯度分布,且表面的硬度为初始状态的3.5倍。
实施例二
取厚度为1.2mm的片状金属纯钒,将其放置于管式炉中,在常压下通入氧气体积占比为5%的氧气/氩气的混合气,以10℃/min的升温速率加热至650℃并保温10小时,然后随炉冷却。
参考图4,对上述工艺处理后的样品上表面进行不断磨抛,以去除从上表面渗氧所获得的硬化层,测量从侧表面至样品芯部的硬度。从图4中可以看出,距离侧表面450μm的范围内产生了明显的硬化现象,其中,表面硬度是芯部的硬度的5倍,从侧表面向芯部硬度逐渐递减,呈梯度分布。
另外,本领域技术人员还可以在本发明精神内做其他变化,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围内。
Claims (7)
1.一种金属材料表面处理方法,其特征在于,包括以下步骤:
1)清洗待处理金属材料表面,再进行烘干;
2)将待处理金属材料放置于加热炉中,并在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至预设值,再进行加热及保温,并随炉冷却至室温,完成对待处理金属材料的表面处理,其中,加热温度高于待处理金属材料表面氧化层致密结构的破坏温度。
2.根据权利要求1所述的金属材料表面处理方法,其特征在于,步骤2)的具体操作为:将待处理金属材料放置于加热炉中,并在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至预设值,再进行加热及保温,并随炉冷却至室温,然后去除待处理金属材料表面的氧化物层,并清洗待处理金属材料表面,完成对待处理金属材料的表面处理,其中,加热温度高于待处理金属材料表面氧化层致密结构的破坏温度。
3.根据权利要求1所述的金属材料表面处理方法,其特征在于,待处理金属材料为钒、铌、钽、铬、钼、镁、钛、锆、铁、钒合金、铌合金、钽合金、铬合金、钼合金、镁合金、钛合金、锆合金、钢或钒、铌、钽、铬、钼、镁、钛、锆元素含量超过5at.%的合金材料。
4.根据权利要求1所述的金属材料表面处理方法,其特征在于,氧气占氧气与惰性气体形成的混合气体的体积百分数为0.01%-100%。
5.根据权利要求1所述的金属材料表面处理方法,其特征在于,在流动的氧气与惰性气体形成的混合气体的保护下调整真空度至10-3Pa-105Pa。
6.根据权利要求1所述的金属材料表面处理方法,其特征在于,保温时间大于1min。
7.根据权利要求2所述的金属材料表面处理方法,其特征在于,采用机械磨抛、车削、酸洗及电解抛光中一种工艺或几种工艺组合去除待处理金属材料表面的氧化物层。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810717759.XA CN108866472B (zh) | 2018-06-29 | 2018-06-29 | 一种金属材料表面处理方法 |
US16/457,579 US11384408B2 (en) | 2018-06-29 | 2019-06-28 | Surface treatment method of metallic materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810717759.XA CN108866472B (zh) | 2018-06-29 | 2018-06-29 | 一种金属材料表面处理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108866472A true CN108866472A (zh) | 2018-11-23 |
CN108866472B CN108866472B (zh) | 2020-07-28 |
Family
ID=64298257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810717759.XA Active CN108866472B (zh) | 2018-06-29 | 2018-06-29 | 一种金属材料表面处理方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11384408B2 (zh) |
CN (1) | CN108866472B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110965013A (zh) * | 2019-12-17 | 2020-04-07 | 西安优耐特容器制造有限公司 | 一种柔性可控电阻加热锆金属表面陶瓷化装置及方法 |
CN111139387A (zh) * | 2019-12-26 | 2020-05-12 | 西安交通大学 | 一种力学性能优良的钒合金材料及其制备方法 |
CN113174511A (zh) * | 2021-04-02 | 2021-07-27 | 西安交通大学 | 一种具有优良力学性能的β钛合金材料及其制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111826603B (zh) * | 2020-07-21 | 2022-09-30 | 苏州微创关节医疗科技有限公司 | 制备金属基底表面氧化陶瓷层的方法及应用 |
CN112872718A (zh) * | 2020-12-30 | 2021-06-01 | 苏州威利博工具有限公司 | 一种c形配件表面加工工艺 |
CN114836596B (zh) * | 2022-04-22 | 2024-06-04 | 辽宁工业大学 | 一种粉末渗钒剂和工模刀具激光重熔复合渗钒的强化方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174593A3 (en) * | 2000-07-18 | 2003-04-02 | Fuji Oozx Inc. | TI alloy poppet valve and a method of manufactoring the same |
CN1407126A (zh) * | 2001-09-03 | 2003-04-02 | 富士乌兹克斯株式会社 | Ti合金的表面处理 |
CN107675122A (zh) * | 2017-11-20 | 2018-02-09 | 中国农业机械化科学研究院 | 一种锆铌合金表面非化学计量比氧化膜及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200318684A1 (en) * | 2017-12-20 | 2020-10-08 | Ntn Corporation | Mechanical component and method for manufacturing mechanical component |
-
2018
- 2018-06-29 CN CN201810717759.XA patent/CN108866472B/zh active Active
-
2019
- 2019-06-28 US US16/457,579 patent/US11384408B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174593A3 (en) * | 2000-07-18 | 2003-04-02 | Fuji Oozx Inc. | TI alloy poppet valve and a method of manufactoring the same |
CN1407126A (zh) * | 2001-09-03 | 2003-04-02 | 富士乌兹克斯株式会社 | Ti合金的表面处理 |
CN107675122A (zh) * | 2017-11-20 | 2018-02-09 | 中国农业机械化科学研究院 | 一种锆铌合金表面非化学计量比氧化膜及其制备方法 |
Non-Patent Citations (1)
Title |
---|
杨闯等: "Ti6Al4V钛合金表面真空渗氧处理", 《表面技术》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110965013A (zh) * | 2019-12-17 | 2020-04-07 | 西安优耐特容器制造有限公司 | 一种柔性可控电阻加热锆金属表面陶瓷化装置及方法 |
CN110965013B (zh) * | 2019-12-17 | 2023-04-07 | 西安优耐特容器制造有限公司 | 一种柔性可控电阻加热锆金属表面陶瓷化装置及方法 |
CN111139387A (zh) * | 2019-12-26 | 2020-05-12 | 西安交通大学 | 一种力学性能优良的钒合金材料及其制备方法 |
CN111139387B (zh) * | 2019-12-26 | 2021-05-28 | 西安交通大学 | 一种力学性能优良的钒合金材料及其制备方法 |
CN113174511A (zh) * | 2021-04-02 | 2021-07-27 | 西安交通大学 | 一种具有优良力学性能的β钛合金材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US11384408B2 (en) | 2022-07-12 |
CN108866472B (zh) | 2020-07-28 |
US20190323102A1 (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108866472A (zh) | 一种金属材料表面处理方法 | |
JP5656908B2 (ja) | 窒化鋼部材およびその製造方法 | |
JP2008115427A (ja) | 高濃度浸炭鋼の製造方法 | |
Harada et al. | Influence of microshot peening on surface layer characteristics of structural steel | |
JP4627776B2 (ja) | 高濃度浸炭・低歪焼入れ部材およびその製造方法 | |
CN113862610B (zh) | 一种提高渗碳层耐蚀性能的预处理方法 | |
CN103602797A (zh) | 高硬度钢丝切丸热处理工艺 | |
CN108691003B (zh) | 一种改善钴基合金表面综合性能的方法 | |
CN110257757B (zh) | 高碳铬轴承钢制零件及其热处理加工方法 | |
Liang et al. | The Effect on carburizing process on microstructure and properties of 20MnCr5 gear steel | |
Zhang et al. | Comparison of the effects of induction heating composite shot peening and conventional shot peening on residual stress, microhardness, and microstructure of 20CrMnTi gear steel | |
CN104762458A (zh) | 一种提高耐热钢抗氧化性能的表面纳米化制备方法 | |
CN106637063A (zh) | 一种提高h13热作模具热疲劳性离子渗氮表面改性方法 | |
CN106755860B (zh) | 一种水射流喷丸和等离子渗氮的复合处理表面改性方法 | |
JP2008223122A (ja) | 熱間金型用合金鋼の強化方法及び該方法による熱疲労き裂の発生を抑止して成る熱間金型用合金鋼 | |
JP2002060845A (ja) | ダイカスト金型の高寿命化方法 | |
JPH08158035A (ja) | オーステナイト系金属に対する浸炭処理方法およびそれによって得られたオーステナイト系金属製品 | |
Cui et al. | Analysis of Influencing Factors and Experimental Study on Properties of Laser Cladding Layer | |
CN113637830A (zh) | 一种加速高碳奥氏体耐热钢sigma相形核和长大的方法 | |
CN106756759B (zh) | 一种铁基合金表面高强韧渗氮层及其制备方法 | |
Han et al. | Research into grinding hardening of microalloyed non-quenched and tempered steel | |
CN118374765B (zh) | 一种高刚度低应力的机床铸铁的制造方法及其应用 | |
JPS5836649B2 (ja) | 熱間圧延機ワ−クロ−ルの製造法 | |
CN115505851B (zh) | 一种高硬度高氮马氏体不锈钢刀具材料及其制备方法 | |
JP2013053342A (ja) | 鋼部材の表面処理方法及び鋼部材の処理品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |