CN108863359A - 一种铌酸镧纳米粉体的制备方法 - Google Patents

一种铌酸镧纳米粉体的制备方法 Download PDF

Info

Publication number
CN108863359A
CN108863359A CN201810773759.1A CN201810773759A CN108863359A CN 108863359 A CN108863359 A CN 108863359A CN 201810773759 A CN201810773759 A CN 201810773759A CN 108863359 A CN108863359 A CN 108863359A
Authority
CN
China
Prior art keywords
citric acid
lanthanum
powder
obtains
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810773759.1A
Other languages
English (en)
Inventor
肖谧
张鹏
宿玉鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810773759.1A priority Critical patent/CN108863359A/zh
Publication of CN108863359A publication Critical patent/CN108863359A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Abstract

本发明公开了一种铌酸镧微波介质陶瓷纳米粉体的制备方法,以草酸铌为原料,水浴加热至完全溶解,调节溶液pH至8‑10,对出现的乳白色沉淀抽滤清洗,并水浴加热溶于柠檬酸中得到柠檬酸铌溶胶;另将硝酸镧溶于柠檬酸溶液,得到柠檬酸镧溶胶(柠檬酸摩尔量为金属离子总和的3‑5倍);再按化学式LaNbO4将柠檬酸铌溶胶与柠檬酸镧溶胶充分搅拌混合,加入乙二醇甲醚(乙二醇甲醚为溶液中柠檬酸摩尔量的2‑4倍)作为稳定剂;再将混合溶胶经水分蒸发及自燃烧后得到前驱体粉末,再于650‑750℃煅烧,得到白色LaNbO4纳米粉体。本发明成功获得了颗粒度为40‑80nm的铌酸镧微波介质陶瓷粉体原料,制备过程简单,无污染,未来可在低温下获得性能较高的铌酸镧微波介质陶瓷。

Description

一种铌酸镧纳米粉体的制备方法
技术领域
本发明属于一种以成分为特征的陶瓷组合物,特别涉及一种铌酸镧纳米级陶瓷粉体的制备工艺。
背景技术
未来便携式终端主要发展方向是轻量化、小型化、高频化和多功能化,因此对制备微波IC器件的材料性能就有更高要求。微波介质陶瓷一般作为介质材料应用于微波频段电路中,可以实现一种或多种功能,是制作微波电路与元器件的关键材料。而通常在传统固相法制备微波介质陶瓷的工艺中,烧结温度较高,使得实验条件较为苛刻。为了使微波陶瓷能够在低温下获得相近的性能,本发明采用溶胶凝胶法,以液相法制备出颗粒度为40-80nm的铌酸镧陶瓷粉体。由于其表面能较大,故在配合传统固相法制备铌酸镧微波介质陶瓷的过程中能够起到降低烧结温度的作用。
发明内容
本发明的目的,是克服现有传统固相法制备LaNbO4陶瓷烧结温度过高的缺点,以草酸铌、硝酸镧、柠檬酸为溶胶凝胶法主要原料,制备颗粒度为纳米级的铌酸镧微波介质陶瓷粉体。
本发明通过如下技术方案予以实现。
一种铌酸镧微波介质陶瓷纳米粉体的制备方法,具有以下工艺步骤:
(1)以草酸铌C10H5NbO20为原料,加入去离子水,水浴加热,直至草酸铌完全溶解;
(2)向步骤(1)溶液中滴加氨水,充分搅拌,调节溶液pH至8-10,出现乳白色沉淀;
(3)用去离子水将步骤(2)得到的乳白色沉淀抽滤清洗3-6次;
(4)将步骤(3)清洗后的白色沉淀放入柠檬酸溶液中,水浴加热直至沉淀完全溶解,得到澄清透明的柠檬酸铌溶胶,其中,柠檬酸摩尔量为Nb5+离子的3-5倍;
(5)将硝酸镧La(NO3)3·6H2O溶于柠檬酸溶液,充分搅拌,得到澄清透明的柠檬酸镧溶胶,其中,柠檬酸摩尔量为La3+的3-5倍;
(6)按化学式LaNbO4化学计量比,将步骤(4)得到的柠檬酸铌溶胶与步骤(5)得到的柠檬酸镧溶胶充分搅拌混合,加入乙二醇甲醚C3H8O2作为稳定剂,其中,乙二醇甲醚为溶液中柠檬酸摩尔量的2-4倍;
(7)将步骤(6)得到的混合溶胶置于红外灯泡下,经水分蒸发及自燃烧过程后得到黑褐色前驱体粉末;
(8)将步骤(7)得到的前驱体粉末置于刚玉坩埚内,煅烧得到白色LaNbO4粉体。
所述步骤(1)和步骤(5)中草酸铌、硝酸镧原料的质量纯度大于99.9%。
所述步骤(1)和步骤(4)的水浴加热温度为60-80℃。
所述步骤(8)对于前驱体粉末的煅烧温度为650-750℃。
本发明以溶胶凝胶法为基础,成功获得了颗粒度为40-80nm的铌酸镧微波介质陶瓷粉体原料。本发明实验条件简单,过程无污染,未来可结合传统固相法在低温下获得性能较高的铌酸镧微波介质陶瓷原料。
附图说明
图1是实施例1粉体表面扫描电镜形貌图;
图2是实施例2粉体表面扫描电镜形貌图;
图3是实施例1和实施例2得到的LaNbO4粉体XRD衍射结果图。
具体实施方式
本发明采用分析纯化学原料草酸铌(C10H5NbO20)、氨水(NH3·H2O)、柠檬酸、硝酸镧(La(NO3)3·6H2O)、乙二醇甲醚(C3H8O2),制备LaNbO4纳米级陶瓷粉体,具体实施例如下。
实施例1:
(1)以高纯度草酸铌(C10H5NbO20)为原料,加入去离子水,在85℃水浴加热直至草酸铌完全溶解;
(2)向步骤(1)溶液中滴加氨水,充分搅拌,调节溶液pH至9,出现乳白色沉淀;
(3)用去离子水将步骤(2)得到的乳白色沉淀抽滤清洗;
(4)将步骤(3)得到的清洗后的沉淀放入柠檬酸溶液,水浴加热85℃直至沉淀完全溶解,得到澄清透明的柠檬酸铌溶胶,其中,柠檬酸摩尔量为Nb5+离子的5倍;
(5)将硝酸镧(La(NO3)3·6H2O)溶于柠檬酸溶液,充分搅拌,得到澄清透明的柠檬酸镧溶胶,其中,柠檬酸摩尔量为La3+的5倍;
(6)按化学式LaNbO4化学计量比,将步骤(4)得到的柠檬酸铌溶胶与步骤(5)得到的柠檬酸镧溶胶充分搅拌混合,加入乙二醇甲醚(C3H8O2)作为稳定剂,其中,乙二醇甲醚为溶液中柠檬酸摩尔量的2倍;
(7)将步骤(6)得到的混合溶胶置于红外灯泡下,经水分蒸发及自燃烧过程后得到黑褐色前驱体粉末;
(8)将前驱体粉末置于刚玉坩埚内,在650℃煅烧2小时,得到白色LaNbO4粉体。
最后,将所得粉体进行SEM与XRD测试和表征。
实施例2:
(1)以高纯度草酸铌(C10H5NbO20)为原料,加入去离子水,在85℃水浴加热直至草酸铌完全溶解;
(2)向步骤(1)溶液中滴加氨水,充分搅拌,调节溶液pH至9,出现乳白色沉淀;
(3)用去离子水将步骤(2)得到的乳白色沉淀抽滤清洗;
(4)将步骤(3)得到的清洗后的沉淀放入柠檬酸溶液,水浴加热85℃直至沉淀完全溶解,得到澄清透明的柠檬酸铌溶胶,其中,柠檬酸摩尔量为Nb5+离子的5倍;
(5)将硝酸镧(La(NO3)3·6H2O)溶于柠檬酸溶液,充分搅拌,得到澄清透明的柠檬酸镧溶胶,其中,柠檬酸摩尔量为La3+的5倍;
(6)按化学式LaNbO4化学计量比,将步骤(4)得到的柠檬酸铌溶胶与步骤(5)得到的柠檬酸镧溶胶充分搅拌混合,加入乙二醇甲醚(C3H8O2)作为稳定剂,其中,乙二醇甲醚为溶液中柠檬酸摩尔量的2倍;
(7)将步骤(6)得到的混合溶胶置于红外灯泡下,经水分蒸发及自燃烧过程后得到黑褐色前驱体粉末;
(8)将前驱体粉末置于刚玉坩埚内,在750℃煅烧2小时,得到白色LaNbO4粉体。
最后,将所得粉体进行SEM与XRD测试和表征。
本发明具体实施例的检测方法如下:
1.借助Rigaku D/max 2550PC型X射线衍射仪对粉体进行XRD测试,扫描角度为20-70°。
2.借助MERLIN Compact扫描电子显微镜查看粉体的粒径和形貌。
本发明具体实施例的检测结果如下:
图1和图2为两种LaNbO4粉体SEM检测结果。
图1对应于实施例1得到的LaNbO4粉体。稳定剂乙二醇甲醚为溶液中柠檬酸摩尔量的2倍且煅烧温度为650℃时,其颗粒度均匀,晶粒平均直径在40-60nm左右,团聚较弱,形态良好。
图2对应于实施例2得到的LaNbO4粉体。稳定剂乙二醇甲醚为溶液中柠檬酸摩尔量的2倍且煅烧温度为750℃时,其颗粒度较均匀,晶粒平均直径在40-80nm左右,团聚较弱,形态良好。
图3为实施例1和实施例2得到的两种LaNbO4粉体的XRD衍射结果,结合LaNbO4标准PDF卡片(50-0919)证明实施例1和实施例2中LaNbO4晶体均已形成。

Claims (4)

1.一种铌酸镧微波介质陶瓷纳米粉体的制备方法,具有以下工艺步骤:
(1)以草酸铌C10H5NbO20为原料,加入去离子水,水浴加热,直至草酸铌完全溶解;
(2)向步骤(1)溶液中滴加氨水,充分搅拌,调节溶液pH至8-10,出现乳白色沉淀;
(3)用去离子水将步骤(2)得到的乳白色沉淀抽滤清洗3-6次;
(4)将步骤(3)清洗后的白色沉淀放入柠檬酸溶液中,水浴加热直至沉淀完全溶解,得到澄清透明的柠檬酸铌溶胶,其中,柠檬酸摩尔量为Nb5+离子的3-5倍;
(5)将硝酸镧La(NO3)3·6H2O溶于柠檬酸溶液,充分搅拌,得到澄清透明的柠檬酸镧溶胶,其中,柠檬酸摩尔量为La3+的3-5倍;
(6)按化学式LaNbO4化学计量比,将步骤(4)得到的柠檬酸铌溶胶与步骤(5)得到的柠檬酸镧溶胶充分搅拌混合,加入乙二醇甲醚C3H8O2作为稳定剂,其中,乙二醇甲醚为溶液中柠檬酸摩尔量的2-4倍;
(7)将步骤(6)得到的混合溶胶置于红外灯泡下,经水分蒸发及自燃烧过程后得到黑褐色前驱体粉末;
(8)将步骤(7)得到的前驱体粉末置于刚玉坩埚内,煅烧得到白色LaNbO4粉体。
2.根据权利要求1的一种铌酸镧纳米粉体的制备方法,其特征在于,所述步骤(1)和步骤(5)中草酸铌、硝酸镧原料的质量纯度大于99.9%。
3.根据权利要求1的一种铌酸镧纳米粉体的制备方法,其特征在于,所述步骤(1)和步骤(4)的水浴加热温度为60-80℃。
4.根据权利要求1的一种铌酸镧纳米粉体的制备方法,其特征在于,所述步骤(8)对于前驱体粉末的煅烧温度为650-750℃。
CN201810773759.1A 2018-07-15 2018-07-15 一种铌酸镧纳米粉体的制备方法 Pending CN108863359A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810773759.1A CN108863359A (zh) 2018-07-15 2018-07-15 一种铌酸镧纳米粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810773759.1A CN108863359A (zh) 2018-07-15 2018-07-15 一种铌酸镧纳米粉体的制备方法

Publications (1)

Publication Number Publication Date
CN108863359A true CN108863359A (zh) 2018-11-23

Family

ID=64301893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810773759.1A Pending CN108863359A (zh) 2018-07-15 2018-07-15 一种铌酸镧纳米粉体的制备方法

Country Status (1)

Country Link
CN (1) CN108863359A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153350A (zh) * 2011-05-07 2011-08-17 大连交通大学 一种铌酸钾纳米粉体的制备方法
CN103663558A (zh) * 2013-12-11 2014-03-26 上海师范大学 一种钛铌锌酸铅化学溶液及铁电薄膜的制备方法
CN105669197A (zh) * 2016-02-01 2016-06-15 浙江大学 改进溶胶-凝胶法制备铌酸锶钡纳米粉体的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153350A (zh) * 2011-05-07 2011-08-17 大连交通大学 一种铌酸钾纳米粉体的制备方法
CN103663558A (zh) * 2013-12-11 2014-03-26 上海师范大学 一种钛铌锌酸铅化学溶液及铁电薄膜的制备方法
CN105669197A (zh) * 2016-02-01 2016-06-15 浙江大学 改进溶胶-凝胶法制备铌酸锶钡纳米粉体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴宪君等: "钙钛矿结构YFe1-xCrxO3纳米晶的制备与磁性能调控", 《人工晶体学报》 *
田莉玉等: "锶掺杂的正铌酸镧超细粉体的合成与性能", 《世界地质》 *

Similar Documents

Publication Publication Date Title
CN103214235B (zh) 一种微波介质陶瓷材料的制备方法
Liu et al. Soft-chemistry synthesis of LiNbO3 crystallites
CN109111760A (zh) 一种黑色氧化铝陶瓷用色剂及其制备方法和应用
CN1699276A (zh) 一种可低温度烧结的钛酸锌高频介质陶瓷及其制备方法
KR101539851B1 (ko) 복합 페롭스카이트 분말, 그 제조방법 및 이를 포함하는 내부전극용 페이스트 조성물
JP4684657B2 (ja) 蓚酸バリウムチタニル粉末の製造方法及びチタン系ペロブスカイト型セラミック原料粉末の製造方法
CN108863359A (zh) 一种铌酸镧纳米粉体的制备方法
JP2014224032A (ja) 異方形状ニオブ酸カリウム粒子の製造方法
CN108558401B (zh) 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法
CN107903072B (zh) 两步共沉淀法制备铌酸锶钡纳米粉体的方法
CN114085080B (zh) 一种稀土掺杂钽钛酸盐粉体及其制备方法
JP2007015898A (ja) 酸化ジルコニウム粉末の製造方法及び酸化ジルコニウム粉末
JPH1017324A (ja) 酸化インジウム粉末の製造方法
KR20100104415A (ko) 나노 금속 산화물 분말의 제조 방법
Das et al. Low temperature chemical synthesis of nanosized ceramic powders
JP6005528B2 (ja) 二酸化チタン溶液の製造方法及びペロブスカイト型チタン複合酸化物の製造方法
CN103951426B (zh) 介电陶瓷K6Nb10.8O30粉体及其烧结体的制备方法
CN103224393B (zh) 一种微波介质陶瓷材料的制备方法
CN103951424A (zh) 利用湿化学工艺低温精细合成钨锰铁矿结构MgZrNb2O8介质陶瓷纳米粉体
CN111377734A (zh) X9r型多层陶瓷电容器介质材料及其制备方法
KR101802067B1 (ko) 페로브스카이트 구조를 갖는 산화물 분말의 제조 방법 및 이에 의해 제조된 산화물 분말
WO2004092071A1 (ja) チタン酸バリウム粉末の製造方法
TWI664146B (zh) 介電陶瓷材料、其製造方法、介電複合材料及其用途
CN103708837A (zh) 一种利用水溶性溶胶凝胶工艺精细合成Ba(Zn1/3Nb2/3)O3介质陶瓷纳米粉体
JPH0855706A (ja) 酸化物系半導体微粉体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181123